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Abstract

Insights from biome-wide experiments can improve efficacy of landscape-scale ecological

restoration projects. Such insights enable implementers to set temporal and geographical

benchmarks and to identify key drivers of success during the often decades-long restoration

trajectory. Here we report on a biome-wide experiment aimed at informing the ecological

restoration of thousands of hectares of degraded subtropical thicket dominated by the suc-

culent shrub, Portulacaria afra (spekboom). Restoration using spekboom truncheons has

the potential to sequester, for a semi-arid region, large amounts of ecosystem carbon, while

regenerating a host of associated ecosystem services. This study evaluates, after about

three years post-propagation, the effects of spekboom truncheon size and treatment on sur-

vivorship in 40 fence-enclosed (0.25 ha) plots located in target habitat across the entire

spekboom thicket biome. In each plot, locally harvested spekboom truncheons, comprising

eight size/treatment combinations, were planted in replicated rows of between 24 and 49

individuals, depending on treatment. The experiment assessed the role of truncheon size,

spacing, application of rooting hormone and watering at planting on survivorship percentage

as an indicator of restoration success. All eight combinations recorded extreme minimum

survivorship values of zero, while the range of extreme maximum values was 70-100%.

Larger truncheons (>22.5 mm diameter) had almost double the survivorship (ca. 45%) than

smaller truncheons (< 15 mm) (ca. 25%). Planting large, untreated truncheons at 1 m inter-

vals—as opposed to 2 m intervals recommended in the current restoration protocol—

resulted in no significant change in survivorship. The application of rooting hormone and

water at planting had no significant effect on restoration success for both large and small

truncheons. While our results do not provide an evidence base for changing the current

spekboom planting protocol, we recommend research on the financial and economic costs

and benefits of different propagation strategies in real-world contexts.
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Introduction

Many restoration projects implemented at the scale of landscapes seldom achieve their stated

goals of restoring biodiversity and ecosystem services to pre-degradation levels [1–3]. Low res-

toration efficacy has been linked to a wide range of factors mostly acting in concert [4]. These

include site factors such as variation in soil type or local climate, landscape context such as the

proportion of landscape that is degraded, differences in degradation trajectories, and inade-

quate funding or political will to sustain interventions [5–9] Given the complexity of these fac-

tors, effective restoration practice typically requires planning at fine spatial scales [8, 10, 11],

which combines expertise from a wide range of disciplines [12]. Also crucial is a commitment

to routine monitoring and evaluation [13–15], which ideally should be expressed as a quantita-

tive valuation of restoration outcomes [16] to evaluate efficiency and cost-benefits at certain

stages along a commonly decades-long restoration trajectory [17–19]. In this regard, robust,

biome-wide experiments—albeit costly and difficult to implement—may be critical for estab-

lishing benchmarks to evaluate efficiency and effectiveness over time and space, as well as to

identify the main factors influencing the restoration process.

Payments for ecosystem services, including carbon sequestration, are potentially viable

options to finance restoration action on a landscape-scale in many contexts [2, 20–24]. In

some ecosystems, increasing carbon storage post restoration, both above- and belowground, is

fundamental to achieving state transition and can be used as a proxy for restoration efficacy

during the first decades of the restoration process [2, 17, 25–28]. Such opportunities are prom-

ising despite the uncertainty surrounding the global carbon price and the implementation of

carbon taxation [29, 30]. In contexts where restoration outcomes have strong socio-economic

imperatives, it is useful to measure effective restoration in terms of monetary costs and benefits

[4, 31, 32]. Thus, cost-effectiveness, quantification of benefits and losses and related timescales

are of prime concern [3, 33–36]. This is true in the context of this study, a developing country

with high rates of poverty, where restoration initiatives must “earn their keep” [37].

Subtropical thicket dominated by Portulacaria afra (hereafter referred to as spekboom

thicket)—a leaf succulent shrub to low tree—forms part of South Africa’s Subtropical Thicket

biome [38, 39]. Characterized as a dense, tangled mass of low trees (up to 5 m in height) and

large shrubs—which are often spinescent, succulent, or both— spekboom thicket has been

extensively degraded by injudicious land-use practices, particularly through over-browsing by

domestic goats [40–43] (Fig 1). Approximately 45% of spekboom thicket (5,519 km2 out of a

total of 12,624 km2) had been altered in this manner by 2000 [44].

Spekboom can shift between C3 photosynthetic and Crassulacean Acid Metabolism (CAM)

in response to increased water stress, longer photo periods and increased daytime tempera-

tures [45–47]—thereby retaining productivity during drought periods. It is highly palatable

and widely used as a fodder plant by mega-herbivores such as elephant (Loxodonta africana),

buffalo (Syncerus caffer), black rhinoceros (Diceros bicornis) and greater kudu (Tragelaphus
strepciseros), as well as domestic stock such as goats and cattle. It is regarded as the backbone

of southeastern South Africa’s highly lucrative angora mohair industry [48] and forms the

foundation of the regions thriving wildlife and ecotourism economies [49].

Intact spekboom thicket stores carbon of about 200 t�ha−1 (measured up to a soil depth of

50 mm)—a remarkable feature for a xeric ecosystem [50, 51]. Most of this carbon stock is asso-

ciated with spekboom litter fall [52, 53] its dense canopy provides the relatively cool and dry

conditions necessary for the accumulation of the high levels of soil carbon [54–56] and mainte-

nance of biodiversity [49, 57]. Comparisons of degraded and intact sites reveal carbon losses of

more than 80 t C�ha−1 [50, 58]. These losses are evident from the decrease in aboveground bio-

mass Fig 1, but also manifest as a massive reduction in soil organic carbon content [59, 60].

PLOS ONE Effects of size and treatment on the survival of spekboom truncheons to restore degraded subtropical thicket

PLOS ONE | https://doi.org/10.1371/journal.pone.0250256 April 22, 2021 2 / 17

Funding: Marius van der Vyver and Richard

Cowling are grateful funding from the Working for

Woodlands Programme of the South African

Department of Environmental Affairs and Tourism;

National Research Foundation, Pretoria (grant

number FA2005040700027 - Anthony Mills); and

Nelson Mandela University. We acknowledge the

invaluable contributions of the Subtropical Thicket

Restoration Programme (STRP), the planting

teams and managers (Gamtoos Irrigation Board)

and the data sampling team (Conservation Support

Services) as well as all landowners for allowing the

experiment on their land. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0250256


Fig 1. Degraded and intact spekboom sites compared with a 3-year old restoration site. A: a foothill landscape

comprising livestock-degraded spekboom (Portulacaria afra) thicket where all spekboom has disappeared, leaving only

woody canopy shrubs of Pappea capensis and Euclea undulata with a field layer of largely ephemeral plants. B: intact

spekboom thicket (2-3 m tall) located in the same region as the top photo. Note the dense canopy of spekboom,

scattered P. capensis trees on the skyline, and absence of bare ground (photos: RM Cowling). C: a thicket-wide plot
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Under current environmental conditions, degraded spekboom thicket does not regenerate

spontaneously to its intact state [40, 41, 54, 55]. However, planting spekboom truncheons does

restore populations of this species [17, 52], sequester relatively large amounts of carbon [17,

52, 61] and—after 30–50 years—facilitate the restoration of other members of intact spekboom

thicket, including long-lived trees and shrubs [17]. Indeed, after this period of restoration, the

restored state resembles the intact state in terms of biodiversity, vegetation structure and eco-

system services. However, the transition from degraded to intact states requires the replenish-

ment of above- and belowground carbon, which is achieved using the ecosystem engineering

properties of spekboom [17]. Stands under restoration older than five years are scarce, and

studies quantifying appropriate reference sites in terms of biodiversity, ecosystem services,

structure and function are few. Research on established (5-50 year) stands under restoration

report annual total carbon sequestration rates of between 1.4 and 4.5 t C ha−1 yr−1 [17, 52, 62].

These data were derived from restoration stands which were informally established by land-

owners and hence, lack information on implementation techniques such as truncheon size,

planting depth, planting season and truncheon spacing.

To inform best-practice for the biome-wide restoration of spekboom thicket, the Subtropi-

cal Thicket Restoration Project (STRP)—a community of scientists, government officials and

implementers [50]—established in 2007 a thicket-wide plot (TWP) experiment, comprising

300 plots (Fig 1), over the entire range of spekboom thicket. A major goal of the TWP experi-

ment was to evaluate different truncheon planting techniques to identify the most efficient and

effective protocols for maximising annual carbon sequestration rates throughout the restora-

tion trajectory. Using 173 of the thicket-wide plots described above, Van der Vyver et al. [63]

applied a rule-based learning ensemble to identify the physiographic and management-related

factors that best predict restoration efficacy. Browsing impacts and the misidentification of tar-

get habitat (i.e. location of plot in non-spekboom thicket vegetation) emerged as the two most

important predictors, negatively affecting both survivorship and carbon sequestration. How-

ever, this study was restricted to only one of the treatments applied to the spekboom trun-

cheons—representative of the current restoration protocol used by the STRP—namely

planting large (22.5 mm diameter) truncheons every two meters with no applications of root

hormone or water at planting (Treatment 2 in Table 1).

Understanding the effects of different truncheon planting methods is of great importance

to the STRP. For example, while planting larger truncheons may positively influence restora-

tion efficacy, efficiency may be compromised relative to planting smaller truncheons which,

because of their abundance in source sites and requirement for shallower holes, are likely less

costly to harvest and to plant. Similarly, while watering at planting may increase survivorship,

the effort and costs of getting water to remote restoration sites may well outweigh this benefit.

In this paper, we focus on the effectiveness in terms of truncheon survivorship, or the benefit

side, of different planting methods, and refer to costs only indirectly and qualitatively. Here,

we assess combinations of eight treatment/size combinations (hereafter treatments) to explore

the role of truncheon size (measured as stem diameter), spacing of truncheons, application of

rooting hormone and application of water at planting on truncheon survivorship, approxi-

mately 3.5 years after planting. For this analysis, we selected the subset of plots (n = 40) that

were in target habitat (spekboom thicket) and exposed to low browsing intensity—factors that

promote restoration success of spekboom [63]. While the post-restoration period is sufficiently

long to accommodate the post-planting mortality peak, it is too short to provide a useful

(TWP) located in target habitat and subject to low browsing intensity. Note the good establishment and growth of

spekboom truncheons approximately three years after planting (photo: ML van der Vyver).

https://doi.org/10.1371/journal.pone.0250256.g001
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assessment of patterns of carbon sequestration in relation to truncheon treatment; this will be

undertaken shortly, now that the experiment has run for more than a decade.

Study area

The study area comprises the global distribution of spekboom thicket, delimited by the Fish

River drainage in the east and the Gouritz River drainage in the west (Fig 2) [39]. This region

is highly heterogeneous in terms of topography, climate, geology and soils and is home to

eight biomes which interdigitate in complex ways [39, 64]. Spekboom thicket is often, but not

exclusively, associated with relatively deep, shale-derived and mostly rocky soils on sloping

ground [39]. Annual rainfall is bimodally distributed, with peaks in spring and autumn. In the

west, more rain falls in the cooler months while the east may experience appreciable summer

Table 1. Treatments applied to truncheons of spekboom (Portulacaria afra) planted in 40 plots (0.25 ha) located across the extent of spekboom thicket vegetation

(see Fig 2).

Treatment Mean no. (range) of alive truncheons per plot Stem diameter (mm) Planting depth (mm) Additional treatment

1 85.8 (165-5) 30 30 None

2 78.8 (145-5) 22.5 30 None

3 30.3 (70-1) 22.5 30 2-m spacing

4 75.2 (132-5) 22.5 30 Rooting hormone

5 78.3 (150-11) 22.5 30 Water at planting

6 22.9 (56-0) 15 15 None

7 26.6 (67-3) 10 10 None

8 29.3 (87-0) 10 10 Water at planting

Notes: Other than Treatment 3, all truncheons were planted at 1 m intervals.

https://doi.org/10.1371/journal.pone.0250256.t001

Fig 2. Map of the study region showing the extent of the spekboom thicket vegetation (dark shading) and location of the 40 experimental

plots used in this study (green squares).

https://doi.org/10.1371/journal.pone.0250256.g002
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rain. Mean annual precipitation ranges from 250 mm in the western, inland regions to 550

mm in the eastern, coastal regions [48]. Localised flash-floods and prolonged droughts are not

uncommon. Summers are very hot with temperatures often exceeding 40˚C; winters are mild,

but the nights may be cold and frost occurs regularly in bottomlands because of cold-air pool-

ing [65–69]. Spekboom thicket eschews frost-exposed terrain [67, 68]. The geology is domi-

nated by rocks associated with the Cape Supergroup (quartzitic sandstones, shales), Karoo

Supergroup (mudstones, shales) and Uitenhage Group (mudstones, conglomerates). Other

than Cape sandstones, which yield infertile sands, other geologies yield mainly moderately fer-

tile and relatively clay-rich soils [64, 70, 71].

Materials and methods

Experimental plots

Our study used 40 of 300 0.25 ha plots established throughout the spekboom thicket biome

between March 2008 and October 2009 by unskilled teams contracted and trained by the

national Department of Environmental Affairs’ Working for Woodlands programme via its

implementing agent, the Gamtoos Irrigation Board (for more details, see van der Vyver et al.

subm.). Managers and contracted teams were given training to enable them to harvest spek-

boom cuttings of suitable dimensions from nearby intact stands and plant these in multiple

rows, according to different treatments within a fenced herbivore exclosure of 0.25 ha (50 x 50

m) (Fig 1). Fencing comprised a 1.2 m high wire-mesh stabilised by steel droppers and wooden

posts at the corners. Two strands of wire were added to increase the height to circa 1.4 m to

prevent access by domestic stock and potentially deter (but not eliminate) entry by the large,

indigenous browser, the greater kudu (Tragelaphus strepsiceros).
In each plot, the eight treatments were replicated by 2–4 rows, comprising 49 truncheons

(27 truncheons per row in Treatment 3 where truncheons were planted at two-meter intervals)

(Table 1). Treatment 3, comprising truncheons of 22.5 mm diameter, planted at 30 mm depth

with no additional treatment, is the current planting protocol for landscape-scale restoration

projects implemented by the STRP. Other treatments were distinguished according to stem

diameter of truncheons and the application of extraneous treatments, namely the root hor-

mone 4-Indole-3-Butyric Acid (IBA) and water (200 ml) at planting. We did not vary planting

depth systematically. Given the widespread stoniness of spekboom soils, the excavation of

planting holes is time-consuming and expensive. Thus, we applied planting depths commen-

surate with maintaining the truncheon in an upright position in the face of wind, rain and

browsing. These depths are 30 mm for larger truncheons and 10–15 mm for smaller ones

(Table 1).

Treatment rows were assigned randomly. This design created problems for data collection

as treatments in many plots could not be identified, owing to poor database management.

Thus, only 162 plots were retrieved where all treatments could be identified and sampled. Of

these, we focused here on the 40 plots that were in the correct target habitat (spekboom thicket

and associated ecotones that were identified in the field by an expert thicket ecologist) and sub-

ject to a moderate or low browsing intensity. This was done because these were the explanatory

variables identified in rule-based, predictive models as having the strongest positive effects on

both survivorship and carbon sequestration of one of the treatments (Treatment 3 in Table 1)

[63].

Data collection

The response variable for this experiment was survivorship percentage of planted truncheons.

Data were collected by a scientific services company (Conservation Support Services) between
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June 2012 and January 2013, some 33–57 months (3–5 years) after planting, depending on

when a particular plot was planted. Thus, all plots were at least about three years post-planting

at the time the survivorship data were collected, by which time mortality rates would have sta-

bilised. Survivorship of planted truncheons per treatment was quantified by counting all alive,

dead and missing truncheons in all planted rows in each plot.

Experimental design and statistical analysis

We combined different treatments (Table 2) to test hypotheses on the effects on survivorship

of stem diameter, spacing of truncheons, application of rooting hormone and addition of

water at planting. Survivorship was predicted to be positively related to stem diameter, since

greater reserves in the succulent stems of larger truncheons would confer greater resistance to

bouts of prolonged water stress post-planting [72, 73]. We also expected that the denser 1 m

spacing would—owing to intraspecific competitive effects typical of many semi-arid commu-

nities [74, 75]—reduce survivorship, thereby reducing the benefits for carbon sequestration of

their higher density. Finally, we posited that the application of rooting hormone and water at

planting would improve survivorship [63, 76], specifically for smaller truncheons with fewer

reserves. Survivorship data were normally distributed for all analyses. Hence, we used

parametric statistics to test hypotheses (one-way ANOVA and Welch two sample t-tests). We

used base R [77] to implement all statistical analyses, while graphics were created with the tidy-

verse [78] and ggplot2 [79] packages.

Results

We recorded significant variation in survivorship across all treatments for (F = 12.97; P<

0.0001) (S1 Fig). All treatments recorded extreme minimum survivorship values of< 5%,

while extreme maximum values of> 90% survival were observed in three treatments, includ-

ing one using small truncheons. Treatment 1 (30 mm diameter truncheons with no additional

treatment) (Table 1) recorded highest mean survivorship (44%) whereas lowest mean survi-

vorship (24%) was recorded for Treatment 6 (15 mm diameter truncheons with no additional

treatment).

Survivorship was significantly influenced by truncheon size (F = 11.96; P< 0.0001). As we

predicted, larger truncheons (> 22.5 mm diameter) had significantly higher (almost two-fold)

survivorship (ca. 45%) than smaller truncheons (< 15 mm diameter) (ca 25%) (Fig 3). How-

ever, differences between the two larger diameters (Treatments 1 and 2, see Table 1) were not

significant, nor were differences between the two smaller diameters (Treatments 6 and 7). This

implies that a truncheon diameter of 22.5 mm is a likely low-size threshold for maximizing

survivorship of spekboom truncheons in restoration projects. When compared to the STRP

restoration protocol of planting truncheons of 22.5 mm diameter at 2 m intervals (Treatment

3 in Table 1), decreasing the planting interval to 1 m (Treatment 2) had no effect (t = -0.017;

P = 0.99) on survivorship (Fig 4).

Table 2. Combinations of treatments for assessing impacts of a specific treatment on the survivorship of spekboom (Portulacaria afra) truncheons (see Table 1 for

description of treatments).

Target treatment Description Treatment combinations1 Planting depth (mm)

Stem diameter 30, 22.5, 15 & 10 mm diameter 1,2,6,7 1 & 2 = 30 6 & 7 = 15

Spacing 1 or 2 m 22.5 mm diameter 2,3 30

Rooting hormone Yes or no 22.5 mm diameter 2,4 30

Water at planting Yes or no 22.5 & 10 mm diameter 2,5 & 7,8 30 & 10

https://doi.org/10.1371/journal.pone.0250256.t002

PLOS ONE Effects of size and treatment on the survival of spekboom truncheons to restore degraded subtropical thicket

PLOS ONE | https://doi.org/10.1371/journal.pone.0250256 April 22, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0250256.t002
https://doi.org/10.1371/journal.pone.0250256


Applying rooting hormones to truncheons of 22.5 mm diameter had no significant effect

on survivorship (t = 0.99; P = 0.32) (Fig 5) nor did the application of 200 ml of water prior to

planting of truncheons with diameters of 10 mm (t = -1.19; P = 0.24) and 22.5 mm (t = 0.26;

P = 0.079) (Fig 6).

Discussion

Our study shows that over the duration of the experiment, survivorship was maximised by

planting large (22.5 and 30 mm diameter) truncheons, irrespective of the application of addi-

tional treatments. Treatments using larger truncheons recorded a survivorship of ca. 45%,

almost twice as high as those using smaller truncheons. Extreme upper values of> 90% survi-

vorship that we recorded for three treatments (two large-truncheon and one small-truncheon

treatments) represent a high level of success for perennial plant restoration in semi-arid

Fig 3. Boxplots showing the effect of stem diameter of planted spekboom (Portulacaria afra) truncheons on

percentage survivorship for different stem diameters (Trtmnt) (1 = 30 mm, 2 = 22.5 mm, 6 = 15 mm and 7 = 10

mm; see Tables 1 and 2 for details). Within-box horizontal lines depict median values and the diamonds depict mean

values. The paired comparisons above the boxes are P values for t-tests.

https://doi.org/10.1371/journal.pone.0250256.g003
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environments, where poor performance is the norm [80–84]. In their review of 54 restoration

experiments across a range of ecosystems, [83] showed that nursery-grown seedlings used in

restoration projects had a mean survivorship of 62% whereas survivorship of seedlings emerg-

ing from in situ sowing of seeds was only 18%. In a semi-arid setting comparable to the context

of this study, survivorship of the best performing 3-month old seedlings of three shrubs barely

reached 31%, even after added moisture [80]. Indeed, planting cuttings instead of transplant-

ing containerised rooted seedlings grown in a nursery, is generally less successful in terms of

survivorship [85]. When carrying out such planting activities, it is important to note that the

defining characteristic for survivorship of planted propagules is root to shoot ratio. Sufficiently

developed root systems of transplanted seedlings or even bareroot seedlings confer better

drought tolerance [86, 87] than stem cuttings with no roots. In this respect, the survivorship

values we recorded in this study for large truncheons are remarkably high, especially when

Fig 4. Boxplots showing the effect of spacing at planting of spekboom (Portulacaria afra) truncheons of 22.5 mm

diameter on survivorship (Trtmnt 2 = 1-m spacing, Trtmnt 3 = 2-m spacing; see Tables 1 and 2 for details).

Within-box horizontal lines depict median values and the diamonds depict mean values.

https://doi.org/10.1371/journal.pone.0250256.g004
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taking into consideration the reduced implementation costs of planting truncheons directly

into the restoration site [17].

Treatment effects

It is not surprising that, in a stem-succulent plant such as spekboom, larger truncheons per-

formed better in restoration experiments than smaller truncheons. The larger the truncheon,

the greater the amount of internally stored resources to weather droughts and tolerate expo-

sure to inclement weather and browsing— as has been shown in other revegetation contexts

[73, 88–90]. However, restoration using smaller truncheons is likely less costly in terms of

truncheon harvesting, transport and planting, than using larger truncheons. Using smaller

truncheons will also reduce the impacts of harvesting on intact sites used as a source of trun-

cheons. Research is urgently required on the economic and ecological costs and benefits of

Fig 5. Boxplots showing the effect on survivorship of root hormone application at planting (Trtmnt 2 = no

hormone, Trtmnt 4 = hormone application; see Tables 1 and 2 for details) of spekboom (Portulacaria afra)

truncheons of 22.5 mm diameter planted at 1 m intervals. Within-box horizontal lines depict median values and the

diamonds depict mean values.

https://doi.org/10.1371/journal.pone.0250256.g005
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planting different sized truncheons. We do not know the ecophysiological details of this trun-

cheon size effect, another topic requiring further research. The almost two-fold higher survi-

vorship of 22.5 mm versus 15 mm diameter truncheons is intriguing. The similar survivorship

of truncheons of 30 mm and 22.5 mm diameter is also of interest. The practical implication of

this is that the STRP protocol for selecting truncheon size can remain unchanged until rigor-

ous cost-benefit analyses of using different truncheon sizes have been undertaken.

Doubling the planting density of large (22.5 mm diameter) truncheons relative to the STRP

protocol showed no negative impacts on survivorship. This suggests that the likely increased

(below-ground) competition among more densely planted truncheons does not affect survi-

vorship. Planting truncheons less densely will also reduce the impact on intact sites used as a

harvesting source of truncheons for restoration. However, planting at wider intervals may

increase the time taken for spekboom canopy closure and the positive feedbacks this has for

improving soil organic matter, reducing runoff and evaporation, enhancing soil water holding

capacity facilitating biodiversity return [17, 55, 91]. Based on these data, we see no reason to

change the STRP planting guidelines of 2 m spacing for 22.5 mm diameter truncheons.

Although the experiment did not assess the potential impacts of planting density of smaller

truncheons, we suspect that the lower carbon sequestration of planting these at 2 m intervals

would outweigh the economic and ecological benefits of using smaller truncheons.

We found no positive effects of applying either rooting hormone or water-at-planting on

survivorship, irrespective of truncheon diameter. This is surprising given the results from

Fig 6. Boxplots showing the effect of water application at planting of spekboom (Portulacaria afra) truncheons on survivorship. The

top panel is for 22.5 mm diameter truncheons and bottom panel is for 10 mm diameter truncheons, all planted at 1 m intervals. Treatments

(Trtmnt) 5 and 8 had water application whereas treatments 2 and 7 had none (see Tables 1 and 2 for details). Within-box horizontal lines

depict median values and the diamonds depict mean values.

https://doi.org/10.1371/journal.pone.0250256.g006
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other studies that recorded positive effects on restoration efficacy of applying these treatments

[17, 92–94]. We would have expected, at least for the smaller (10 mm diameter) truncheons,

that water-at-planting would have positively influenced survivorship [94]. Since rooting of cut-

tings of 17 succulent species takes between 21 and 53 days, depending on temperature [95],

improved survivorship could be achieved by applying additional moisture three to four weeks

after planting by which time most spekboom truncheons may have rooted. However, van der

Vyver et al. [63] found only a weak, positive effect of the amount of rain falling post-planting

on the survivorship of truncheons planted according to the STRP protocol.

An improved protocol for restoring spekboom thicket

The array of treatments used in this study falls short of what is required to comprehensively

inform an improved protocol for spekboom restoration. More research is required on extrane-

ous treatments for maximizing survivorship, and spacing patterns for maximizing rates of can-

opy closure, with the concomitant increases in ecosystem service delivery, including the

restoration of pre-degradation biodiversity [17]. Nonetheless, overall the STRP protocol of

planting untreated, 22.5 mm diameter truncheons at 2 m intervals produced survivorship rates

equivalent to the best among the other treatments. We see no reason to change this protocol

until rigorous cost-benefit analyses have been undertaken for other treatments. Given the

likely reduced costs, planting smaller truncheons shows great promise; we urgently recom-

mend cost-benefit research using small truncheons for spekboom restoration.

Supporting information

S1 Fig. Box plots showing results for survivorship for all treatments (see Tables 1 and 2 for

details). Within-box horizontal lines depict median values and the diamonds depict mean values.

(TIF)

S1 Data.
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