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Abstract: Drug hypersensitivity reactions (HSRs) are increasing in the 21st Century with the ever
expanding availability of new therapeutic agents. Patients with cancer, chronic inflammatory diseases,
cystic fibrosis, or diabetes can become allergic to their first line therapy after repeated exposures
or through cross reactivity with environmental allergens. Avoidance of the offending allergenic
drug may impact disease management, quality of life, and life expectancy. Precision medicine
provides new tools for the understanding and management of hypersensitivity reactions (HSRs),
as well as a personalized treatment approach for IgE (Immunoglobuline E) and non-IgE mediated
HSRs with drug desensitization (DS). DS induces a temporary hyporesponsive state by incremental
escalation of sub-optimal doses of the offending drug. In vitro models have shown evidence that IgE
desensitization is an antigen-specific process which blocks calcium flux, impacts antigen/IgE/FcεRI
complex internalization and prevents the acute and late phase reactions as well as mast cell mediator
release. Through a “bench to bedside” approach, in vitro desensitization models help elucidate the
molecular pathways involved in DS, providing new insights to improved desensitization protocols
for all patients. The aim of this review is to summarize up to date information on the drug HSRs,
the IgE mediated mechanisms of desensitization, and their clinical applications.

Keywords: drug hypersensitivity; desensitization; precision medicine; mast cells; desensitization
models; high affinity IgE Fcε receptor I; IgE

1. Drug Hypersensitivity Reactions: New Clinical Approach Through Phenotypes, Endotypes,
and Biomarkers

Drug hypersensitivity reactions (HSRs) are adverse effects of drugs [1,2]. Among the four most
common HSRs described by Gell and Coombs, the most studied reactions are IgE (Immunoglobuline
E)/mast cell mediated reactions which can cause cardiovascular collapse and anaphylaxis, leading to
drug discontinuation which decrease quality of life and/or life expectancy [3–6].

The classification of HSRs relies on the clinical presentation of typical symptoms and their
timing [2,7], and were originally described by Gell and Coombs [8]: namely Type I (IgE mediated
reactions), Type II (antibody mediated cytotoxicity reactions), Type III (immune complex-mediated
reactions), and Type IV for delayed type hypersensitivity. Recently phenotypes, endotypes, and
genotypes for these HSRs are being elucidated and applied to provide personalized approaches to
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treating and managing HSRs (Figure 1) [1]. Phenotypes in drug allergy focus on symptoms and
timing, classifying the reactions as immediate or delayed, depending on the time between treatment
administration and the onset of symptoms. Endotypes, based on cellular and biological mediators as
well as biomarkers, have become vital to elucidate the molecular pathways as well as to evaluate the
risk for reaction during re-exposure to the culprit drug [1,9–12]. Genetic predisposition has been shown
to play a role in the development of HSRs to anticonvulsants, sulfonamides, and abacavir among
others. Further investigation into pharmacogenetics will lead to prevention and better management
of severe reactions such as Steven Johnsons Syndrome (SJS) and Drug Reaction with Eosinophilia
and Systemic Symptoms (DRESS) [13,14]. A holistic understanding of drug HSRs can be achieved
from combining classic and modern approaches: here we consolidate the new findings on molecular
pathways with immediate (Type 1) and delayed (Type IV) phenotypes.
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and gastrointestinal symptoms are the most common mast cell activation related clinical 
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appear [1,2,7,15]. Previous sensitization to the drug is usually required but cross reactivity has been 
described between drugs and other allergens (for example in pollen allergic patients who develop 
taxane hypersensitivity) [9]. Grading of the reaction severity is done with two classification systems: 
by Brown et al. [16] and modified Ring and Messemer [17] proposed criteria. HSRs are graded as 
mild/grade I (cutaneous symptoms or with only one symptomatic organ system), moderate/grade II 
(two or more systems involved without vital sign changes), and severe/grade III when more than two 
systems are affected with vital sign changes [16]. 

Figure 1. Phenotypes and Endotypes in drug allergy. The new classification of DHRs is based
on phenotypes, endotypes and biomarkers. Phenotypes include immediate and delayed reactions;
the clinical presentations of each phenotype are mediated by different immunological mechanisms
which are defined by endotypes. Biomarkers are used to identify the Endotypes (dash line box).
Adapted from Muraro, Antonella, et al. “Precision Medicine in Allergic Disease–Food Allergy, Drug
Allergy, and Anaphylaxis-PRACTALL document of the European Academy of Allergy and Clinical
Immunology and the American Academy of Allergy, Asthma & Immunology.” Allergy (2017) [1]. BAT,
basophil activation test; mAb, monoclonal antibody; α-Gal, galactose-alpha-1,3-galactose; NSAID,
nonsteroidal anti-inflammatory; AERD, Aspirin Exacerbated Respiratory Disease; AECD, Aspirin
Exacerbated Cutaneous Disease; HHV 6, human herpesvirus 6; HHV 7, human herpesvirus 7;
EBV, Epstein Barr Virus; DRESS, Drug reaction with Eosinophilia and Systemic Symptoms; AGEP,
Acute Generalized Exanthematous Pustulesis; SJS-TEN, Stevens-Johnson Syndrome and Toxic
Epidermal Necrolysis.

Cutaneous symptoms (like flushing, pruritus, or urticaria/angioedema), as well as respiratory
and gastrointestinal symptoms are the most common mast cell activation related clinical presentations.
More severe reactions with vital sign changes, throat tightness, or swelling can also appear [1,2,7,15].
Previous sensitization to the drug is usually required but cross reactivity has been described
between drugs and other allergens (for example in pollen allergic patients who develop taxane
hypersensitivity) [9]. Grading of the reaction severity is done with two classification systems: by
Brown et al. [16] and modified Ring and Messemer [17] proposed criteria. HSRs are graded as
mild/grade I (cutaneous symptoms or with only one symptomatic organ system), moderate/grade II
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(two or more systems involved without vital sign changes), and severe/grade III when more than two
systems are affected with vital sign changes [16].

Reactions which occur during or within 1–6 h after the drug administration are classified as
immediate reactions [1,2,8]. This phenotype typically includes the mast cell activation IgE mediated
endotype, driven by epitope-specific IgE with mast cells as the main players. Other endotypes
include direct complement activation [1,18], HSRs mediated by cyclooxygenase-1 inhibition in Aspirin
Exacerbated Respiratory Disease (AERD) and Aspirin Exacerbated Cutaneous Disease (AECD) [19,20],
or reactions due to some drugs with THIQ (tetrahydroisoquinoline)motifs which signal through the
human G-protein-coupled receptor (MrgprX2) may also induce histamine release are included in
the mast cell activation endotype [21,22]. In the past, symptoms such as fever, chills, and pain were
not typically associated with allergic reactions, however, they have been reported during HSRs to
monoclonals, oxaliplatin, and taxanes [3,6,9,23]. These type of reactions known as “cytokine storm-like
reactions”, are mediated by the release of proinflammatory cytokines which activate macrophages and
other immune cells with FcγR receptors [21].

Type IV reactions, classically known as delayed reactions, have a more heterogeneous presentation
and typically appear several days or weeks after the exposure from the start date of drug
administration [1,2,8]. They are related to T cell-mediated symptoms such as maculopapular exanthema
or delayed urticaria and can also involve other organs such as liver, lungs, kidneys, or hematological
alterations [1,8,13,24]. Severe Cutaneous Adverse Reactions (SCAR) which include Acute Generalized
Exanthematous Pustulosis (AGEP), Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS),
Stevens-Johnson Syndrome (SJS), and Toxic Epidermal Necrolysis (TEN) have a severe clinical
presentation with different treatment and poor clinical outcomes [13,14].

These phenotypes and endotypes can be further assessed through biomarkers such as skin testing
(ST), and specific IgE and basophil activation tests (BAT), which help identify mast cell involvement
in the HSRs as well as cross reactivity between drugs [7,9–11,25–29]. Levels of basophil/mast cell
activation mediators during HSRs, such as tryptase and histamine, or cytokine and leukotriene
production, may be helpful in identifying cells involved in the HSR. These mediators can also been
usedin risk stratifying the patient [4,7,9,20,27,30,31]. In the last few years the relevance of genotypes
in drug allergy has increased significantly; for example, specific HLA alleles have been associated
with the development of hypersensitivity reactions to antibiotics, retrovirals, and anticonvulsant
drugs [13,32]. Prescreening before abacavir treatment in HIV positive patients is required to identify
potential reactors expressing HLA-B 57:01 [14]. To identify T-cell mediated hypersensitivity, diagnostic
tools such as patch testing and lymphocyte transformation tests (LTT) have been proposed [1,24,33],
and more recently, cytotoxic T-cell proteins such as granulysin, perforin, and granzyme B [34].

2. Drug Desensitization: A Revolutionary Approach to the Management of Type I and Type IV
Drug Hypersensitivity Reactions

Drug desensitization (DS) was developed due to the pressing need to reintroduce drugs in a
safe fashion in patients who had developed IgE/non IgE type I HSRs to critical antibiotics and/or
other drugs. The first reported case was in 1942 in an English soldier in urgent need of penicillin at a
time when no alternatives existed; further advances were made in the 1980s when the first oral and
intravenous protocols for penicillin were created. The safety and efficacy of penicillin desensitization
was widely described without reports of deaths or anaphylaxis to such a degree that it was even
used in high risk populations such as pregnant women who had prick positive penicillin allergy and
required treatment for syphilis (Table 1a) [35,36]. The first intravenous protocol was also reported with
penicillin desensitization in 1987, and the protocol used a 10-fold escalation in solution concentration
with 20 min intervals and was the prototype for modern desensitizations [37].
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Table 1. (a) Example of oral Penicillin Desensitization Protocol. (adapted from Wendel, G.D. et al.
“Penicillin allergy and desensitization in serious infections during pregnancy.” NEJM 1985 [36]);
(b) Example of a 4 bags/16 steps Desensitization protocol to Obinutuzumab (humanized anti-CD20
monoclonal antibody). A patient with prior history of severe rituximab hypersensitivity was empirically
desensitized to obinutuzumab. During the first desensitization with a 3 bags/12 step protocol the
patient presented with a grade 2 reaction and was subsequently switched to a 4 bags/16 step protocol,
without further reactions. Bag 1 was a 1000-fold dilution; Bag 2 was a 100-fold dilution; Bag 3
was a 10-fold dilution; and Bag 4 was calculated to infuse the full target dose at the end of the DS
(Desensitization) protocol.

(a)

Name of Medication: Penicillin

Stock Solution Voulum Per Stock Solution
(mL)

Concentration
(units/mL)

Total Dose Per Stock Solution
(units)

1 30 1000 30,000
2 30 10,000 300,000
3 30 80,000 2,400,000

Target dose (units) = 1,296,700

Step Stock
Solution

Time
(min)

Cumulative
Time (min)

Voulum
Given Per
Step (mL)

Dose Given
Per Step
(units)

Cumulative
Dose (units)

Fold
Increase
Per Step

1 1 15 15 0.1 100 100 0
2 1 15 30 0.2 200 300 2
3 1 15 45 0.4 400 700 2
4 1 15 60 0.8 800 1500 2
5 1 15 75 1.6 1600 3100 2
6 1 15 90 3.2 3200 6300 2
7 1 15 105 6.4 6400 12,700 2
8 2 15 120 1.2 12,000 24,700 1.875
9 2 15 135 2.4 24,000 48,700 2
10 2 15 150 4.8 48,000 96,700 2
11 3 15 165 1 80,000 176,700 1.67
12 3 15 180 2 160,000 336,700 2
13 3 15 195 4 320,000 656,700 2
14 3 15 210 8 640,000 1,296,700 2

Total time (h) = 3.5

(b)

Name of Medication: Obinutuzumab

Target dose (mg) 750
Standard volume per bag (mL) 250
Final rate of infusion (mL/h) 80

Calculated target concentration (mg/mL) 3
Standard time of infusion (min) 187.5

Bag Volumen Per
Bag (mL)

Concentration
(mg/mL)

Total Dose Per
Bag (mg)

Amount of Bag Infused
(mL)

1 250 0.003 0.75 4.69
2 250 0.03 7.5 9.38
3 250 0.3 75 18.75
4 250 2.97632 744.08 250
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Table 1. Cont.

Step Bag Rate
(mL/h)

Time
(min)

Cumulative
Time (min)

Volume
Infused Per
step (mL)

Dose
Administrated

with This
Step (mg)

Cumulative
Dose (mg)

Fold
Increase
Per Step

1 1 1.3 15 15 0.31 0.0009 0.0009 0
2 1 2.5 15 30 0.63 0.0019 0.0028 2
3 1 5 15 45 1.25 0.0038 0.0066 2
4 1 10 15 60 2.5 0.0075 0.0141 2
5 2 2.5 15 75 0.63 0.0188 0.0328 2.5
6 2 5 15 90 1.25 0.0375 0.0703 2
7 2 10 15 105 2.5 0.075 0.1453 2
8 2 20 15 120 5 0.15 0.2953 2
9 3 5 15 135 1.25 0.375 0.6703 2.5

10 3 10 15 150 2.5 0.75 1.4203 2
11 3 20 15 165 5 1.5 2.9203 2
12 3 40 15 180 10 3 5.9203 2
13 4 10 15 195 2.5 7.4408 13.3611 2.48
14 4 20 15 210 5 14.8816 28.2427 2
15 4 40 15 225 10 29.7632 58.0059 2
16 4 80 174.375 399.38 232.5 691.9941 750 2

Total time (h) = 6.66

Desensitization today is indicated when patients have HSRs mediated by mast cell activation to
their first line therapy without comparable alternatives [3–5,26,30,38,39]. Desensitization is achieved
by incrementally escalating the sub-optimal doses of the culprit drug until the required dose is reached,
and DS induces a temporary tolerance which protects the patient from anaphylaxis [6,23,38]. Currently
valid DS protocols have been established for other chronic diseases such as Cystic fibrosis, which has
poor patient prognosis if antibiotic restrictions are present [5]. Recently these procedures have been
developed for new and innovative drugs for oncologic and chronic inflammatory diseases which were
continued first line therapies that were critical for patients’ quality of life and life expectancy [3,4].
Previously published data have shown that more than 20% of oncology patients who receive platin
chemotherapy developed an allergic reaction. Equally concerning is the increasing number of unique
monoclonal antibody (mAbs) therapies which have high rates of immunogenicity due to non-human
mAb parts and glycosylation [3]. Preventing patients from using first line therapy can be taxing both
in terms of cost but also in the reduction of quality of life, life expectancy, and disease progression
or management. In terms of safety and efficacy, previously published data have shown that DS
is the best option when indicated. Successful protocols have been described for different HSRs to
culprit drugs, for example antibiotics, biologics, chemotherapy, progesterone, as well as many other
treatments [6,23,27,39–41]. A cost/efficacy analysis was also shown by Sloane et al. [6] indicating that
DS does not increase health costs compared to standard treatment.

Understanding the molecular mechanisms of the HSR, patient’s comorbidities, skin testing, and
genetic markers are critical to determine whether desensitization is indicated as well as the potential
risk of reaction during the procedure.

DS has been established to be safe and effective for IgE mediated drug HSRs. Patients with
immediate reactions to taxanes and other chemotherapies in which the IgE mechanism cannot be
demonstrated have also been successfully desensitized [4,6]. HIV positive patients who present
with delayed maculopapular exanthem have also been successfully desensitized, however protocols
for delayed reactions have not yet been standardized [40]. DS is contraindicated in immune
thrombocytopenia, serum sickness-like reactions, or SCAR (Severe Cutaneous Adverse Reactions)
due to high toxicity [7,38,42]. Comorbidities, current prescriptions, and premedications should be
evaluated to understand the initial reaction and appropriately risk stratify the patients because some
medications may change the risk of reaction, treatment plan, or mask the severity of the initial
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symptoms. Skin testing and mediator levels are also key factors for evaluating the risk of reaction
during desensitization and for understanding the original HSR [2,9,25,42]. Usually mild symptoms
and negative skin tests are associated with lower risk of reaction, while moderate to severe reactions
and/or positive skin prick tests indicate higher risk. This has been shown with the published taxane,
carboplatin, and penicillin algorithms, however further research is necessary to validate skin testing
with chemotherapies, monoclonals, and other drugs [9,12,27,28]. In vitro test results (such as specific
IgE and basophil test activation) and pharmacogenetics have also been proposed to predict outcomes
of DS [10,11,29]. Recent data has linked BRCA1/2 mutation in patients being treated with carboplatin
with increased rates of IgE mediated HSRs [11,43]. These findings illuminate new insights in HSR
prediction, management, and desensitization.

After risk stratification, a flexible protocol with 4 to 16 steps (typically 12) and escalating the dose
2 to 2.5 times every 15 min is applied. Usually the starting concentration of the solution in a 4 bags/16
steps protocol is 1/1000 to 1/100 in a 3 bags/12 steps protocol, reaching the target dose at the end of
the procedure (Table 1b) [3,5,6,23,36,42,44].

Recently, algorithms to manage HSRs through DS have been described for antibiotics and
chemotherapies [9,12,25,27], to allow some patients to tolerate the offending drug via regular infusion
without safety concerns [9]. Other algorithms, such as that for platins, have focused on repeated skin
testing to avoid false negative results [12,25].

While empiric desensitization protocols were established clinically to treat patients in need,
the mechanisms of desensitization were evaluated in vitro to understand the cellular and moelcular
players. The first in vitro studies occurred in animals; later, human basophils were used for proof of
concept in vitro experiments by performing BAT (basophil activation test). Currently both in vivo and
in vitro studies are used to understand the cellular and molecular pathways of mast cell and basophils
involved in HSRs and anaphylaxis. A major step in improving clinical desensitization protocols was
insight from in vitro studies on how dosing and timing during the desensitization protocol inhibited
cell degranulation and cytokine production.

3. Mast Cells: Positive and Negative Regulation is Relevant to Desensitization

Mast Cells (MCs) are key effectors in many immune responses including IgE and non-IgE
mediated HSRs and are believed to be the primary target cell in DS [45].

During HSRs, MCs can be activated through IgE or non-IgE dependent pathways. Recent studies
have shown that small molecule drugs may induce systemic non-IgE mediated reactions through the
activation of human MC G-protein coupled receptor (MrgprX2) [21,22]. The IgE mediated pathway
is the one that is best defined: patients who are predisposed to developing an allergic reaction
switch their allergen specific antibodies from IgM to IgE after several exposures. Subsequently, post
immunoglobulin class switch, plasma cells produce a large amount of the specific allergen IgE which
binds to high-affinity IgE Fc receptors (FcεRI) on basophils and mast cells. HSRs occur when a
sensitized patient is re-exposed to the drug or during the first lifetime exposure with an already
encountered allergen [9,46].

3.1. FcεRI Structure

FcεRI belongs to the multi-subunit immune receptor family and is constitutively expressed
on human and mice MCs and basophils as a hetero-tetrameric receptor composed of an α, β, and
two γ chains. In human dendritic cells and monocytes it is expressed as trimer αγ2. For allergen
recognition, the α chain of the receptor binds to IgE through the two extracellular Ig-like domains
on the Fc region of the antibody. The membrane-tetraspanning β chain and the two disulfide-linked
identical γ chains contain a single immune-receptor tyrosine-based activation motif (ITAM) which is
responsible for signal transduction. Phosphorylation of γ-subunit ITAMs is important in initiating and
inducing downstream propagation of the intracellular signaling. On the other hand, phosphorylation
of β-subunit ITAM has been suggested to have an amplifier and/or a suppressor function for the
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γ chain mediated signaling events. The Lyn tyrosine kinase is constitutively associated with the
cytoplasmic tail of the FcεRI β chain [47–49].

3.2. Mast Cell Activation via FcεRI

FcεRI cross-linking, following allergen ligation to IgE-bound FcεRI, will trigger activation of the
Lyn kinase. Activated Lyn initiates signal transduction through phosphorylation of the β and γ chain
ITAMs. This leads to recruitment of Syk tyrosine kinase to phosphorylated γ chain ITAMs, Syk becomes
activated and phosphorylates other enzymes and adaptor proteins to form multicomponent signaling
cascade complexes. Phospholipase Cγ (PLCγ) recruits and binds to linker for activation of T cells
(LAT), one of the adaptor proteins; PLCγ phosphorylates and then hydrolyzes phosphatidylinositol
bisphosphate break down to yield inositol trisphosphate (IP3) and diacylglycerol (DAG). Two distinct
downstream signaling pathways are mediated by the second messengers IP3 and DAG in MCs [46–48].

IP3 induces an increase in cytosolic calcium (Ca2+) concentration by binding to its receptor in the
endoplasmic reticulum and rapidly inducing the “first phase” of calcium mobilization, by transient
release of endoplasmic reticulum Ca2+ stores. STIM1 senses the depletion of endoplasmic reticulum
Ca2+ stores and induces the opening of calcium release-activated calcium (CRAC) channels in the
plasma membrane. Binding of STIM1 to ORAI, the pore-forming component of the CRAC channel,
facilitates the entry of extracellular calcium into the cytosol. This leads to a prolonged Ca2+ influx,
also known as “second phase” [47,49]. DAG activates protein kinase C (PKC), which is essential
for inducing several cellular responses. In addition, Fyn tyrosine kinase, which phosphorylates
Grb-2-associated binder-like protein 2 (Gab-2), activates PKC through the phosphoinositide 3-kinase
(PI (3) K) pathway [46–48].

Both PKC activation and calcium flux play a critical role in the initiation of three main biological
responses of MC activation: 1. Immediate release of an array of preformed biologically active
inflammatory mediators including amines (histamine and serotonin), proteoglycans, neutral proteases
(tryptase, chymases, and carboxypeptidases), β-hexosaminidases, cytokines, and growth factors
(tumor necrosis factor α (TNFα,) and vascular endothelial growth factor (VEGF)) from the cytoplasmic
granules, 2. An early de novo synthesis of lipid mediators from phospholipid metabolism and, 3. Late
release of inflammatory cytokines [49].

3.3. Degranulation, Lipid Mediator, and Cytokine Production

The increase in cytosolic Ca2+ levels and the activation of PKC stimulate the degranulation
machinery. Activated PKC phosphorylates the myosin light chain of cortical actin-myosin complexes,
resulting in the disassembly of the complex and translocation of the cytosolic granules towards the
plasma membrane in a microtubule-dependent manner [47]. As granules get closer to the plasma
membrane they fuse through a process mediated by soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNAREs) proteins, and this allows the release of inflammatory mediators
into the surrounding extracellular environment within a few minutes of crosslinking [50]. One of the
major targets of activated extracellularpsignal-regulated Kinase (ERKs), a mitogen-activated protein
kinase (MAPK), is the cytoplasmic PLA2. Once activated, PLA2 translocates into the cell membrane,
where it hydrolyzes membrane phospholipids to release arachidonic acid, triggering leukotriene and
prostaglandin formation [48,51]. Cytokine production occurs over 4–6 h after cross-linking due to
the activation of several adaptor proteins required for the activation of nuclear factor-κB (NF-κB),
nuclear factor of activated T-cells (NFAT), signal transducer and activator of transcription 6 (STAT-6),
and activator protein 1 (AP-1) transcription factors which are crucial for the expression of many
cytokine proteins, including IL-6 (interleukin 6), TNF-α, IL-1β and IL-13 [46,47].

3.4. Negative Regulation of Mast Cell Activation through FcεRI

MCs express a large number of inhibitory receptors; FcγRIIB (Fcγ receptor IIB), gp49B1/Leukocyte
Immunoglobulin Like Receptor B (LILRB4), mast cell function-associated antigen (MAFA), paired
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Ig-like receptor (PIR)-B, and leukocyte-associated Ig-like receptor (LAIR) [52]. Immunoreceptor
tyrosine-based inhibitory motif (ITIM) containing receptors downregulate MC activation through
dephosphorization of multiple targets via the recruitment of various enzymes [49,52]. Colligation of
cross-linked FcεRI to the inhibitory receptors will negatively regulate FcεRI signaling events through
the recruitment of negative intracellular regulators. Lyn can initiate both activating and inhibitory
signals, by phosphorylating the FcεRI ITAMs and inhibitory receptor ITIMs [47]. These events lead to
inhibition of FcεRI-induced calcium flux which is required for early and late MC activation response.

Desensitized MCs show a complete abrogation of the phosphorylation of key IgE/FcεRI signaling
components important for different stages such as Lyn, LAT, ERK, MAPK, and STAT-6 [45,53–55].
It is noteworthy that STAT-6 Knockout (STAT-6-KO)mouse bone marrow-derived mast cells
(mBMMCs) failed to be desensitized which may suggest a possible role in inhibiting DS through
a different pathway [55]. In vitro prolonged DS of human MCs and basophils showed a depletion
of Syk, an activation signal transduction molecule, indicating a universal rather than specific
desensitization [56,57]. It is not well understood how ITIM regulates ITAM equilibrium.

Many studies have suggested that agonist-induced internalization of G-protein coupled receptors
(GPCRs) from the cell surface into intracellular compartments regulates cellular responsiveness [58,59].
The multiple incremental suboptimal antigen doses administrated during DS may lead to the release
of small amounts of histamine that would bind to receptors and subsequently induce internalization
of the receptors. Thus the subthreshold release of MC mediators could be implicated in histamine
receptor desensitization leading to MC hyporesponsiveness.

However there are studies which contradict the hypothesis of leukotriene receptor desensitization
during DS. MC stimulation with a low concentration of leukotriene causes hyperresponsiveness to
leukotriene stimulation, which can be attributed to the low concentration of leukotrienes leading to
translocation of leukotriene receptors from the interior of the cell to the cell surface. Conversely, a high
concentration of leukotriene will induce leukotriene receptor internalization and subsequently MC
hyporesponsiveness to leukotriene stimulation [60].

4. Molecular Mechanisms in IgE Mast Cell Desensitization

4.1. Characterizing Desensitization Mechanisms through In Vitro and In Vivo Models

DS protocols have been shown to be safe and effective during re-exposure to the culprit
drug[5,6,41,45,53,55]]. Highly allergic patients with IgE dependent reactions have presented with
negative skin testing after desensitization, indicating inhibition of the mechanisms that induce mast
cell activation [61].

To better understand how DS protocols allow patients to be treated repeatedly with the culprit
drug after an IgE mediated HSR, several in vitro and in vivo models have been generated to provide
support for this technique. An effective in vitro model of rapid IgE desensitization was developed
using mBMMCs under physiologic calcium conditions and has subsequently been modeled into
successful human DS protocols. By starting with subthreshold doses of the antigen (1/1000 or 1/100)
and by administrating incremental doses of the antigen at fixed time intervals and increasing the dose
1.5 to 2.5 times at every step, sensitized mBMMCs are unresponsive through to the target dose [53,55].

As shown in Figure 2, shorter intervals of antigen delivery and/or too high suboptimal antigen
dosing leads to increased β-hexosaminidase release [55]. In this model when suboptimal doses are
delivered at 1 min there is a littile inhibition of the mediators released but when delived at 10 min
intervals, there is maximal inhibition. Regarding the antigen dose, suboptimal doses will trigger little
releases as compare to optimal doses. This indicates that both the time and dose are critical to MC
degranulation. The time interval length is inversely correlated with the amount of β-hexosaminidase
release and may reflect the breakthrough reactions during human DS when the drug is delivered too
quickly. Concurrently, the dose is directly correlated with the release of β-hexosaminidase and starting
DS with a dose above the suboptimal threshold may cause a breakthrough reaction.
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Figure 2. Schematic diagram represent of mast cells β-hexosaminidase in relation to time interval
between doses and antigen doses during desensitization.

This in vitro model of rapid MCs/IgE DS protocol has been reproduced in many studies and has
consistently shown the inhibition of all of the MC activation hallmarks (Figures 3 and 4) [45,53,54].
As shown in Figures 3 and 4, compared to activated cells, desensitized cells had a diminished
immediate release of β-hexosaminidase (Figure 3a), early and late TNF-α (Figure 3b), IL-6 production
(Figure 3c), de novo synthesis of lipid mediators (Figure 3d), and calcium flux (Figure 3e) [53]. In vivo
models of oral and intravenous rapid DS protocols were able to prevent passive systemic anaphylaxis
(PSA). During DS with PSA mice models [45], there is an inhibition of body core temperature drop,
release of serum mast cell protease-1 (mMCPT-1), and MC degranulation [45,54].
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Figure 3. Mast cell IgE/Antigen desensitization inhibits the pre-formed mediators release, lipid
mediators and cytokine production, and calcium flux and is antigen specific. 1. Pre-formed mediators
release: (a) β-hexosaminidase release: MCs desensitized to DNP-HAS and OVA showed a 78% and
71% reduction of beta-hexosaminidase release, respectively compared to activated MCs with same
allergen; (b) Pre-formed TNF-(white bars) and de novo synthesized TNF-(black bars) have a 62%
and 75% reduction after desensitization, respectively compared with activation. 2. Lipid mediators
production: (c) Arachidonic metabolites represent by Cysteinyl leukotriene C4 (LTC4), leukotriene
B4 (LTB4), and 12(s)-hydroxyheptadeca-5Z, 8E, 10E-trienoic acid (12-HHT) were detected in MC
supernatant after activation but not in control or desensitized MCs. 3. Cytokines production: (d)
During DS, IL-6 production is 75% less than during activation. 4. calcium flux: (e) Calcium flux
is impaired in OVA desensitized MCs after being triggered with activating dose of OVA but the
influx is restored by activating with DNP-HAS non-desensitizing antigen (red line). Adapted from
Sancho-Serra, et al., 2011 [53] with permission from John Wiley and Sons.
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Figure 4. Simplified model comparing the outcomes of activated and rapidly desensitized mast cells.
Resting mast cells (1) sensitizes with antigen-specific IgE bound to their high affinity IgE recepors
(FcεRI) on cell surface (2) A: following the crosslinking of IgE/FcεRI receptors with an optimal dose of
antigen leads to calcium flux (3–4), degranulation with release of the preformed mediators (5), early
de novo synthesis of lipid mediators (6), and late cytokines/chemokines production(7). B: following
administrating of suboptimal 11 doses to complete the same optimal dose as in A (activation) (3); leads
to membrane rearrangements of receptors which impairs Ag/IgE/FcεRI complexes internalization
and prevents all the hallmarks of MCs activation (red cross) such as calcium flux, degranulation, lipid
mediators, and cytokine production.

In addition, desensitized cells have shown impaired antigen/IgE/FcεRI complex internalization
(Figure 4) [45,53]. This has been shown in different in vitro DS models, using different MCs (peritoneal),
with different IgE antibodies and antigen doses, with the conclusion that complex internalization has a
major role in DS [54].

Furthermore, challenging with the same antigen after being desensitized does not induce
activation [53], however MCs can still be activated with different antigen stimulation, verifying
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the antigen specificity of DS (Figure 3e) [45,53]. This demonstrates that the mechanism of DS is an
antigen-specific process and does not disable the IgE bounded FcεRI receptor for other antigens [45].

Furthermore, the treatment of desensitized cells with calcium ionophore A23187 or non-desenstizing
antigen resulted in a high level of b-hexosaminidase release and calcium flux; indicating that
desensitized cell mediators were not depleted and the non-IgE–mediated activation pathway was
intact after DS [53]. In summary, the DS model is an antigen-specific desensitization and disables
the specific response to one antigen but leaves the cell machinery unaffected, unlike non-specific DS.
Even though the underlying mechanisms of DS are not fully understood, these in vitro and in vivo DS
models can address hypotheses about its molecular pathway.

4.2. Proposed Mechanisms of Desensitization

4.2.1. Ag/IgE-FcεRI Complex Mobility

Initial studies indicated that MC unresponsiveness after desensitization was due to internalization
of FcεRI through progressive cross-linking at low antigen concentration, indicating that cell
surface receptors were depleted before the next dose [62]. More recent studies have shown that
antigen/IgE/FcεRI complexes’ internalization is impaired. Compared to activated cells where the
majority are internalized, these complexes remain on the surface during DS (Figure 4) [45,53]. Also,
the hyporesponsiveness after DS is not maintained because of the lack of free IgE bound receptor on
the cell surface or the presence of an excess of soluble antigen since washed and re-sensitization cells
remained desensitized. However, it is possible that the bound antigen is equilibrated in desensitized
cells and the recovery of responsiveness is not due to the recycling of internalized IgE back to the cell
surface [45].

In IgE mediated MC activation, the antigen valency and dose have been demonstrated to be key
factors directly affecting FceRI behavior. Low doses of multivalent-antigen can create small clusters of
Ag/IgE/FcεRI complexs which keep the receptors mobile on the cell surface. However, high doses
or valency, result in larger cluster aggregates of receptors which induces their immobilization and
subsequence internalization [63,64]. Whether the antigen/IgE/FcεRI complex mobility on the cell
surface with a low dose of antigen could explain the impairment of receptor internalization during DS
is unknown.

4.2.2. ITAM/ITIM Counter Regulation

gp49B1 (LILRB4) receptors belong to the immunoglobulin (Ig) superfamily; which has two
extracellular Ig-like domains and two ITIMs in its cytoplasmic domain. Colligation of gp49B1 (LILRB4)
to crosslinked FcεRI will counter-regulate IgE-dependent MC activation in an ITIM dependent manner
which has been evident in both in vitro and in vivo models. Mutation or deletion of gp49B1 (LILRB4)
ITIM prevents the inhibition of MC activation. ITIM phosphorylation is required to recruit protein
tyrosine phosphatases SH2-containing tyrosine phosphatase SHP 1, needed to dephosphorylate
key signaling molecules, and consequently dampen the cellular response [65,66]. FcγRIIB, another
inhibitory receptor that contains single ITIM in its cytoplasmic domain, recruits lipid phosphatase
SH-2 containing inositol 5′ polyphosphatase (SHIP) which consequently decreases the levels of
phosphatidylinositol 3,4,5-trisphosphate, a molecule generated by phosphatidylinositol 3-kinase upon
cell activation [52,65]. It is likely that in the early steps of desensitization, the ITIM inhibitory pathway
is dominant and during later steps overrides the activating signals. Nevertheless, further studies are
needed to identify the ITIM inhibitory receptors and phosphatases regulating ITAM during DS.

Previous studies have shown that the inositol phosphatase SHIP can acts as a “gatekeeper” and
negatively regulates MC degranulation for all antigen doses [63]. In addition, phospho-SHIP is rapidly
recruited into the plasma membrane and colocalizes with FcεRI β receptors at both sub-optimal and
supra-optimal doses which may explain the reduction of the degranulation response [63]. A time
course study of phospho-SHIP colocalization with the FcεRI β receptor in RBL-2H3 cells has shown
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a peak at 2 min of FceRI crosslinking with a sub-optimal dose. In contrast, with optimal doses,
phospho-SHIP colocalization was most notable at 5 min. SHIP phosphorylation is increased with
non-optimal antigen dosing [63]. Therefore, multiple subthreshold doses of antigen during DS might
result in the recruitment of SHIP which may play a critical role for tipping the balance between positive
and negative signaling in the control of MC activation.

4.2.3. Ca Channel Desensitization

Subthreshold antigen doses induce a small amount of intracellular calcium mobilization in
MCs [45,53,54]. During DS, the sequential delivery of low antigen doses may create a continuous low
level of intracellular calcium, which causes conformational changes of functional CRAC channels and
other calcium related channels. These structural modifications in the receptors would block further
calcium entry and signal transduction. However, challenging MCs after DS with a non-desensitizing
antigen induces calcium flux (Figure 3e), proving that the DS is antigen-specific and the IgE
mediated MC activation pathway is not disabled [53,54]. This fact could be explained by a membrane
compartmentalization process which enables the exclusion of desensitized receptors exclusively [53].

4.2.4. Actin Remodeling

Recent studies have shown the participation of actin cytoskeleton reorganization in calcium
mobilization in many cells including MCs. Challenges with the same antigen after desensitization does
not induce β-hexosaminidase release, calcium mobilization, or rearrangement of actin filaments [45,53].
The authors suggested that MC hyporesponsivness could be mediated by the highly stable remodeled
actin cytoskeleton required in the compartmentalization of desensitized receptors, in addition to the
surrounding signal transduction molecules. This aberrant remodeling of actin has been proposed as a
negative regulator of calcium mobilization, preventing mediator release during DS [45].

5. Conclusions

The classical description of drug HSRs from Gell and Coombs is now complemented by the new
understanding of phenotypes, endotypes, and corresponding biomarkers. This allows an expanded
reaction classification, such as “cytokine storm-like reactions” to be recognized in HSRs to moAbs,
oxaliplatin, and taxanes. New biomarkers from mast cells and other immune cell mediators (chymases,
Carboxypeptidase A (CPA), Phospholipase A(PFA)) will be added in the future to allow for better
categorization (Figure 5).

Desensitization is a revolutionary approach for the safe reintroduction of immunogenic drugs.
Mast cells and basophils have long been known to be the cellular targets involved in desensitization;
however the inhibitory mechanisms of desensitization are still being elucidated. DS takes advantage
of inhibitory mechanisms which prevent activated mast cell signal transduction and pro-inflammatory
mediator release.

Impairment of Ag/IgE/FεcRI complex internalization during desensitization can lead to these
complexes remaining mobile on the cell surface. Low antigen doses administered incrementally along
with actin remodeling could lead to an aggregation of these mobile complexes forming a secluded
compartment of desensitized antigen specific receptors, Ca2+ channels, and signaling molecules.
This compartment is specific to the antigen and excludes non-desensitized receptors (Figure 5).

Successful human DS protocols are based on in vitro IgE mast cell desensitization models and
provide outstanding safety for all patients with severe allergic reactions in need of first line therapies.
Future research will uncover the molecular pathway of in vitro desensitization which will permit more
effective and safer human protocols.
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