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Immunogenic cell death related
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immunotherapy response of
patients with GBM
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Immunogenic cell death (ICD) is a form of cell death that leads to the regulation

and activation of the immune response, which is characterized by the exposure

and release of damage‐associated molecular patterns (DAMPs) in the tumor

microenvironment. Accumulating evidence has revealed the significance of

ICD-related genes in tumor progression and therapeutic response. In this

study, we obtained two ICD-related clusters for glioblastoma (GBM) by

applying consensus clustering, and further constructed a risk signature on

account of the prognostic ICD genes. Based on the risk signature, we found

that higher risk scores were associated with worse patient prognosis. Besides,

the results illustrated that ferroptosis regulators/markers were highly enriched

the high-risk group, and ferroptosis were correlated with cytokine signaling

pathway and other immune-related pathways. We also discovered that high-

risk scores were correlated to specific immune infiltration patterns and good

response to immune checkpoint blockade (ICB) treatment. In conclusion, our

study highlights the significance of ICD-related genes as prognostic

biomarkers and immune response indicators in GBM. And the risk signature

integrating prognostic genes possessed significant potential value to predict

the prognosis of patients and the efficacy of ICB treatment.
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Introduction

Immunogenic cell death (ICD) is a type of cell death that leads to

the regulation and activation of the immune response, which is

marked by the exposure and delivery of damage‐associated

molecular patterns (DAMPs) in the tumor microenvironment

such as calreticulin (CRT), secreted HMGB1and ATP (1, 2). These

molecules are signals for immune stimulating effects, including the

recruitment and activation of neutrophils, macrophages and other

immune cells (3). This feature makes the ICD signature closely

related to patients’ prognosis and response to immunotherapy (4).

ICD integrates multiple immune-related pathways into a single

paradigm, which provides significant advantages as biomarkers (4,

5). There are already studies applying ICD as amarker to predict the

survival and immunotherapy response of patients with cancer (4, 6,

7). However, some of the results are contradictory, which may be

caused by the differences of specific ICD molecules and the

heterogeneity of different tumors (4). Therefore, further research

basedon theparticular ICDmolecules categorizationand tumor type

to identify novel prognostic indicators and therapeutic targets would

be beneficial.

Glioblastoma (GBM) the most fatal brain cancer with a median

survival time of 12 to 18 months and 5-year survival rate of less

than 10% (8, 9). At present, the standard treatment of GBM is the

maximum safe surgical resection followed by radiotherapy (RT)

plus temozolomide (TMZ) chemotherapy (9, 10). However, due to

the invasive growth of GBM in the brain, easy resistance to

radiotherapy and chemotherapy, and lack of targeted

carcinogenic signal pathway, the traditional comprehensive

treatment strategy is difficult to significantly improve the

prognosis of GBM patients (11). Therefore, immunotherapy and

other emerging therapies have increasingly become the research

hotspot of GBM therapy (12, 13). Yet so far, no remarkable progress

has been made in the treatment of GBM with immune checkpoint

blocking (ICB) therapy, which probably resulted from the tumor-

related immunosuppressive microenvironment of GBM (14, 15).

Besides, no ideal marker can identify patients who will benefit from

immunotherapy. Therefore, we conducted this study to discover

ICD related prognostic factors and establish a risk model to forecast

the prognosis and immunotherapy response of patients with GBM.

We also delineated the ferroptosis-related genes (FRGs) and

pathways, and predicted response to anti-cancer drugs of GBM

patients based on this risk model.
Materials and methods

Datasets

For the training set, the RNA-Array data and corresponding

clinicopathological information of GBM patients were retrieved
Frontiers in Immunology 02
from TCGA (http://www.tcga.org/ ). For the validation dataset,

the RNA-Seq data were obtained from TCGA. The information

about the response of tumor patients to anti-PD-1 checkpoint

inhibition therapy was acquired from the Gene Expression

Omnibus (GEO) datasets GSE67501 and GSE78220.
Consensus clustering

Consensus clustering is a clustering algorithm to identify

potential clusters with intrinsic heterogeneity. This method

indicates the consistency of multiple runs and evaluates the

stability of the clusters that was identified during the algorithm

process (16). The ConcensusClusterPlus tool in R was applied to

conduct consensus clustering to obtain particular ICD related

clusters for the downstream analysis.
Construction of the ICD-related
risk signature

Significant prognostic ICD genes were selected by univariate

regression analysis and a prognostic model was constructed by

ridge regression further (17). The risk score was calculated by the

exact coefficient value of each associated gene. Then both the

training and validation cohort was divided into two groups

according to the risk score for further study.
Survival analysis

Kaplan Meier curves and log rank test were applied to

compare the overall survival (OS), progression free survival

(PFI), and disease-specific survival (DSS) of patients in

different clusters or risk groups. ROC curve was utilized to

estimate the predictive performance of different classification

methods in various aspects, including 1 -, 3 -, and 5-year

survival, GBM subtypes, and IDH status.
Differentially expressed genes
(DEGs) identification and functional
enrichment analysis

The DEGs between different risk groups were identified by

utilizing the R package “Limma”. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of

the aberrantly expressed genes were determined by the gene set

variation analysis (GSVA), which compared the variation levels

of gene sets between groups (18). We also conducted the gene set

enrichment analysis (GSEA) to calculate the enrichment score of
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the target gene sets including GO and KEGG. GSEA is based on

genomewide expression profiles from two classes of samples,

and ranks genes according to the correlation between gene

expression and the class distinction (19).
ESTIMATE score analysis

ESTIMATE (Estimation of Stromal and Immune cells in

MAlignant Tumor tissues using Expression data) is an

implement to estimate tumor purity and the presence of

infiltrating stromal cells/immune cells in tumor tissues

utilizing gene expression according to the enrichment analysis

of single sample gene set (20).
Immune infiltration analysis

The immune infiltration heterogeneity between groups was

estimated by the R package integrating six state-of-the-art

algorithms, which include TIMER (21), MCP-counter (22),

EPIC (23), xCell (24), quanTIseq (25) and CIBERSORT (26).

Each of them possesses unique analysis scenarios and

capabilities. The results were displayed as heatmap and

quantitative box plots.
TIDE score analysis

Tumor immune dysfunction and exclusion (TIDE) analysis

was performed to evaluate the potential response to ICB

treatment. TIDE (http://tide.dfci.harvard.edu/) assessed two

different indexes of tumor immune escape, including

dysfunction of cytotoxic T lymphocytes (CTLs) and rejection

of CTLs by immunosuppressive molecules (27, 28). Patients with

a higher TIDE score indicates a higher probability of tumor

immune escape and thus lower ICB therapy response rate.
GDSC database

The Genomics of Drug Sensitivity in Cancer (GDSC)

database was utilized to locate the drugs with the specific

target potential as anti-cancer candidates based on the

correlation between the risk score and drug response AUC.

GDSC database (www.cancerRxgene.org) collects numerous cell

drug sensitivity information and drug disturbance-based cell

expression signature, which provides specific information for

integrating a large number of drug sensitivity and genomic data

to promote the discovery of novel therapeutic biomarkers for

cancer treatment (29).
Frontiers in Immunology 03
Statistical analysis

The survival differences between different clusters or risk

groups were explored by the log-rank test. According to the

median risk score of all patients, patients with higher risk scores

are divided into high-risk group while the others were assigned

into the low-risk group. The comparison of normally-distributed

or non-normally distributed parameters between two groups

were tested by Wilcoxon rank testing. The Pearson correlation

was applied to evaluate the linear relationship between risk score

and hallmark pathways. P value < 0.05 was considered to be

statistically significant.
Results

Construction and validation of
ICD-related risk signature

The ICDassociatedgeneswere summarizedbyAbhishekDGarg

et al. in the previous study (4). We firstly obtained two ICD related

clusters from the TCGA Array dataset by applying consensus

clustering (Figure 1A). The ICD gene level was higher in cluster 2.

Survival analysis indicated that cluster 2was associatedwith a dismal

prognosis fromtheperspectiveofOS,PFI, andDSS (Figure1B).After

that, we identified 8 significant prognostic ICD genes through

univariate regression analysis including IL17RA, IL6, TLR4,

MYD88, LY96, IL1B, CASP1, and CD4 (Figure 1C), which were

testedforthepredictionmodelbyridgeregressionfurther(Figure1D).

Theriskscoreisequaltothesumofeachsignificantgenemultipliedby

the correlation coefficient (Figure 1E). The algorithm was as below:

Risk score= 0.0493* IL17RA +0.0121*IL6+0.0241*TLR4

+0.0714*MYD88+0.0228*LY96+0.0237*IL1B+0.0247*CASP1-

8.8893e-05*CD4. We also found that higher risk scores predicted

worse outcomes (Figures 1F-H). The patient cohort was divided into

twogroupsaccordingtothemedianriskscore(1.583),andthesurvival

risk heatmap were displayed in Figure 1I.

Next, we evaluated the effectiveness of the risk signature by

ROC curve and AUC. The prognostic prediction capability of risk

signature and clusters were determined. The results of AUC in the

TCGA Array dataset suggested that the prediction efficacy of risk

signature was better than clusters (Figure 2A). Then We calculated

the AUC for estimating the prediction accuracy of survival time of 1

year, 3 years, and 5 years, respectively in the TCGA Array dataset

(Figure 2B) and TCGA Seq dataset (Figure 2C) based on the risk

signature. The AUC according to GBM subtypes (Figures 2D, G)

and the status of IDH (Figure 2F) prediction were also obtained.

The risk scores of different GBM subtypes (classical,

mesenchymal, proneural) were compared in both the TCGA

array (Figure 2E) and the TCGA Seq data sets (Figure 2H). The

results both revealed that the mesenchymal subtype possessed

the highest risk score.
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FIGURE 1

Construction of ICD related clusters and risk signature. (A) Two ICD related clusters were obtained from the TCGA Array dataset by applying
consensus clustering. (B) Survival analysis indicated that cluster 2 was associated with a dismal prognosis from the perspective of OS, PFI, and
DSS. (C) Univariate regression analysis identified 8 significant prognostic ICD genes including IL17RA, IL6, TLR4, MYD88, LY96, IL1B, CASP1, and
CD4. (D) The eight genes were tested for the prediction model by ridge regression. (E) The correlation coefficients of the eight genes were
displayed. (F-H) Survival analysis indicated that a higher risk score was correlated to worse OS (F), PFI (G), and DSS (H). (I) Risk scores
distribution, patient survival status, and gene expression heatmap were displayed. P < 0.05, statistically significant.
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FIGURE 2

Validation of ICD-related risk signature. (A) AUC of survival prediction indicated the prediction efficacy of risk signature was better than clusters.
(B, C) AUC for 1 -, 3 -, and 5-year survival prediction in TCGA Array dataset (B) and TCGA Seq dataset (C). (D) AUC for GBM subtypes prediction
in TCGA Array dataset. (E) The risk scores of different GBM subtypes (classical, mesenchymal, proneural) in the TCGA Array dataset. (F) AUC for
IDH status prediction in TCGA Seq dataset. (G) AUC for GBM subtypes prediction in TCGA Seq dataset. (H) The risk scores of different GBM
subtypes in the TCGA Seq dataset. NS, non-significant. ***P < 0.001.
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The ICD groups differ in cancer hallmark,
immune, and cell death-related pathways

The DEGs between the high-risk group and the low-risk

group in TCGA Array dataset were screened out (Figure 3A).

GSEA was conducted to illustrate the enriched GO terms

(Figure 3B) or KEGG pathways (Figure 3C) according to these

DEGs. The results revealed that the enriched GO terms were

mostly related to immune regulation pathways such as

monocyte chemotaxis, neutrophil chemotaxis, positive

regulation of chemokine production, and so on. The GSEA

results based on the TCGA Seq dataset were basically

consistent (Supplementary Figures 1A, B). GSVA results of

GO terms (Figure 3D) and KEGG pathways (Figure 3E) also

suggested that immune regulatory pathways such as chemokine

signaling pathways were enriched in the high-risk group. The

similar GSVA results based on the TCGA Seq dataset were

displayed in Supplementary Figures 1C, D. Additionally, the

single sample GSEA (ssGSEA) of the hallmark gene sets

originated from MsigDB were performed (30). The results

demonstrated that the complement pathway, inflammatory

response, and IL6-JAK-STAT3 hallmark pathways were

enriched in the high-risk group (Figures 3F, G). These

functional enrichment results indicated that immune related

signals and pathways were active in the high-risk group. The

reactive oxygen species (ROS) pathway was also enriched in the

high-risk group, implying a high correlation between cell death

and tumor immunity (Figure 3H).
Relationship between risk signature and
different cell death modes

Ferroptosis is an important programmed cell death mode.

We next attempted to delineate the relationship between risk

signature and regulators/markers of ferroptosis (31). Firstly, we

found that ferroptosis regulators/markers was highly enriched in

the high-risk group in the TCGA Array dataset (Figure 4A) and

TCGA Seq dataset (Supplementary Figure 2A). We further

divided patients into 4 groups on account of risk score and

ferroptosis pathway level. Survival analysis revealed that the

group with low-risk and high level of ferroptosis possessed the

best prognosis (Figure 4B). However, no statistically significant

difference in survival rate was observed in the TCGA seq dataset

(Supplementary Figure 2B). Then we analyzed the differentially

expressed FRGs in the TCGA Array dataset (Figure 4C) and

TCGA Seq dataset (Figure 4D). The results suggested that most

of the ferroptosis driver genes were upregulated in the high-risk

group. The heatmap displaying DEGs illustrated similar results

(Figures 4E, F). Additionally, we performed ssGSEA of GO

terms in the TCGA Array dataset (Figure 4G) and TCGA Seq

dataset (Figure 4H), and found that ion transport, regulation of
Frontiers in Immunology 06
cytokine signaling pathway and other immune related pathways

were highly enriched in the high-risk group. Besides, we

compared the level of cell-death-related gene sets between the

risk groups and analyzed their correlation with risk score in

TCGA Array (Figures 5A, B) and TCGA Seq dataset

(Supplementary Figure 2C). The results showed that entosis,

netosis, pyroptosis, autophagy, and necroptosis were enriched in

high-risk group (Figures 5A, B).
Depiction of tumor immune
microenvironment on account of
risk signature

We first utilized the ESTIMATE score to estimate the

immune infiltration in tumor tissues. The results revealed that

the ESTIMATE score, Immune score, and Stromal score were

higher in high-risk group, and tumor purity score was lower,

which indicated higher infiltrating stromal cells/immune cells in

high-risk group (Figure 5C). A similar tendency was identified

utilizing the TCGA Seq dataset (Supplementary Figure 3A).

Then we conducted the immune infiltration estimations by

performing the R package which integrates TIMER, MCP-

counter, EPIC, xCell, quanTIseq, and CIBERSORT in the

TCGA Array dataset (Figures 5D-J) and TCGA Seq dataset

(Supplementary Figure 3B). Results of TIMER illustrated a

higher infiltrating level of immune cells in the high-risk group.

All the methods indicated higher macrophage infiltrating levels

in tumors, especially M2 macrophages, which suggested higher

risk score may be correlated with the inhibitory immune

microenvironment. Moreover, results of MCP-counter, EPIC,

xCell, quanTIseq, and CIBERSORT revealed that infiltrating

level of CD8+ T cell was lower in high-risk group, suggesting

weaker immune defense against tumor in high-risk group. We

also estimated the risk score's correlation with anti-cancer

immunity cycle (32) or 11 cancer related pathways (33), which

indicated high relevance of risk score with them (Figure 6A). The

results suggested that the risk score was more relevant to

macrophage recruiting or monocyte recruiting regarding the

anti-cancer immunity cycle, and more relevant to NFkB or TNFa
pathways as regarding 11 cancer related pathways.
Evaluation of potential response to
ICB treatment

We evaluated immune associated gene expression levels in

the TCGA Array dataset within the two risk groups, and found

that human leukocyte antigens (HLAs), the key molecules

mediating antigen presentation in cancer immunotherapy,

were upregulated in the high-risk group (Figure 6B). The gene
frontiersin.org
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expression levels in TCGA Seq dataset displayed the same result

(Supplementary Figure 3C). Then we analyzed the immune

positive score (IPS) and its relationship with risk signature by

applying the IPS data downloaded from TCIA (The cancer
Frontiers in Immunology 07
Immunome Atlas, https://tcia.at/home) (34). Notably, the

correlation between IPS and risk signature in GBM patients

was established (Figures 6C-G). The IPS score increased in the

high-risk group, including both CTLA4-/PD1+ treatment and
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FIGURE 3

Identification of DEGs and functional enrichment analysis. (A) The differentially expressed genes between high and low risk group were
identified based on the TCGA Array dataset. (B, C) GSEA results of GO terms (B) and KEGG pathways (C) based on the differentially expressed
gene sets in the TCGA Array dataset. (D, E) GSVA results of GO terms (D) and KEGG pathways (E) based on the differentially expressed gene sets
in the TCGA Array dataset. (F, G) ssGSEA results of the 50 “hallmark” gene sets from the Molecular Signature Database. (H) ssGSEA results
suggested the ROS pathway was enriched in the high-risk group. P < 0.05, statistically significant.
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CTLA4+/PD1+ treatment subgroup, which indicated that the

high-risk group patients may benefit from the anti-PD1

treatment. We also predicted the response of tumor patients to

anti-PD-1 checkpoint inhibition therapy in datasets GSE67501
Frontiers in Immunology 08
and GSE78220, and found that the risk score was higher in the

response group of both datasets. Yet no statistically significant

difference was found (Figure 7A). Next, we utilized the TIDE

score to predict the immune escape targeted treatment response.
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FIGURE 4

Relationship between risk signature and different cell death modes. (A) Ferroptosis regulators/markers were highly enriched in high-risk group
based on the TCGA Array dataset. (B) Survival analysis revealed that the group with low-risk and high levels of ferroptosis possessed the best
prognosis. (C, D) The volcano plots showed differentially expressed FRGs in the TCGA Array dataset (C) and TCGA Seq dataset (D). (E, F) The
heatmap displayed differentially expressed FRGs in the TCGA Array dataset (E) and TCGA Seq dataset (F). (G, H) ssGSEA results of GO terms in
TCGA Array dataset (G) and TCGA Seq dataset (H). P < 0.05, statistically significant.
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FIGURE 5

Depiction of tumor immune microenvironment on account of risk signature. (A) ssGSEA results of different cell death modes in TCGA Array
dataset. (B) Correlation analysis of risk score and different cell death modes. (C) ESTIMATE score to predict tumor purity and the presence of
infiltrating stromal cells/immune cells in tumor tissues based on the TCGA Array dataset. (D) Heatmap illustrated immune infiltration by
performing the R package which integrates TIMER, MCP-counter, EPIC, xCell, quanTIseq, and CIBERSORT in the TCGA Array dataset. (E-J) Box
plots displayed immune infiltration differences between high and low risk group by applying TIMER (E), MCP-counter (F), EPIC (G), xCell (H),
quanTIseq (I), and CIBERSORT (J). NS, non-significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 6

Evaluation of potential response to ICB treatment. (A) Correlation analysis of risk score and anti-cancer immunity cycle and 11 cancer related
pathways. (B) Heatmap revealed immune associated gene expression levels in the TCGA Array dataset within the two risk groups. (C) The
lollipop plot showed the correlation between risk core and ICB treatment response. (D, E) The ridgeline plots displayed the risk levels in the
CTLA4-/PD1+ treatment group (D) and CTLA4+/PD1+ treatment group (E). (F, G) The violin plots revealed IPS scores of high/low risk group in
the CTLA4+/PD1+ treatment group (F) and CTLA4-/PD1+ treatment group (G). P < 0.05, statistically significant.
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The results exhibited that the TIDE score was lower in high-risk

group, indicating lower probability of tumor immune escape and

thus a higher response rate of ICB therapy in the high-risk group

(Figures 7B, C). The risk score’s correlation with cytotoxic T

lymphocyte level and therapeutic responses was displayed

in Figure 7D.
Frontiers in Immunology 11
Potential effective anti-cancer
drugs analysis

Then, we applied the GDSC1 and GDSC2 databases to assess

potential effective anti-cancer drugs based on risk scores and the

AUC values of drugs. We identified 341 and 175 kinds of
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C

FIGURE 7

TIDE score and GDSC database analysis. (A) The box plots revealed the risk score of the response or non-response group in datasets GSE67501
and GSE78220. (B) Correlation analysis of risk score and TIDE associated scores. (C) The violin plot showed that the TIDE score was lower in
high-risk group. (D) The Sankey diagram illustrated the prediction of ICB treatment response with respect to risk group. (E) 341 and 175 kinds of
potential drug were identified in GDSC1 and GDSC2 databases respectively, and 15 kinds of them were overlapped whose AUC values were
negatively correlated with risk score. (F) The relationship between these 15 drugs and risk score. (G, H) The box plots revealed five drugs with
the greatest negative correlation with risk scores in the GDSC1 (G) and GDSC2 database (H) respectively. P < 0.05, statistically significant.
****P < 0.0001.
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potential drugs in GDSC1 and GDSC2 databases respectively,

and 15 kinds of them were overlapped whose AUC values were

negatively correlated with risk scores (Figure 7E). Then we

analyzed the relationship between these 15 drugs and risk

scores (Figure 7F). Next, we discovered five drugs with the

greatest negative correlation with risk scores in the GDSC1 or

GDSC2 databases respectively. We found that bicalutamide,

flavopiridol, RAF-9304, sphingosine kinase 1 inhibitor II` and

voxtalisib exhibited lower AUC in the high-risk group based on

the GDSC1 database (Figure 7G), while AZD5582, BIBR1532,

carmustine, nilotinib, and niraparib were most effective potential

drugs identified in the GDSC2 database (Figure 7H).
ICD biomarker MYD88 was associated
with patient prognosis, cell death and
IPS score

At last, we performed the analysis about association between

ICD biomarker MYD88 and cancer properties to verify the role

of this ICD related risk signature we constructed. We firstly

applied GEPIA2 (http://gepia2.cancer-pku.cn/#index) (35) to

obtain the expression profile of MYD88, and we found that

MYD88 was upregulated in GBM tissues (Supplementary

Figure 4A). Survival analysis indicated that high MYD88 was

associated with a dismal prognosis from the perspective of OS,

DSS, and PFI (Supplementary Figure 4B). We also found that

MYD88 expression was the highest in the Mesenchymal subtype

(Supplementary Figure 4C), and it associated with many kinds of

cell death pathways, and negatively correlated to PD1 expression

(Supplementary Figures 4E, D). Finally, the correlation between

IPS score and MYD88 expression in GBM patients was

established (Supplementary Figure 4F). There was an increase

in IPS scores in high-MYD88 patients, including both CTLA4-

/PD1+ treatment and CTLA4+/PD1+ treatment subgroup.
Discussion

ICD, a novel concept linking dying cancer cells with the

immune system, is a form of cell death that leads to the

regulation and activation of the immune response (36). The

concomitant ROS production and endoplasmic reticulum stress

within the ICD process activate the exposure and release of

DAMPs in the tumor microenvironment, which is able to

potentiate immune response (37). Currently, there is no study

reporting the prognosis and immunotherapy of patients with

GBM based on ICD gene signatures. ICD signature has been

discovered to be associated with improved prognosis of lung,
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breast, and ovarian cancer patients (4). By analyzing these genes,

we obtained two ICD related clusters from TCGA Array dataset

by applying consensus clustering. The Cluster 2 with higher level

of ICD gene expression was associated with a dismal prognosis.

Moreover, we built a ICD model based on the 8 ICD genes and

grouped the patients according to their risk score. We also found

that higher risk scores were associated with worse outcomes. The

ROC curves and AUC suggested good predictive efficacy of this

risk signature. We have drawn a workflow to present the study

design displayed as Figure 8.

The ability of ICD to elicit adaptive immunity provides the

potential of ICD-eliciting therapy as a partner for

immunotherapy, such as chemotherapy and radiotherapy (38).

Radiotherapy coordinated with CTLA4 blockade to induce T

cell's anti-cancer activity in chemotherapy-resistant lung cancer

(39). Nearly half the patients presented object response or

disease control, probably due to the mutated immunogen

exposure mediated by radiation. Breast carcinoma is one of

the most common tumors for the use of ICD-inducing

chemotherapy in combination with immunotherapy (40). The

current clinical studies expect to apply immune therapy,

especially ICB, to achieve optimal therapeutic effects with the

use of ICD inducing therapies which can elicit maximal

immunostimulation (38).

We identified 8 significant prognostic ICD genes including

IL17RA, IL6, TLR4, MYD88, LY96, IL1B, CASP1, and CD4.

GBM-derived IL6 was reported to inhibit antitumor immune

response against GBM. Meanwhile, inhibition of glioma IL6 in

vivo prolonged mouse survival time (41). Other studies revealed

that the expression of TLR4 was significantly higher in GBM

than in grade III anaplastic astrocytoma, and was correlated with

poor patient prognosis (42, 43). And decreased TLR4 expression

could inhibit GBM invasiveness, promote apoptosis and

improve survival (44). As regarding MYD88, it was found

upregulated in gliomas compared to normal tissues and

correlated with unfavorable prognosis. Moreover, the authors

discovered that MYD88 expression was higher in IDH1 wild

types glioma and positively associated with M2 macrophage

infiltration (45). The previous relevant studies indicated that our

risk signature integrating these genes possessed potential value

for prognosis prediction.

Ferroptosis is a novel programmed cell death mode first

proposed by Dixon et al. (46). The mechanism of ferroptosis has

not been thoroughly elucidated. Its main characteristics include

the toxicity of intracellular iron accumulation, lipid

peroxidation, and the inhibition of SLC7A11-GSH-GPX4

antioxidant axis (47). Increasing studies have indicated

ferroptosis' effects on tumorigenesis, tumor progression, and

therapeutic response (47, 48). Ferroptosis has been noticed to

release DAMPs or lipid metabolites to regulate immunity,

confirming its ICD-like function (49). The released DAMPs
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promoted dendritic cells and cytotoxic T cell mediated

immunity (50). Xiang Luo et al. reported a novel phagocytosis

mechanism that oxidized phosphatidylethanolamine on the

ferroptotic cell surface increased the efficiency of phagocytosis of

ferroptotic cells by macrophage (51). Iuliia Efimova et al. reported

that vaccination with early ferroptotic cancer cells induces efficient

antitumor immunity by triggering ferroptosis-dependent ICD in

preclinical models (52). On the other hand, the cellular immune

response can also affect the ferroptosis process. WeiminWang et al.

reported that CD8+ T cell derived IFNg promoted cancer

peroxidation and ferroptosis by downregulating SLC3A2 and

SLC7A11 expression (53). Our results suggested that ferroptosis

regulators/markers were highly enriched in the high-risk group, and

ferroptosis were correlated with cytokine signaling pathway and

other immune related pathways, suggesting its potential function in

immune regulation.

Tianqi Liu and his colleagues reported in a newly published

study that ferroptosis was the major kind of programmed cell

death in glioma, and elevated ferroptosis could induce

activation of immune cells but inhibit antitumor cytotoxic

killing resulted from the infiltration of tumor-associated

macrophages (54). The results were partly consistent with

our findings that higher risk scores were associated with

higher macrophage infiltrating levels and lower infiltrating

level of CD8+ T cell. The authors also discovered a novel

synergistic immunotherapeutic therapy combining ferroptosis

inhibition with ICB treatment through GBM murine models.

This is superior to our study since our study lacks in vivo and in

vitro experimental validation.
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ICB treatment has been applied as a first line therapy for

advanced melanoma, non-small cell lung cancer, clear cell renal

cell carcinoma, and solid tumors containing DNA mismatch

repair defects or microsatellite instability, bringing long-term

disease remission for some patients with advanced malignant

tumors (55). However, no significant progress in ICB therapy

has been made in GBM. A phase 3 clinical trial of PD-1 blocker

nivolumab and bevacizumab in the treatment of recurrent GBM

suggested that compared with bevacizumab, nivolumab did not

improve the overall survival rate of patients (14). The tumor

related immunosuppressive microenvironment of GBM may

contribute to the poor response to ICB treatment (11, 15).

Besides, no ideal marker can distinguish the patients who may

benefit from immunotherapy. Vıćtor A Arrieta et al. reported in

a recent study that the activation of ERK1/2 in recurrent GBM

could predict the therapeutic response to PD-1 blockade and was

related to a unique myeloid cell phenotype (56). Daniel J

McGrail et al. reported that inducing ICD with MLN4924

combined with PD1 inhibition was synergistic and could

significantly improve treatment efficacy (57). Some clinical

trials have now confirmed that pretreatment with drugs that

induce ICD can sensitize ICB treatment against PD-1 and PD-L1

interactions (58). We found that HLAs, the key molecules

mediating antigen presentation in cancer immunotherapy,

were upregulated in the high-risk group. The increase in IPS

score in the high-risk group also revealed that these

patients were more likely to benefit from ICB treatment.

Furthermore, the TIDE score was lower in the high-risk

group, indicating a higher response rate of ICB treatment.
FIGURE 8

Workflow to present the study design.
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These results revealed the risk score’s potential for indicating

ICB treatment response.

In conclusion, our study highlights the significance of ICD

related genes as prognostic biomarkers and immune response

indicators in GBM. And the risk signature integrating prognostic

genes possessed significant potential value to predict glioblastoma

patients' prognosis and ICB treatment efficacy.
Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the article/

Supplementary Material.
Author contributions

SF, XX, and QCmade substantial contributions to the design

of this study. XL, JL, ZL, and ZW carried out the analysis and

interpreted the data. SF, XL, and XX made contributions to the

drafting of the manuscript. HZ, ZD, PL, and JZ made

contributions to the review of previous literature. SF, XX, XL,

and QC contributed substantially to the revision of the

manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the National Natural Science

Foundation of China (NO.82102848, NO.82073893,

NO.81703622); Hunan Provincial Natural Science Foundation of

China (No.2020JJ8111, NO.2022JJ20095, 2022JJ40830); Hunan

Provincial Health Committee Foundation of China

(NO.202204044869); Natural Science Foundation General

Program of Changsha City (kq2014290); and Xiangya Hospital

Central South University postdoctoral foundation.
Acknowledgments

All authors thank TCGA and GEO database for providing

the wothy patient cohort data for research, and we also thank

Central South University for providing the High Performance

Computing Center.
Frontiers in Immunology 14
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.992855/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Functional enrichment analysis in TCGA Seq dataset. (A, B)GSEA results of

GO terms (A) and KEGG pathways (B) based on the differentially expressed
gene sets in the TCGA Seq dataset. (C, D) GSVA results of GO terms (C)
and KEGG pathways (D) based on the differentially expressed gene sets in

the TCGA Seq dataset.

SUPPLEMENTARY FIGURE 2

Relationship between risk signature and different cell death modes in

TCGA Seq dataset. (A) Ferroptosis regulators/markers were highly
enriched in high-risk group based on the TCGA Seq dataset. (B) Survival
analysis revealed no significance within the four groups on account of risk

score and ferroptosis pathway level in the TCGA Seq dataset. (C) ssGSEA
results of different cell death modes in TCGA Seq dataset. P < 0.05,

statistically significant.

SUPPLEMENTARY FIGURE 3

Depiction of tumor immune microenvironment and immune associated

genes in TCGA Seq dataset. (A) Calculation of the ESTIMATE score,

ImmuneScore, StromalScore, and TumorPurity of the TCCA-seq
samples. (B) Heatmap illustrated immune infiltration by performing the

R package which integrates TIMER, MCP-counter, EPIC, xCell, quanTIseq,
and CIBERSORT in the TCGA Seq dataset. (C) Heatmap revealed immune

associated gene expression levels in the TCGA Seq dataset within the two
risk groups. P < 0.05, statistically significant.

SUPPLEMENTARY FIGURE 4

ICD biomarker MYD88 was associated with clinical malignancy, cell death

pathways, and IPS score. (A) Expression differences analysis of MYD88 in
GBM and control tissue based on GEPIA2. (B) Survival analysis indicated

that high MYD88 was associated with a dismal prognosis. (C) MYD88
expression differences in different GBM subtypes. (D) The correlation

analysis indicated that MYD88 expression was associated with different
kinds of cell death modes. (E) The correlation analysis revealed that

MYD88 expression was negatively correlated with tumor PD-1

expression. (F) The MYD88 expression levels in GBM patients with
different IPS scores.
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