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Abstract

Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative
minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor
(CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity
specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional
promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow
the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently
transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant
cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-
transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus
supporting the translation of such approach in the clinical setting.
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Introduction

Adoptive cell therapy with unmodified and ex vivo expanded T

cells has proved effective against different tumor entities, in

particular melanoma and EBV-associated tumors [1]. Nowadays,

the genetic modification of T cells can confer new tumor-targeting

properties to naturally occurring lymphocytes, thus overcoming

the reliance on components of the endogenous immune system.

While transduction with Ag-specific TCR can only redirect T

cell activity based on the same recognition characteristics,

Chimeric Antigen Receptor (CAR) technology has the potentiality

to endow T cells with the advantageous features of an antibody,

namely specificity, affinity and the possibility to target non-protein

antigens [2]. Moreover, in an unique molecule CAR provides

some measures to counteract tumor immune evasion strategies: it

relieves T cell recognition and activity of MHC restriction and

expression, and can relay costimulatory signals through its

intracellular domains.

Therapeutic efficacy of CAR T cells have been already reported

in patients, in particular against chronic lymphocytic leukemia

(CLL) and acute lymphoblastic leukemia (ALL) [3–6] with very

promising results in terms of disease free survival and complete

hematological and molecular responses even in subjects who failed

all previous standard treatments. However, hematological malig-

nancies, in particular those of B cell origin, can be regarded as an

ideal target for immunotherapeutic approaches [7]. Indeed, these

malignant cells naturally provide costimulatory receptor ligands

and share the same physiological compartments with adoptively

transferred T cells. Finally, elimination of normal B cells is

associated with non life-threatening adverse effects, which can be

clinically managed with intravenous immunoglobulin administra-

tion.

Conversely, solid tumor treatment remains a major challenge

and should be improved both in terms of clinical efficacy and

safety. Partial successes were experienced against neuroblastoma

using GD2-specific CAR T cells without pre-conditioning

regimen, in the virtual absence of side effects [8,9]. By contrast,

no clinical responses were recorded with the infusion of T cells

redirected against the folate receptor in ovarian carcinoma

patients [10], nor against carboxy-anhydrase IX (CAIX) in renal

cell carcinoma patients [11], despite the relevant ‘‘on-target, off-

tumor’’ toxicity evidenced in the latter case. Lessons learned from

these experiences indicate that the definition of the target antigen
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for safety issues, and the persistence and tumor homing capacity of

infused cells are particularly critical for a successful treatment.

We addressed some of these questions by targeting prostate

tumor cancer cells with T cells modified to express a CAR specific

for the human prostate-specific membrane antigen (hPSMA).

Prostate tumor represents a serious clinical entity, with

estimated 233,000 new cases and 29,480 deaths in U.S. in 2014

[12], with at present only palliative treatments for hormone

refractory and metastatic forms [13]. For these patients, immu-

notherapy has proved to be a valid option based on vaccination

with modified whole prostatic tumor cells (GVAX [14]) or PBMC

presenting a relevant prostatic antigen (Sipuleucel-T [15]). With

regard to adoptive cell therapy approaches, preclinical studies

have reported encouraging results [13,16,17] and clinical evalu-

ation is undergoing (clinical trials number NCT01140373,

NCT01929239, NCT00664196; www.clinicaltrials.gov). In this

scenario, PSMA can represent a suitable target and indeed it is

currently exploited for both imaging and therapeutic purposes. In

particular, PSMA expression levels differentiate normal and

cancerous prostatic tissues, and parallel the Gleason score of

prostate cancer [18]. Interestingly, PSMA expression involves

neovasculature of several tumor entities, thus envisaging an

additional antiangiogenic effect.

Here, we report the design of CAR against hPSMA based on a

novel and high affinity specific mAb [19], and the phenotypic and

functional characterization of T-body-hPSMA both in vitro and

in vivo. For transduction, we used a lentiviral vector carrying a

bidirectional promoter which drives the simultaneous expression

of the CAR molecule and a reporter bioluminescent gene. This

allowed the tracking of infused T cells and hence the direct

correlation of the therapeutic outcome with the persistence and

homing capacity of T cells. Overall, CAR-transduced T cells not

only exerted a relevant loco-regional therapeutic activity, but also

completely eradicated a disseminated neoplasia in the majority of

treated animals. These results strongly support the translation of

such approach in the clinical setting.

Materials and Methods

Cell lines
The following cell lines were used in this study: LNCaP and

PC3, human prostate carcinoma cell lines; Jurkat, human T

lymphoblastic leukemia and 293 T [20], human embryonic kidney

cell line. The PC3-PIP cell line, stably expressing human PSMA

(hPSMA) [21] was generously provided by Dr. Warren Heston;

LNCaP cell line was obtained from American Type Culture

Collection (ATCC, Rockville, MD, USA). LNCaP, PC3, PC3-PIP

and Jurkat cells were maintained in RPMI 1640 medium

(EuroClone, Milan, Italy), while DMEM medium (Biochrom

AG, Berlin, Germany) was used for 293 T cells; both media were

supplemented with 10% Fetal Bovine Serum (FBS, Gibco BRL

Paisley, UK), 2 mM L-Glutamine, 10 mM HEPES, 100 U/ml

Penicillin, and 100 U/ml Streptomycin (all from Lonza, BioWhit-

taker, Basel, Switzerland), at 37uC in a 5% CO2 atmosphere.

Anti-hPSMA CAR generation
The CAR against the hPSMA antigen contains the complete

sequence of the anti-hPSMA scFv derived from the anti-hPSMA

D2B hybridoma [19]. This sequence was cloned into the multiple

cloning site (MCS) of the pSecTag2A vector (Invitrogen, San

Giuliano Milanese, Milan, Italy). The MCS of the pSecTag2A

plasmid is comprised between two sequences: in 59, the murine Ig

kappa light chain leader sequence V-J2-C, and in 39 the Myc Tag

sequence. Thus, the leader-ScFv-myc sequence was used for CAR

generation. The Leader-ScFv-myc fragment was amplified by

PCR and inserted in the pBS SKII construct (Invitrogen). A

portion of the CD28 (bases 438–759) and the CD3f intracellular

domain (227–563 region), both obtained from cDNA of EBV-

specific CD4+ T cells [22], were fused by PCR and then inserted

into the pBS SKII vector, downstream the Leader-ScFv-myc

fragment. This vector was then sequenced at the Centro Ricerca

Interdipartimentale Biotecnologie Innovative (CRIBI) of Padua

University, Italy. The anti-hPSMA CAR sequence was finally

subcloned into the pcDNA3.1 vector (Invitrogen). To check the

capacity to drive the expression of the CAR molecule on the

membrane, this vector was used to transfect 293 T cells by using

Lipofectamine 2000 (Invitrogen), according to the manufacturer’s

instructions.

LV plasmids and lentiviral preparation
The following lentiviral packaging vectors were used: pMDLg/

pRRE, pRSV-Rev, pMD2.VSVG and pADVantage, all kindly

provided by Dr. L. Naldini (San Raffaele, Milan, Italy). The

transfer vector #945.pCCL.sin.cPPT.SV40ployA.eGFP.-

nCMV.hPGK.deltaLNGFR.Wpre is a self-inactivating (SIN)

HIV-derived vector [23], which carries a minCMVPGK divergent

bidirectional promoter driving the simultaneous expression of two

genes in antisense orientation. The transfer vectors used in this

study carried the anti-hPSMA CAR sequence (obtained from

pMA-T-body vector) under the control of the hPGK promoter,

and the eGFP (enhanced Green Fluorescent Protein) or Firefly

Luciferase (fluc) reporter genes under the control of minCMV.

pMA-T-body vector and fluc sequence were synthetized by

GeneArt, Life Technologies (Regensburg, Germany). Lentiviral

production in 293 T cells has been previously described [23]. A

lentiviral vector coding only for fluc [24] was used to transduce

PC3-PIP cells.

Western blot analysis
293 T cells, untransfected or transfected with pcDNA3.1-CAR,

were lysed in buffer containing 50 mM Tris HCl pH 6.8, 2%

sodium dodecyl sulfate (SDS), 2% b-Mercaptoethanol, 10%

glycerol, and 0.1–0.05% Bromophenol Blue (al from Sigma-

Aldrich, St. Louis, MO, USA) Proteins were separated on 10%

SDS-PAGE gels and transferred to PVDF membrane (Immobi-

lion-P, Millipore, Billerica, MA, USA). The membrane was

blocked in 5% skimmed milk (Sigma-Aldrich) in TBS and 0.05%

Tween 20, followed by incubation with the primary antibody

(mouse anti-c-Myc mAb, 1:1000, Sigma-Aldrich) for one hour at

room temperature. After three 10-minutes washes in PBS-Tween,

HRP-conjugated goat anti-mouse IgG secondary antibody (diluted

1:10000, Amersham, Milan, Italy) was added for one hour at room

temperature in milk. The membrane was developed using the

SuperSignal West Pico (Pierce, Rockford, IL, USA) and visualized

using chemiluminescence. Signal intensity was measured using a

Bio-Rad XRS chemiluminescence detection system (Life Science

Group, Milan, Italy).

Jurkat cell transduction
To assess the functionality of LV vectors, Jurkat cells were

incubated with viral supernatant (hPSMA/eGFP LV CAR or

hPSMA/Luciferase LV CAR) for 15 hours in the presence of

8 mg/ml protamine sulfate (Sigma-Aldrich). Flow cytometry and

Bioluminescence (BLI) analyses were carried out at different time

points post transduction to evaluate CAR and eGFP expression or

luciferase activity.
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T-bodies generation
To generate T-bodies, PBMC from healthy donors were

activated 48 hours with OKT-3 (50 ng/ml; Ortho Biotech Inc,

Raritan, NJ, USA) and human IL-2 (hIL-2, 300 U/ml; Proleukin;

Novartis Pharmaceuticals, Horsham, UK). T cells were then

infected with the viral supernatant for 18 hours at 37uC and 5%

CO2, in the presence of protamine sulfate (40 mg/ml; Sigma-

Aldrich) and hIL-2 (500 U/ml). The supernatant was then

changed with fresh complete medium containing hIL-2 (100 U/

ml). Seventy-two hours later, PBMC were analyzed for CAR and

eGFP expression, and for luciferase activity. PBMC were referred

to as T-body-hPSMA/eGFP and T-body-hPSMA/fluc when

transduced with hPSMA/eGFP LV CAR or hPSMA/Luciferase

LV CAR, respectively. T-bodies were re-stimulated once a week

with irradiated (60 Gy) PC3-PIP at a 10:1 ratio. Complete

medium with fresh IL-2 was replenished twice a week.

Antibodies
CAR-expressing cells were labeled with the anti-c-myc mAb

(clone 9E10; Sigma-Aldrich) or the isotype control (mouse IgG1,

Southern Biotech, Milan, Italy), followed by a secondary antibody

(PE-conjugated goat anti-mouse IgG; Southern Biotech). Cell

surface markers were labeled using APC-, FITC- or PE-

conjugated antibodies to CD4, CD8, CD57, CD27, CD28,

CD62L (BioLegend, San Diego, CA, USA), CCR7 (eBioscience,

San Diego, CA, USA), and the relative isotype controls purchased

from the same companies.

Cytotoxicity assay
The cytotoxic activity of T-body-hPSMA/eGFP and T-body-

hPSMA/fluc was assessed in a standard 4 h 51Cr-release assay as

previously reported [25], at different time points post-transduc-

tion. PC3, PC3-PIP and LNCaP were used as target cells.

Cytokine release assays
To evaluate IFN-c production, an ELISA IFN-c Screening Set

(Thermo Scientific, Rockford, IL, USA) was used, according to

manufacturer’s instructions. Briefly, 16106 T cells were seeded

with 16106 target cells (PC3 or PC3-PIP) in triplicate wells in 96-

well round bottom plates. Cytokine secretion was measured after

12 hours of incubation using T-bodies at different stages of

differentiation. Negative and positive controls were represented by

untransduced PBMC and T-bodies unstimulated or treated with

40 ng/ml of PMA and 4 mg/ml of Ionomycin (Sigma-Aldrich),

respectively. Supernatants were then analysed on a VICTOR X4

(PerkinElmer, Zaventem, Belgium).

Mice and in vivo experiments
In vivo experiments involved 6 to 8 week-old males SCID,

Rag22/2/cc2/2 and NOD/SCID mice (Charles River Labora-

tories, Calco, Como, Italy), which were housed in the specific

pathogen-free animal facility of the Department of Surgery,

Oncology and Gastroenterology, Padua University (Italy). Animals

were housed with a 12- hour light/dark cycle, in temperature

(22+/21uC) and humidity (55+/25%) controlled room. All mice

were allowed free access to water and a maintenance diet. All

cages housed up to 6 animals and contained wood shavings and a

cardboard tube for environmental enrichment. Procedures

involving animals and their care were in conformity with

institutional guidelines that comply with national and international

laws and policies (D.L. 116/92 and subsequent implementing

circulars), and the experimental protocol (nu7/2012) was approved
by the local Ethical Committee of Padua University (CEASA).

During in vivo experiments, animals in all experimental groups

were examined daily for a decrease in physical activity and other

signs of disease; severely ill animals (weight loss exceeding 15%,

lethargy, ruffled hair, low temperature) were euthanized by carbon

dioxide overdose.

Winn assay. Winn assay was performed by injecting s.c.

SCID mice with 56106 PC3 or PC3-PIP tumor cells per animal,

mixed with either RPMI or T-body-hPSMA/eGFP cells (56106/

mouse; 6 mice/group). Tumor volume was calculated according to

the following equation: V (mm3) = (d2 * D)/2, where d (mm) and D

(mm) are the smallest and largest perpendicular tumor diameters,

respectively, as assessed by caliper measurement.

Loco-regional treatment. To evaluate the therapeutic

potential of the loco-regional treatment, SCID mice were injected

s.c. with 56106 PC3-PIP cells. When tumors become palpable

about four days later, mice were randomly assigned to the control

group (they were left untreated) or the experimental group (they

were injected intralesionally with CAR-transduced T cells at 72

hours after transduction; 6 mice/group). Two primary outcomes

were analyzed: tumor growth was monitored over time by caliper

measurement and the overall survival was recorded.

Systemic treatment of subcutaneous prostate

tumors. To assess the therapeutic activity of the systemic T-

body administration, SCID mice were injected s.c. with 56106

PC3-PIP cells and 4 days later they received i.v. T-body-hPSMA/

fluc (106106/mouse) at 72 hours or 5–6 weeks post transduction

(n= 6); untreated animals served as control group (n= 6). T cell

biodistribution was assessed by bioluminescence imaging (BLI) in

the same conditions, except that mice were injected with both

PC3-PIP or PC3 tumor cells on the right and left flank,

respectively.

Disseminated prostatic tumor model. To set up a model

of disseminated prostatic tumor, SCID, Rag22/2/cc2/2 and

NOD/SCID mice were injected i.v. with different numbers

(ranging from 16105 to 56106) of fluc-transduced PC3-PIP cells (6

mice/group). Tumor engraftment and growth were evaluated by

BLI. Moreover, tumor-free SCID, Rag22/2/cc2/2 and NOD/

SCID mice were injected with 206106 T-body-hPSMA/fluc, to

evaluate their fate by BLI (6 mice/group).

Adoptive immunotherapy experiments. In adoptive im-

munotherapy experiments, bioluminescent PC3-PIP were injected

i.v. in NOD/SCID and Rag22/2/cc2/2 mice (16105/mouse).

Four days later, animals were randomly assigned to the control

group (they were left untreated) or the experimental group, where

they received i.v. 206106 T-body-hPSMA/eGFP for 3 times

within a week (6 mice/group). Tumor growth was monitored

weekly by BLI, and survival was recorded.

Quantitative Bioluminescence
Quantitative BLI is a powerful technology that allows to obtain

multiple images longitudinally and, at the same time, to reduce

animal numbers. Bioluminescence images were collected with the

IVIS Lumina II Imaging System (PerkinElmer). Ten to 15 min-

utes before imaging, animals were anesthetized with isoflurane/

oxygen and administered i.p. with 150 mg/kg of D-luciferin

(PerkinElmer) in PBS. Three mice were imaged simultaneously

with exposure times ranging from 0.5 to 3 min. A 12612 cm field

of view and low, medium, or high binning levels were applied to

maximize sensitivity and spatial resolution. Ventral images were

obtained for each animal and quantified through the region of

interest (ROI). Living Image Software (PerkinElmer) was used to

acquire and quantify the bioluminescence imaging data sets.

CAR-T Cells for Prostate Cancer
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Cytofluorimetric evaluation of hPSMA expression in
growing tumors
Tumor cells suspensions were obtained by enzymatic digestion

with 270 units/ml DNase, 35 U/ml hyaluronidase, and 200 U/

ml collagenase buffer (all from Sigma-Aldrich). After a 30-min

incubation at 37uC, the cells were passed through a 70-mm cell

strainer (BD Biosciences, San Jose, CA, USA). Samples were then

stained at 4uC with a mouse anti-hPSMA mAb [19] followed by a

PE-conjugated anti-mouse IgG1 secondary antibody (BioLegend)

and analyzed on a FACSCalibur (BD) flow cytometer. Data were

evaluated with FlowJo software (TreeStar Inc., Olten, Switzer-

land).

Statistical analysis
Kaplan–Meier product-limit method was performed to estimate

the survival curves, and comparison of survival between groups

was performed using the log-rank test. Statistical analyses were

carried out with the Sigmaplot (version 12.3) statistical package.

Results

Construction and development of an efficient
bidirectional LV for anti-hPSMA CAR expression
A CAR sequence was designed that encoded the following

components in-frame from 59 to the 39 ends (Fig. 1A): a leader

sequence, the single-chain variable fragment (ScFv) of the new

anti-hPSMA antibody IgGD2B [19], the c-myc tag sequence, and

the CD28 costimulatory molecule linked to the CD3f sequence.

We decided to exploit this new anti-PSMA scFv (scFvD2B) for the

construction of our CAR, because of its very appealing charac-

teristics, in particular the nanomolar affinity for the target that is

similar to the one evidenced by the whole J591 antibody [19].

Moreover, our scFvD2B shows high specificity and identifies a

different epitope from that recognized by the J591 antibody, as

assessed by competition experiments carried out with radio-

immunoligands or biotin-labeled antibodies ([19] and data not

shown).

To assess the capacity of the construct to drive the expression of

a receptor that correctly mounted on the cell membrane, the anti-

hPSMA CAR sequence was cloned into the pcDNA3.1 vector and

the resulting plasmid was used for transient transfection of 293 T

cells. At different time points thereafter, the expression of the

chimeric receptor was assessed by cytofluorimetric and Western

blotting analysis (Fig. 1B and 1C, respectively), using the anti-c-

myc mAb. Results disclosed that the CAR was correctly mounted

on the membrane and had the expected molecular weight (about

60 kDa); CAR expression was already detectable 24 hours post-

transfection, to rapidly disappear the next days due to the lack of a

selection step (Fig. 1C). Subsequently, the CAR sequence was

inserted into a LV carrying a bidirectional promoter that allowed

transcription of a reporter gene (eGFP or fluc) from the upstream

minimal promoter minCMV, without affecting downstream

expression of the anti-hPSMA CAR from the efficient hPGK

promoter (Fig. 1D). To assess functionality of the lentiviral vectors,

Jurkat cells were transduced with LV CAR hPSMA/eGFP and

LV CAR hPSMA/fluc. CAR turned out to be highly expressed

already 72 hours post-transduction, as demonstrated by the high

percentage of c-myc+ cells detected by flow cytometry analysis

(Fig. 1E and 1F). In particular, CAR-expressing cells were more

than 90% when transduced with LV CAR hPSMA/eGFP

(Fig. 1E) and more than 60% when using LV CAR hPSMA/

fluc (Fig. 1F, left panel). Notably, the bidirectional LV vectors

appeared to drive the expression of either the CAR and the

reporter genes with a very balanced efficiency, as demonstrated by

the high intensity of eGFP signal (Fig. 1E) and the relevant

Luciferase activity (Fig. 1F, right panel).

Phenotypic characterization of CAR-transduced T cell
populations
For the generation of T cell populations expressing the anti-

hPSMA CAR, a rapid expansion protocol was developed. The

optimal infection time was set up after 48 hours of OKT3

activation, since at this time point we obtained the highest

percentage of CAR-expressing T cells (Fig. 2A, left panel), and a

less differentiated phenotype, as assessed by the high expression of

CD27, CD28 and CD62L markers (Fig. 2A, central panel).
Subsequently, the expansion protocol involved weekly restimula-

tion with PC3-PIP cells that allowed a rapid and sustained

proliferation of both T-body-hPSMA/eGFP and T-body-

hPSMA/fluc populations (Fig. 2A, right panel).
To better define the state of differentiation of CAR-transduced

T lymphocytes in the post infection period during antigenic

restimulations, expression of different surface markers (CD62L,

CD27, CD28, CCR7, CD57) was assessed by cytofluorimetric

analysis. Seventy-two hours after transduction, the emerging

profile was essentially of early effector T cells, as shown by the

high expression of CD62L, CD27 and CD28, the presence of

CCR7 positive cells and the low expression of CD57 (Fig. 2B, left
panel). Following restimulations with the antigen, T cells acquired

an intermediate effector memory phenotype with the progressive

down-modulation of CD62L, CD28 and CCR7 and a slight

increase in CD57 expression (Fig. 2B, left panel). Interestingly,
whereas the subsequent encounter with the antigen led to the

expansion of the CAR-expressing population (Fig. 2B, right
panel), a dichotomy could be observed between the expanding T

cell subsets. Indeed, while CAR expression was almost equal

within the CD4+ and CD8+ T cell populations immediately after

infection, the antigenic restimulation determined the progressive

accumulation of the CD8+ T cell subset only, which almost

completely overcame CD4+ T cells by month one after

transduction (Fig. 2C).

Functional characterization of CAR-expressing T cells
CAR expression provided the transduced population with the

ability to recognize the hPSMA antigen on the surface of prostate

tumor cell lines, and to mediate a high and specific cytotoxicity

(Fig. 3A). Indeed, both the T-body-hPSMA/fluc and T-body-

hPSMA/eGFP populations lysed the hPSMA-transfected PC3

cells while sparing the antigen-negative counterpart; more

importantly, they were also capable of recognizing the LNCaP

target cells that naturally harbour the hPSMA antigen. Cytotox-

icity was already evident, albeit at low levels, 3 days after

transduction and increased at maximal levels just after a single

round of antigen restimulation, to remain constant thereafter up to

2 months post-infection. Other than exerting a relevant cytotoxic

activity, CAR-transduced T cells at different stages of differenti-

ation also produced high levels of IFN-c in response to hPSMA-

expressing tumor cells (Fig. 3B and 3C), but not against hPSMA

negative control cells. As a negative control, uninfected T cells did

not produce IFN-c when co-cultured with PC3 cells engineered to

express the surface hPSMA antigen.

Analysis of therapeutic efficacy of anti-hPSMA T-body
administration against local prostate tumors
In vivo therapeutic efficacy of CAR-transduced T cells at

different stages of differentiation (72 hours or 5 weeks post-

transduction) was initially evaluated using a Winn assay (Fig. 4A).

CAR-T Cells for Prostate Cancer
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Figure 1. CAR development and validation. (A) Anti-hPSMA CAR map. EC: extracellular domain; TM: transmembrane domain; IC: intracellular
domain. (B) Cytofluorimetric profile of CAR expression in transfected 293 T cells. 293 T cells were transfected with pcDNA3.1 vector bearing CAR
sequence and analysed by flow cytometry after 24 hours (dark line). Untransfected cells (grey plot) served as control. (C) CAR expression as assessed
by Western blotting at 24 hours (line 1) and 7 days (line 2) post 293 T cell transfection. Negative controls were the medium alone (line 3) and
untransfected 293 T cells (line 4). Line 5, molecular weight markers. (D) Linear map of the recombinant viral vector containing the minCMVPGK
bidirectional promoter (22). In particular, the reporter gene (eGFP or Luciferase) is under the control of minCMV promoter, while the CAR gene is
under control of hPGK promoter. (E) Transduction of Jurkat cells with LV CAR anti-hPSMA/eGFP. Co-expression of c-myc and eGFP in LV-transduced
Jurkat cells, as assessed by flow cytometry. Dot plot reports the events gated on total viable cells; more than 90% of cells co-express both c-myc and
eGFP. (F) Transduction of Jurkat cells with LV CAR anti-hPSMA/Luciferase. Left panel, c-myc expression (black) in Jurkat cells at 72 h post transduction,
as assessed by flow cytometry. Grey plot represents the isotype control. Right panel, Assessment of luciferase activity in LV-transduced Jurkat cells
(26105/well) by BLI.
doi:10.1371/journal.pone.0109427.g001
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In particular, when PC3-PIP tumor cells were co-injected with T-

body-hPSMA/eGFP no tumor growth was observed (Fig. 4A, left
panel), irrespective of the differentiation stage of T-bodies. On the

other hand, T cell transfer did not significantly impact the growth

of hPSMA-negative PC3 tumor cells (Fig. 4A, right panel).
Since the Winn assay does not recapitulate a real therapeutic

setting, we assessed the antineoplastic activity of CAR-transduced

Figure 2. Generation, expansion and phenotipic properties of T-bodies. (A) Set up of transduction protocol and growth kinetics. Left panel,
PBMC were activated with OKT3 at time 0 and transduced concomitantly (Td0), or after 48-h (Td2) or 72-h (Td3) hours. Flow cytometry analysis of c-
myc tag expression was performed 72 hours post infection. Central panel reports the expression of CD27, CD28 and CD62L in the three different
conditions of activation/infection reported in the left panel. Right panel, Expansion of T-body-hPSMA/fluc and T-body-hPSMA/eGFP transduced after
48 h activation in response to weekly restimulation with PC3-PIP cells. Untransduced PBMC were used as control. (B) Phenotype and CAR expression
in transduced T cells upon stimulation. Left panel, Expression of surface markers in T-body-anti-hPSMA/fluc at different time points (3, 11 and 18 days)
post transduction, as assessed by flow cytometry. Data are representative of 3 independent experiments. Overlapping results were obtained in T-
body-anti-hPSMA/eGFP. Right panel, percentage of c-myc+ cells in LV CAR hPSMA/fluc and LV CAR hPSMA/eGFP-transduced T cell populations at
different time points post transduction. Figure shows mean +/2 SD of at least three independent experiments. (C) Kinetics of CD4 and CD8 subsets in
transduced T cell populations. Expression of CD4 and CD8 markers in c-myc+-gated T-body-hPSMA/eGFP (left panel) and T-body-hPSMA/fluc (right
panel) populations at different time points post transduction, as assessed by flow cytometry. Data are from a representative experiment out of three
that produced similar results.
doi:10.1371/journal.pone.0109427.g002
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T cells against established tumors. SCID mice were injected s.c.

with PC3-PIP cells and, when tumors became palpable, they

received intratumorally and peritumorally T-body-hPSMA/eGFP

at 72 hours post-transduction. While progressive tumor growth

was observed in untreated control mice, treated masses shrank up

to almost disappear, at least for the first week after treatment

(Fig. 4B, left panel). Thereafter, tumors resumed to grow in 3 out

of 6 treated mice, even though with a strong delay and a slower

kinetics (Fig. 4B, left panel). Nevertheless, a single injection of

CAR-transduced T cells produced a complete regression of the

tumor in 50% of treated animals (3/6) and a statistically significant

increase in survival (p = 0.0028; Fig. 4B, right panel).
To assess if the resumption of tumor growth could be due to the

emergence of antigen-loss escape variants induced by the selective

pressure of the immunological treatment, we analyzed the

expression of hPSMA on tumor cells recovered ex vivo from

treated and untreated mice (Fig. 4C). Indeed, this hypothesis could

be ruled out because ex vivo cancer cells from both treated and

control mice displayed overlapping profiles of hPSMA expression.

Nonetheless, these expression levels turned out to be strongly

reduced respect to the cultured tumor cells, as evidenced by a one-

log decrease in the fluorescence intensity signal.

Finally, T-body-hPSMA/fluc were administered systemically to

mice bearing s.c. tumors, but did not display therapeutic activity

(Fig. S1A). This failure was very likely due to the poor capacity of

infused T cells to reach the tumor site (Fig. S1B). Such result is in

line with previous data obtained by our group in a different

experimental setting, which involved the i.v. administration of

Melan-A/MART-1-specific TCR-transduced T cells in mice

bearing established s.c. melanoma tumors [20].

Assessment of therapeutic efficacy of anti-hPSMA T-body
administration against disseminated prostate tumors
While the loco-regional approach provided evidence of efficacy

and specificity, a systemic treatment against a disseminated

prostate tumor model would better resemble the clinical setting.

To this end, different numbers of PC3-PIP cells were injected i.v.

in SCID mice and tracked for their persistence and biodistribution

by BLI; unexpectedly, they apparently disappeared very rapidly

and failed to form detectable tumor masses up to one month after

injection (Fig. S2 and data not shown). Therefore, tumor growth

was then tested in two more immunocompromised animal strains,

namely Rag22/2/cc2/2 and NOD/SCID mice. In such strains,

tumor cells disseminated and displayed a sustained growth as soon

as 7–14 days after injection, even when administered at low

amounts (Fig. S2).

As a complimentary approach, biodistribution and persistence

of i.v.-administered T-body-hPSMA/fluc was also tested in

healthy individuals of these mouse strains. In SCID mice, T cells

disappeared just few hours after injection; conversely, T cell

survival appeared slightly increased in Rag22/2/cc2/2 mice,

although the BLI signal was detectable only in the lungs; on the

other hand, bioluminescence in NOD/SCID mice distributed

uniformly throughout the body and could be tracked up to

seventy-two hours (Fig. S3 and data not shown). Based on this

evidence, we assessed the systemic therapeutic efficacy of T-bodies

in Rag22/2/cc2/2 and NOD/SCID mice (Fig. 5). Animals were

injected i.v. with bioluminescent PC3-PIP cells and treated with

26107 T-body-hPSMA/eGFP for 3 times at 2 day intervals. In

both mouse strains, this ACT approach strikingly reduced the BLI

signal in lungs of treated animals as compared to control mice

(Fig. 5A and 5B). Notably, while in Rag22/2/cc2/2 mice

Figure 3. Functional characterization of T-bodies. (A) Lytic activity of T-body-hPSMA/eGFP and T-body-hPSMA/fluc. Cytotoxicity was analysed
at 3, 11 and 60 days post-transduction; PC3, PC3-PIP and LNCaP cells were used as target cells. Untransduced PBMC served as negative control. In the
upper left corner of each panel the percentages of c-myc+ T cells are reported. Figure shows mean +/2 SD of 4 independent experiments. (B) IFN-c
secretion upon antigen stimulation. IFN-c production was analyzed at different time points after PBMC transduction by stimulating T-body-hPSMA/
fluc with PC3-PIP hPSMA+ or PC3 hPSMA2 cancer cell lines. T-bodies unstimulated or treated with PMA/Ionomycin represented the negative and
positive controls, respectively. Similar results were obtained with T-body-hPSMA/eGFP. (C) c-myc expression in T-body-hPSMA/fluc populations
tested for IFN-c production.
doi:10.1371/journal.pone.0109427.g003

CAR-T Cells for Prostate Cancer

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109427



bioluminescent lesions involving extra-pulmonary sites ultimately

appeared, no metastatic disease become apparently evident in

NOD/SCID mice (Fig. 5A and 5C), likely due to the total body

diffusion of transferred T-bodies (Fig. S3). These results reflected

on the long-term survival of treated mice (Fig. 5D). Indeed, the

transfer of CAR-transduced T cells significantly improved survival

in both strains of mice; more importantly, the treatment afforded

to completely eradicate the neoplasia in more than 60% of NOD/

SCID animals (4/6), which were completely disease-free 150 days

after tumor induction.

Discussion

The high curative potential against hematologic malignancies

afforded by CAR T cells support the large number of clinical trials

targeting these entities (36 out of 62 trials retrieved at www.

clinicaltrials.gov by using the following key words: ‘‘Chimeric

Antigen Receptor’’, ‘‘CAR’’, ‘‘T-Body’’ and ‘‘Designer T cells’’),

and in particular those expressing the CD19 antigen (29/36).

Conversely, the difficulties intrinsic to the treatment of solid

tumors (in particular the choice of suitable and safe target antigens)

and the largely unsatisfactory results obtained thus far make them

a less appealing but still open field of battle for immunotherapeutic

strategies.

Here, we propose a second generation anti-hPSMA CAR based

on a novel and high affinity scFv [19], and provide evidence of a

strong and specific antitumor activity by the resulting T-bodies-

hPSMA against a prostate tumor model, not only in vitro but also
in vivo; in particular, we completely eradicated a disseminated

Figure 4. Assessment of T-body in vivo loco-regional therapeutic efficacy. (A) Winn Assay. PC3-PIP (left panel) and PC3 (right panel) tumor
cells were inoculated s.c. in SCID mice, alone or mixed 1:1 with T-body-hPSMA/eGFP at opposite flanks of the same animal. Tumor growth was
monitored over time by caliper measurement. Number of mice per group, n = 6. (B) Loco-regional therapy. T-body-hPSMA/eGFP at 72 hours post
transduction were administered intralesionally and perilesionally in SCID mice 4 days after s.c. injection of PC3-PIP tumor cells (n = 6); untreated
animals served as control group (n = 6). Left panel shows tumor volumes, while right panel reports Kaplan-Meyer survival curves of treated and
untreated mice. (C) Expression of hPSMA antigen in prostate tumors. PC3-PIP tumor cells from in vitro cultures (first quadrant) or isolated ex-vivo from
control or treated mice (second and third quadrant, respectively; dark line) were evaluated for hPSMA expression by flow cytometry. The grey plot
corresponds to the isotype control.
doi:10.1371/journal.pone.0109427.g004
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neoplasia in more than 60% of treated NOD/SCID animals. This

experimental design appears to recapitulate more realistically a

clinical situation than the systemic treatment of localized tumors

(s.c. tumors or pulmonary metastatic models [13,16,17,26]);

indeed, while the efficacy of our approach against localized

tumors may appear reduced in comparison to other reported

models [13,16,26], results of our systemic treatment against

disseminated neoplasia reproduce or even outperform previously

published data. As an example, the infusion of 3rd generation anti-

PSCA CAR-transduced T cells induced only a tumor growth

delay, albeit statistically significant [16].

Interestingly, the therapeutic superiority of 3rd over 2nd

generation CAR is far from being undoubtedly demonstrated.

Conflicting evidences came from pre-clinical studies [17,27], and

only a pilot clinical trial involving 3rd generation CAR against

CD20+ B-cell malignancies has been published thus far [28]. In

fact, no definitive conclusions can be drawn because of the low

number of enrolled patients and the very low CAR expression

obtained through plasmid electroporation (below the limit of

detection by flow cytometry and Western blotting), which

precludes the realistic assessment of potential adverse events. This

safety aspect acquires even more importance in the case of the

addition of the 4-1BB moiety, which can induce not only antigen-

dependent but also antigen-independent proliferation [29], thus

carrying additional risks of cell-mediated acute toxicity. Moreover,

an excess of stimulation can be detrimental to modified cells, due

to the potential induction of activation-induced cell death (AICD),

as demonstrated for 3rd generation CAR-transduced CIK cells

[30].

On the other hand, 3rd generation CAR appeared to prolong T

cell survival at least in preclinical models [17,26]. In a clinical

setting, this issue will be addressed by the side-by-side comparison

between 3rd and 2nd generation CAR-T cells in a currently

recruiting clinical trial (SAGAN, NCT01853631), as previously

assessed for the 2nd and 1st generation CAR-T cells [31].

Nonetheless, in our hands a second generation CAR design

appeared to deliver very balanced activation/costimulatory

signals, which were sufficient to sustain the in vivo persistence of

T cells at detectable levels until the therapeutic activity became

evident. This result was achieved despite the fact that our T-bodies

displayed a sub-optimal effector phenotype at the time of transfer

and did not receive any additional help. Indeed, they operated

without exogenous IL-2 supply and in the virtual absence of CD4+

T cells (,5%). In this regard, it is noteworthy that the percentage

of CD4+ T cells appeared to positively correlate with the clinical

outcome in neuroblastoma patients treated with GD2-CAR

specific T cells [8], and other protocols comprise the addition of

unmodified CD4+ T cells to the infusates [27].

Moreover, the elevated and sustained expression of high affinity

CAR molecules likely concurred to the outcome, leading to

compensate for the reduced PSMA expression on target cells

in vivo. A down-modulation of Ag expression is not an unexpected

circumstance for human cell lines upon in vivo transfer in a mouse

host [32,33]. Accordingly, a reduced Ag expression can potentially

jeopardize the final outcome, since the intensity of Ag expression

has been correlated with the kinetic of killing performed by CAR-

T cells, and ultimately with their capacity to completely eradicate

a tumor [34].

The transgene expression level was achieved by means of a

lentiviral vector with a very efficient bidirectional promoter [23].

This same lentiviral vector, albeit carrying a different CAR

molecule, performed equally well compared to a related retroviral

construct [35] in terms of transgene expression levels and

antitumor activity. In addition, a lentiviral vector was chosen

instead of the more widely used retroviral constructs because of

technical considerations (less significant gene expression silencing

due to position effects [29]), and the safety profile. Indeed, the use

of retroviral vectors can be afflicted by a considerable risk of

leukemogenesis, as recently demonstrated in a clinical trial for

Wiscott-Aldrich Syndrome [36]. The follow-up for clinical use of

lentiviral vectors is at present too short to completely exclude

genotoxicity, but data from experimental models, which were

predictive for retroviral vectors, come out in favor of a less

pronounced risk of insertional mutagenesis [37,38].

Thanks to the bidirectional promoter, the lentiviral vector used

allowed the simultaneous expression of the CAR and a reporter

gene, and hence the visualization of T cells after transfer; thus, we

could positively correlate the persistence and the total body

diffusion of T cells with their therapeutic efficacy. Indeed, whereas

transferred T cells were detected only in the lungs of Rag22/2/

cc2/2 mice, they disseminated uniformly throughout the body

and persisted longer in the NOD/SCID strain. Accordingly,

treated Rag22/2/cc2/2 mice developed tumor masses in extra-

pulmonary sites and ultimately died, while more than 60% of

NOD/SCID mice were still alive 150 days after tumor induction

and showed no metastatic disease at sacrifice.

Two main questions remain that cannot be adequately assessed

per se by a xenogeneic model, i.e. the validation of the chosen

target and the related risk of ‘‘on-target, off-site’’ toxicity [39].

Indeed, preclinical models did not predict the dramatic events that

occurred after translation in clinical trials [40,41]. In this regard,

PSMA is physiologically expressed in kidney, nervous system glia,

and small intestine [18], and the risk to damage these organs and

structures cannot be excluded simply based on the fine target

specificity demonstrated in an experimental setting by the novel

mAb we used to design our CAR [19]. However, in a clinical

scenario, this vector containing a bidirectional promoter could be

exploited to address this safety issue, namely by driving the

simultaneous expression of a CAR molecule and a ‘‘safety switch’’

suicide gene, such as an inducible caspase or the herpes simplex

virus thymidine kinase (HSV-TK) [35,42]; or alternatively a

chimeric costimulatory receptor (CCR) for combinatorial antigen

recognition [43].

In conclusion, the novel CAR developed can be envisaged as a

potential new weapon in the arsenal against prostate tumor and

reported data strongly support its clinical exploitation based on the

potent in vivo anticancer activity.

Figure 5. Assessment of T-body in vivo systemic therapeutic efficacy against disseminated prostate carcinoma. Rag22/2/cc2/2 mice
(n = 6) and NOD/SCID mice (n = 6) bearing established bioluminescent PC3-PIP tumors were injected i.v. with 26107 T-body-hPSMA/eGFP for 3 times
at a two day interval. Untreated animals (n = 6 for both mouse strains) were used as controls. (A) Pictures show two representative Rag22/2/cc2/2

and NOD/SCID mice (left and right panels, respectively) imaged by BLI at different time points, whereas (B) and (C) graphs report cumulative results of
the regions of interest (ROI) in lungs and in total body, respectively. Tumor growth was monitored as photon flux and quantified as photon * sec21 *
cm22 * sr21. Graphs show mean 6 SD of three independent experiments. *: P,0.05. The t-Test was used for statistical analysis. (D) Cumulative
Kaplan-Meier survival curves of Rag22/2/cc2/2 (left panel; untreated mice, black line; median survival = 54 days; treated mice, red line; median
survival = 74 days; P = 0.046) and NOD/SCID mice (right panel; untreated mice, black line; median survival = 60 days; treated mice, red line; median
survival = not evaluable; P,0.001).
doi:10.1371/journal.pone.0109427.g005
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Supporting Information

Figure S1 Assessment of therapeutic efficacy of i.v.-
administered T-bodies against subcutaneous prostate
tumors. (A) T-body-hPSMA/fluc at 72 hours or 5–6 weeks post

transduction were administered i.v. in SCID mice 4 days after s.c.

injection of PC3-PIP tumor cells (n = 6); untreated animals served

as control group (n= 6). (B) T-bodies-hPSMA/fluc were inoculat-

ed i.v. in SCID mice 4 days after s.c. injection of PC3-PIP (right

flank) or PC3 (left flank) tumor cells; cell distribution was assessed

at different time points thereafter. Two representative mice out of

six are depicted.

(TIF)

Figure S2 Set up of a disseminated prostatic tumor
model. Comparison of tumor growth in SCID (upper panels),

Rag22/2/cc2/2 (central panels) and NOD/SCID (lower panels)

mouse strains. Different numbers of bioluminescent PC3-PIP cells

were injected i.v., and their survival and distribution were assessed

at different time points. Images of two representative mice for each

group are shown.

(TIF)

Figure S3 T-bodies biodistribution in healthy mice of
different strains. T-bodies-hPSMA/fluc (206106/mouse) were

inoculated i.v. in SCID (left panels), Rag22/2/cc2/2 (central

panels) and NOD/SCID (right panels) mice; cell distribution and

survival was assessed at different time points thereafter. A

representative mouse for each group is depicted.

(TIF)
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