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In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer.
O-GlcNAcylation is a post-translational modification that results when the amino-sugar
b-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP)
and covalently attached to serine and threonine residues in intracellular proteins by the
glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic
state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling
pathways and protein expression by cross-talk with kinases and proteasomes and changes
gene expression by altering protein interactions, localization, and complex formation. The
HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions.
Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for
cancer and is generally thought to promote tumor growth, disease progression, and immune
escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting
as a tumor promoter or suppressor depending on the stage of disease or the genetic
abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant
HBP and OGA inhibitors are already available and OGT inhibitors are in development to
modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that
implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing
on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in
the cancer microenvironment. Therapeutic strategies for targeting the HBP and
O-GlcNAcylation are also discussed.

Keywords: O-GlcNAc transferase (OGT), O-GlcNAcase (OGase), cancer, metabolism, chronic lymphocytic
leukemia, signal transduction, cytokines, O-linked b-D-N-acetylglucosamine (O-GlcNAc)
INTRODUCTION

Upon entry into a cell, glucose is phosphorylated to fructose-6-phosphate before continuing down
the glycolysis pathway. About 2-5% of fructose-6-phosphate is normally diverted into the
hexosamine biosynthetic pathway (HBP) (Figure 1), a minor metabolic pathway increasingly
recognized to have an important role in cancer biology (1). The rate-limiting enzyme of the
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Spaner O-GlcNAcylation in Blood Cancer
pathway is glutamine fructose-6-phosphate amidotransferase
(GFAT), which has two isoforms (GFAT1 and GFAT2
encoded by GFPT1 and GFPT2, respectively) and generates
glucosamine (GlcN)-6-phosphate from fructose-6-phosphate
and glutamine. Acetyl-CoA is added by GlcN-6-phosphate
acetyl transferase (GNAT) to make N-acetyl glucosamine
(GlcNAc)-6-phosphate, which is rearranged to GlcNAc-1-
phosphate by GlcNAc-phosphoglucomutase (AGM). GlcNAc-
1-phosphate Pryophosphorylase (AGX) adds uridine-
diphosphate (UDP) to ultimately form the nucleotide-sugar
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc).
UDP-GlcNAc is involved in glycosylation of cell-surface lipids
and proteins (2) but also employed by O-linked GlcNAc
transferase (OGT) to O-GlcNAcylate serine and threonine
residues on intracellular proteins. These modifications can be
removed by the deglycosylating enzyme, O-GlcNAcase (OGA)
encoded by OGA, formerly known as MGEA5 (2, 3) (Figure 1).

The biological activity of thousands of different proteins can
be altered by O-GlcNAcylation (4). Serine and threonine targets
of OGT may be phosphorylation sites that are blocked by O-
GlcNAc residues to disturb signaling pathways (1). Changes in
protein structure by O-GlcNAcylation can also promote
phosphorylation and alter cellular localization as well as
protein-protein interactions and formation of supramolecular
complexes including transcriptional regulators that produce
changes in gene and protein expression. Cross-talk between O-
GlcNAcylation and ubiquitination can modulate protein
expression by either preventing or promoting proteasomal
degradation (5).
Frontiers in Immunology | www.frontiersin.org 2
Antibodies like RL-2 and CTD110.6 (6) are used to detect O-
GlcNAc on proteins since antibodies to O-GlcNAcylated forms
of specific proteins are generally unavailable (7). Strategies to
manipulate O-GlcNAcylated proteins include the use of
different concentrations of glucose and glutamine (8) or GlcN
and uridine in tissue culture media (9). Along with genetic
modification, OGA can be blocked by PUGNAC or Thiamet-G
(TMG), and OGT by small molecules like OSMI-4 (10) and
metabolic inhibitors like 2-deoxy-2-N-hexanamide-5-thio-D-
glucopyranoside (5SGlcNHex) (11, 12) (Figure 1). The
glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) is
often used in the literature as a GFAT inhibitor but it has
multiple substrates that may confuse biological interpretation
of the data (13).

Aberrant O-GlcNAcylation occurs in a variety of human
diseases including diabetes and dementia (1, 2). O-
GlcNAcylation is induced by stressful conditions and thought
to act as a cellular survival mechanism (14, 15). Changes in O-
GlcNAcylation from altered metabolism or stress can also
dysregulate cell signaling networks (1, 14). Since cancer is the
result of oncogenic events that cause replicative, proteotoxic,
nutrient, and/or oxidative stresses (16, 17) and is driven by
dysregulated signaling pathways (18), it is not surprising that
high levels of O-GlcNAcylated proteins also characterize and are
involved in the basic hallmarks of cancer (19, 20).

O-GlcNAcylation has been studied mainly in solid tumors
where it is linked to enhanced glycolysis and aggressive clinical
behavior (21). Its effects on transcription factors in cancer have
also been reviewed recently (22–24). The purpose of this review
FIGURE 1 | Schema of the hexosamine biosynthetic pathway (HBP). The amino sugar UDP-GlcNAc is generated in the HBP by combining fructose-6-phosphate,
glutamine, nucleotides, and acetyl-CoA. More detailed description of the sequential enzyme reactions in the pathway is provided in the text. O-GlcNAc transferase
(OGT) uses UDP-GlcNAc to transfer O-GlcNAc moieties onto target proteins that can be recognized by RL2 antibodies and removed by O-GlcNAse (OGA). OGT
and OGA inhibitors mentioned in the text are shown in the yellow boxes.
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is to discuss recent information regarding O-GlcNAcylation in
signaling and survival (25) of cancer cells in the context of
chronic lymphocytic leukemia, the first blood cancer noted to
exhibit aberrant O-GlcNAcylation (2). Studies about O-
GlcNAcylation in other blood cancers are also reviewed.
CHRONIC LYMPHOCYTIC LEUKEMIA

CLL is the most common adult leukemia with an incidence of
4.9/100,000 new cases per year in the US (26). It is a cancer of
CD19+ B cells that co-express the T cell marker CD5. Males are
twice as likely as females to develop CLL and at risk for more
aggressive disease (27, 28).

Like any cancer, CLL passes through stages of initiation,
promotion, and progression (29, 30). It is initiated by genetic
lesions that transform hematopoietic stem cells (31), immature B
cells with immunoglobulin heavy chain variable (IGHV) genes in
the germline configuration, or more mature antigen-experienced
B cells that have undergone somatic hypermutation. Patients
with unmutated IGHV disease are considered to have a more
aggressive form of CLL (32).

Promoters cause transformed cells to proliferate until they
reach sufficient numbers to become clinically evident (33).
Hypercholesterolemia may promote tumor growth by altering
Frontiers in Immunology | www.frontiersin.org 3
membrane lipid content and affecting signaling modules in CLL
cells (34–36). Signals that drive CLL cells to proliferate are
delivered in proliferation centers (PCs) found in lymphoid
organs (37) (Figure 2). Proliferative signals are transmitted
through the B cell receptor (BCR), Toll-like receptors (TLRs),
tumor necrosis factor (TNF) receptors like TNFR1 and TNFR2
(38), non-canonical TNF receptors like CD40, cytokines like type
1 and type 2 interferon (IFN), IL2, IL4, IL15, and IL21 (39–41),
and NOTCH family members, particularly NOTCH 1 and 2 (42).
Consequently, important signaling pathways in CLL include
the NFkB, MEK/ERK, PI3K/AKT/mTOR, janus-kinase (JAK),
and NOTCH pathways that can all be affected by O-
GlcNAcylation (Figure 2).

Resting CLL cells traffic from blood to PCs in response to
chemokines and their receptors such as CXCR4 (43).
CXCR4hiCD5lo cells in blood are about to re-enter PCs while
CXCR4loCD5hi CLL cells are recent emigrants that retain some of
the transcriptional program in that microenvironment (44). T
cells, macrophages, stroma, as well as other leukemia cells
produce the cytokines, TLR-ligands, and antigens in PCs
that stimulate CLL cells (37). Macrophages in the CLL
microenvironment are called “nurse” cells with properties of
anti-inflammatory M2 macrophages (45, 46). They support
leukemic growth and survival by making factors like the TNF-
family member BAFF (45) and through direct protein-protein
FIGURE 2 | Schema of O-GlcNAcylated oncogenic processes in the CLL microenvironment. Major signaling and system modules that drive growth and progression
of CLL cells are organized in the boxes along with important auxiliary pathways like cytokine- and AKT-signaling. Genes frequently mutated in CLL are colored in red.
Proteins and cells discussed in the text that can be affected by O-GlcNAcylation are indicated by the yellow circled G’s. The figure emphasizes that O-GlcNAcylation
increases the tumor-suppressing activity of wild-type p53 but enhances many of the signaling processes that support tumor growth in the presence of mutant p53
and an impaired p53 axis.
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interactions (47). Nurse cells also impair effective anti-tumor
immunity and prevent clearance of CLL cells by secreting
immunosuppressive factors such as IL10 (46). Interactions of
CLL cells and myeloid cells in the microenvironment cause
expansion of regulatory T cells (Tregs) (48, 49) that contribute
to immunosuppression and facilitate leukemic growth (Figure 2).
HETEROGENEITY OF CLL

Despite a common CD5+CD19+ phenotype, CLL is marked by a
heterogeneous clinical course ranging from a benign disease to
one that can be fatal within a few years of diagnosis (32).
Cytogenetic abnormalities in CLL cells distinguish 5 major
sub-types. Trisomy 12 is found in 10-20% of patients while 40-
50%, 10-12%, and 10-15% have deletions at 13q14, 11q22-q23,
and 17p13, respectively, and 20-30% of patients display no
apparent abnormalities with standard probes (32). Prior to the
advent of novel therapies such as kinase and Bcl-2 inhibitors (49,
50), disease severity was associated with these abnormalities with
del(17p) > del(11q) > trisomy 12 > normal cytogenetic analysis >
isolated del(13q). Other factors associated with aggressive disease
include an unmutated IGHV gene suggesting origin in an earlier
stage of B cell development, advanced clinical stage, short
lymphocyte doubling time in vivo, and high ZAP70 and b2-
microglobulin levels (32). Genomic studies have identified over
40 driver mutations in genes such as NOTCH1, SF3B1, ATM,
p53, BIRC3, POT1, BRAF, MGA and MYD88 that emphasize the
diversity of CLL and affect prognosis (Figure 2) (16).

Dysregulated signaling is central to the biology ofCLL. Enhanced
responses of leukemia cells to BCR- or TLR-agonists in vitro are
associatedwithaggressive clinical behaviorand thought to reflect the
events in PCs in vivo (51, 52). Cytokine signaling is also corrupted in
clinically aggressive CLL cells that harbor mutations of ATM or
TP53. Type 1 IFN inhibits growth of indolentCLL cells and activates
the canonical signaling pathway, characterized by prolonged
phosphorylation of STAT1 and brief phosphorylation of
STAT3. In aggressive CLL cells, IFN causes prolonged STAT3
phosphorylation associated with immunosuppressive factor
production and tumor growth in vitro (53).

Many driver mutations associated with more aggressive
disease do not activate CLL cells directly but serve to amplify
responses to proliferative signals in the CLL microenvironment
(16) (Figure 2).NOTCHmutations characteristically prolong the
life of the intracellular domain (ICD) that mediates transcription,
producing enhanced NOTCH-signaling responses in more
aggressive cells (54). Inactivating mutations of BIRC3 produce
exaggerated non-canonical NFkB responses (55). Activating
mutations in members of the RAS-BRAF-MAPK-ERK pathway
lead to enhanced signaling through the BCR and other growth
factor receptors (56). SF3B1 mutations promote mis-splicing of
MAP3K7 (TAK1), resulting in hyperactivation of NFkB by
dysregulating TNFa and TLR-signaling (57). Activating
MYD88 mutations enhance signaling through TLRs but are
often associated with more indolent disease (58) (Figure 2).

Aberrant activity of AKT and c-MYC are associated with
more aggressive forms of CLL, including transformation into a
Frontiers in Immunology | www.frontiersin.org 4
drug-resistant large cel l lymphoma called Richter ’s
transformation (RT) (59). Leukemia cells of patients with high-
risk disease and RT express high amounts of activated
phosphorylated AKT and a phenotype resembling RT resulted
from constitutive activation of AKT in the Eµ-TCL1 CLL mouse
model (59). The MYC repressor MGA is recurrently mutated in
aggressive forms of CLL (60) and c-MYC activation is a feature of
RT (61).

The state of the p53 axis helps clarify the classification of the
different molecular sub-types into aggressive or indolent forms
(62). P53 is the major tumor-suppressor in most cancers,
controlling a myriad of pathways that repair DNA, inhibit
glycolysis and proliferation, and promote cell death (63). CLL
cells with deletions of chromosome 17 encoding TP53 are
associated with an aggressive disease that is resistant to cytotoxic
chemotherapy (32). Other subtypes exhibit a similar disease
phenotype where the underlying molecular lesions impair the
p53 axis independent of mutational damage to TP53. For
example, MDM2 negatively regulates p53 by marking it for rapid
clearance by the proteasome (62). MDM2 is located on
chromosome 12 so that CLL cells with trisomy 12 have higher
MDM2 levels causing decreased p53 levels and activity. ATM
phosphorylates p53 through CHK2, preventing it from binding
MDM2 and being degraded. CLL cells with deficient ATM activity
would then have diminished levels and activity of p53 (63). POT1 is
a component of the Shelterin complex that protects telomeres by
activating p53. Inactivating POT1 mutations diminish the p53 axis
and allow chromosomal instability of leukemia cells (64). In
contrast, the p53 axis is generally intact in CLL cells with del
(13q) and a more indolent course that is responsive to cytotoxic
chemotherapy (53, 65). These observations suggest the disparate
clinical behavior of CLL subtypes may reflect the underlying status
of the p53 pathway (Figure 2).
O-GlcNAcylation IN CLL

Aberrant O-GlcNAcylation may play a role in CLL at a number
of stages in disease progression. The sex-based incidence and
severity of CLL could in part relate to the location of the OGT
gene on the X-chromosome (28, 66). Dietary habits that produce
hypercholesterolemia may be linked to the development of CLL
in part by increasing O-GlcNAcylation in contributory cell
types (67).

Like other cancers, CLL cells are characterized by high levels of
O-GlcNAcylated proteins (2). Interestingly, miR-15a on
chromosome 13 targets OGT (68) and is deleted in a majority of
CLL cells (69). CLL cells express only GFAT1 in contrast to
circulating peripheral blood mononuclear cells (PBMCs) that
express both isoforms. Total levels of O-GlcNAcylated proteins
are significantly higher in CLL cells than PBMCs but the O-
GlcNAcome is quite variable, as indicated by the number and
density of bands on an immunoblot developed with RL2 antibodies
(2). All CLL cells have high levels of O-GlcNAcylated proteins
compared to normal lymphocytes but leukemia cells with a lower
RL2 index, based arbitrarily on the intensity of all RL2-staining
bands on a gel normalized to b-actin, were associated with more
November 2021 | Volume 12 | Article 772304
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aggressive disease indicated by greater hematopoietic impairment,
high doubling times, and genetic lesions such as del(11q)and del
(17p) (2). This observation is somewhat paradoxical as higher O-
GlcNAc levels are often associated with more aggressive clinical
behavior in solid tumors (70). However, similar to these findings in
CLL, OGT and O-GlcNAcylated protein levels were significantly
lower in ovarian cancers resistant to chemotherapy compared to
chemosensitive cancers (71).

Reasons for the inverse correlation between total O-
GlcNAcylated protein levels and clinical course in CLL are
unclear. While high OGT mRNA expression is associated with
an adverse outcome (Figure 3A, left panel), the ratio of OGT to
OGA proteins is lower in CLL cells with unmutated IGHV genes
(U) compared to cells with mutated genes (M) (Figure 3B).
Relative changes in glycosylation and deglycosylation could
produce lower O-GlcNAcylated protein levels in more
aggressive CLL cells and higher levels in more indolent cells
(Figure 3B). Differential O-GlcNAcylated protein expression
may also reflect proteomic differences (74). Aggressive cells
have different numbers and species of proteins (74) that are
targets for O-GlcNAcylation compared to indolent cells (75–77).
For example, higher levels of ZAP70, a signaling molecule that is
O-GlcNAcylated in activated human T cells (4), are found in
aggressive CLL cells (32, 51). Similarly, O-GlcNAcylated forms
of OGT, p53, c-MYC, and AKT along with UDP-GlcNAc, OGT,
Frontiers in Immunology | www.frontiersin.org 5
and OGA exhibited inter-patient variability but sample sizes
were too small to be able to correlate with clinical behavior (2).

The O-GlcNAcome in PCs has not been studied but is likely to
differ from the blood compartment due to activating signals in that
microenvironment. O-GlcNAcylated proteins, OGT, and OGA
were found only in the IgD- fraction of normal tonsils, suggesting
they are associated with a state of activation of human B cells in
microenvironments that resemble PCs (2). Cellular activity
including evidence of glycolysis also increased significantly in
circulating CLL cells from patients administered the JAK
inhibitor ruxolitinib (78, 79). This finding suggests cytokine-
signaling through JAKs may negatively regulate O-GlcNAcylated
protein levels but the nature of the cytokines and mechanism are
currently unclear.
EFFECTS OF O-GlcNAcylation ON
ONCOGENIC SIGNALING PATHWAYS
IN CLL

P53
The state of the p53 axis helps classify CLL cells (62) and may
explain how O-GlcNAcylation can be associated with both
aggressive and indolent disease. O-GlcNAcylation at Ser 149
A

B

FIGURE 3 | Correlation of OGT mRNA and protein levels in primary blood cancer cells with clinical course. (A) Survival of patients with high (n=66) or low (n=40)
expression of OGT in CLL cells (left panel) and survival of diffuse large cell lymphoma patients with rituximab, cyclophosphamide, vincristine, adriamycin, and
prednisone (R-CHOP) with high (n=215) or low (n=192) OGT expression in lymph node biopsies (right panel) were respectively compared by in silico analysis of the
Herold (72) and Lenz (73) databases using the DRUGSURV bioinformatics analysis tool (http://www.bioprofiling.de/GEO/DRUGSURV). P-values for differences
between the curves are 0.001 (left) and 0.0002 (right). (B) Expression of OGT (left) and OGA (right) proteins in 44 patients with aggressive CLL cells more likely to
have an impaired p53 axis as indicated by unmutated IGHV genes (U) and 47 patients with more indolent CLL cells and mutated IGHV genes (M) were obtained with
the R Shiny app (http://mozi.embl.de/public/proteomExplorer) provided for exploration of the CLL proteome (74). P-values and adjusted P-values are shown in the
graphs and suggest more aggressive CLL cells have a lower OGT/OGA ratio, possibly consistent with relatively lower global O-GlcNAcylated protein levels.
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stabilizes wild-type p53 by blocking ubiquitin-dependent
proteolysis, facilitating nuclear localization, and transcription
of p53 target genes (80, 81). Increased O-GlcNAcylation may
then activate an intact p53 pathway to prevent cancer
progression, compatible with an indolent clinical course.

In contrast, mutant p53 proteins appear to be unaffected by
O-GlcNAcylation (81). Loss of p53 function can lead to
upregulated glycolysis and enhanced O-GlcNAcylation by mass
action. Impairment of upstream pathways causing disruption of
the p53 axis may also result in increased glucose uptake,
glycolysis, and HBP activity. For example, mutational
inactivation of ATM contributes to cancer progression through
a metabolic mechanism rather than its conventional role in DNA
repair (82, 83). In the absence of p53, O-GlcNAcylation of other
proteins as a result of increased HBP and OGT activity may
increase their ability to promote tumor growth, potentially
explaining how O-GlcNAcylation can also be associated with
more aggressive clinical behavior of CLL cells.

AKT
Similar to p53, the PI3K/AKT pathway can also be affected in
diametrically opposed ways by O-GlcNAcylation (21, 84). AKT
is activated partially by PDK1-mediated phosphorylation at
Thr308 and fully by mTORcomplex2 (mTORC2)-mediated
phosphorylation at Ser473 (2). In a number of cancers,
including of B cell origin (85), increased O-GlcNAcylation and
OGT expression promote PI3K/AKT pathway activity
and inhibition of OGT decreases AKT phosphorylation
and downstream activity. Activators of the AKT pathway like
DDX5 or TCL1 are stabilized by O-GlcNAcylation (86) or
induced by O-GlcNAcylated transcription factors (87, 88).

In contrast, use of GlcN to increase O-GlcNAcylated protein
levels decreased AKT activity in circulating CLL cells, evidenced
by diminished size and lowered phosphorylation at Thr308 (2).
Similar results are seen in other cell-types such as adipocytes
(89). Why O-GlcNAcylation increases AKT-activity in some
conditions and inhibits it in others is not clear but may reflect
glucose uptake by the cells. Glucose transporters are decreased
when O-GlcNAcylation has inhibitory effects on AKT but
upregulated in situations where O-GlcNAcylation promotes
AKT activity (84). The proliferative state of the cell may
account for different behaviors of glucose transporters.
Proliferating cells such as cancer cell models or CLL cells in
PC microenvironments are highly glycolytic whereas adipocytes
and circulating CLL cells are non-proliferative. The latter use
mainly fatty oxidation as a metabolic strategy that is turned off
when they are induced to proliferate (90).

NFkB
The theme of differential control of tumorigenesis by O-
GlcNAcylation depending on the state of the p53 axis and
metabolic state of the leukemia cell appears to also apply to
NFkB (37). Several key molecules in the BCR-, TLR- and NFkB
signaling pathways that drive the growth of CLL cells are targets
for O-GlcNAcylation including LYN, IKKb, p65, c-REL, and TAB1
(91–95). In the absence of p53, increased O-GlcNAcylation
Frontiers in Immunology | www.frontiersin.org 6
promotes phosphorylation of p65 on Ser536, which is critical for
nuclear translocation of NFkB and expression of important genes
in CLL growth and migration such as CXCR4 (96, 97). O-
GlcNAcylation of IKKb on Ser733 from enhanced glucose
metabolism prevents inactivating phosphorylation at that site and
sustains TNFa-induced NFkB activation in transformed human
fibroblasts (98).

In non-proliferating macrophages and hepatocytes, O-
GlcNAcylation of upstream signaling inputs prevents NFkB
activation (99, 100). Polymerization of RIPK3 is required for
TLR4 to activate NFkB and make inflammatory molecules like
TNFa or assemble necrosomes to kill via necroptosis. O-
GlcNAcylation prevents RIPK3 from polymerizing and inhibits
TLR4-signaling in murine macrophages (99, 100). CLL cells do
not form necrosome complexes but it is unclear if O-
GlcNAcylation of RIPK3 is responsible (101). Use of GlcN to
increase O-GlcNAcylated protein levels in non-proliferative CLL
cells was found to impair TLR7-signaling responses that could be
enhanced by an OGT inhibitor but the relevant O-GlcNAcylated
proteins were not identified (2).

RAS, WNT, NOTCH, and MYC
The RAS/RAF/MEK/ERK, WNT/b-catenin/c-MYC, and
NOTCH/c-MYC pathways are also important in CLL (16, 32,
56) and may be affected by O-GlcNAcylation. Activated RAS
upregulates rate limiting enzymes of the HBP pathway,
particularly GFAT2 (102, 103), and O-GlcNAcylated protein
levels in cancer cells (104, 105). Mitogen-activated protein kinase
kinase 2 (MEK2) can be O-GlcNAcylated at Thr13, which
enhances phosphorylation at Thr394 and subsequent down-
stream activation of ERK1/2 (106).

O-GlcNAcylation stabilizes b-catenin and may enhance cancer
cell migration by regulating b-catenin levels (107, 108). Similarly,
OGT modulates NOTCH-signaling by O-GlcNAcylating and
protecting ICD from proteasomal degradation, leading to
increased nuclear translocation and ICD-mediated responses
(109, 110) (Figure 2). The WNT/b-catenin and NOTCH
pathways increase transcription of c-myc, which mediates
aggressive clinical behavior (61). O-GlcNAcylation at Thr58 is
thought to stabilize MYC because phosphorylation at this site
marks it for degradation. Inhibition of proteasomal destruction by
O-GlcNAcylation would lead to stronger MYC activity and tumor
progression (111, 112). Variable levels of O-GlcNAcylated c-MYC
were seen in primary CLL cells but more samples must be studied
to draw correlations with clinical course (2).

STAT Proteins
Members of the mammalian STAT family that includes STAT1-
4, STAT5a/b, and STAT6 (113) are important in CLL biology.
IL10 activates STAT3 and simultaneously helps control the
growth of CLL cells while contributing to the characteristic
profound state of immunosuppression (114, 115). Common
gamma chain binding cytokines such as IL2, IL4, and IL15
support the growth of CLL cells and are associated with
STAT5A/B and STAT6 activation (116). Type 1 and type 2
IFNs activate STAT1-3 and may help control the growth of CLL
November 2021 | Volume 12 | Article 772304
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cells, particularly in the presence of the bruton’s tyrosine kinase-
inhibitor ibrutinib (53, 117).

Treatment of mouse mammary epithelial cells with cytokines
leads to O-GlcNAcylation of STAT1, STAT3, STAT5, and
STAT6 (113). The role of O-GlcNAcylation of STAT6 has not
yet been explored but O-GlcNAcylation of STAT5A on Thr92
promotes activating tyrosine phosphorylation in cancer cells
(118). O-GlcNAcylation stabilizes phosphorylated STAT1 to
increase the duration and strength of type 2 IFN-signaling
responses in mesenchymal stem cells (119). O-GlcNAcylation
of STAT3 on Thr717/719 inhibits activating STAT3 tyrosine
phosphorylation, preventing IL10 production by macrophages
(120) and shifting neural stem cell differentiation from neurons
to astrocytes (121). Inhibition of O-GlcNAcylation enhanced
tyrosine-phosphorylation and STAT3 activity in these systems
(120, 121).

These results suggest O-GlcNAcylation promotes STAT1 and
inhibits STAT3 activity but may be context and cell-type
dependent. In CLL cells, type 1 IFN strongly phosphorylates
STAT1 and also phosphorylates STAT3 for various times
dependent on the leukemia subtype (53). However, lowered O-
GlcNAcylated protein levels were associated with inhibition of
STAT3 phosphorylation that was reversed by restoring O-
GlcNAcylation with glucosamine (9).
EFFECTS OF O-GlcNAcylation ON CLL
METABOLISM

Metabolic reprogramming is another hallmark of cancer cells
(19). In contrast to resting cells that generally derive their energy
from oxidative phosphorylation in mitochondria, cancer cells
often exhibit the “Warburg effect” involving aerobic glycolysis
that uses large amounts of glucose and glutamine for fuel and to
make nucleosides, amino acids, and fatty acids for proliferation
(122). Circulating CLL cells express high levels of pyruvate
dehydrogenase kinase 4 (PDK4) that prevent glucose from
being metabolized in the mitochondrial tricarboxylic acid cycle
(37). They consequently depend on fatty acid oxidation (90) that
may be linked to their immunosuppressive phenotype (123).
PDK4 and fatty acid oxidation are turned off by the proliferative
signals encountered in PCs (37, 90) but the increase in glycolysis
is generally not high enough to be seen with 2-deoxy-2-[18F]
fluoroglucose/positron emission tomography (FDG/PET) (124).
In contrast, development of Richter’s transformation is
associated with high glucose utilization detectable by FDG-
PET (124).

Metabolism of cancer cells is reprogrammed by oncogenic
signaling pathways and reflected by altered flux through the
HBP and changes in O-GlcNAcylation (1). Aberrant O-
GlcNAcylation can also directly influence the metabolic
program of a cancer cell. Sustained high O-GlcNAcylated
protein levels generally promote glycolysis and the Warburg
effect (125) in a number of ways including O-GlcNAcylation of
glycolytic enzymes. For example, the hexokinase HK1 forms
glucose-6-phosphate from glucose, the initial step in most
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glucose-dependent metabolic pathways, and its activity is
increased by O-GlcNAcylation (126).

Pyruvate kinase (PK) tetramers catalyze formation of ATP
and pyruvate from ADP and phosphoenolpyruvate in the final
step of glycolysis. O-GlcNAcylation of the PK isozyme PKM2
promotes less active dimerization and causes upstream
glycolytic intermediates to accumulate and be routed into
biosynthetic pathways such as the pentose phosphate
shunt (PPP) to make ribose sugars for nucleoside formation
(127). PK activity also requires binding by fructose-1,6-
bisphosphate produced by phosphofructokinase 1 (PFK1). O-
GlcNAcylation on Ser529 inhibits PFK1 and also directs
glycolytic intermediates into the PPP (126). This O-GlcNAc
modification of PFK1 may be unique to cancer cells as it was
not seen in dividing normal T cells (126).

In addition to regulating glycolytic enzymes directly, O-
GlcNAcylation modulates transcription factors and kinases to
promote distinct metabolic programs. As described above, O-
GlcNAcylation sustains the activity of c-MYC, a major inducer of
glycolysis and glutaminolysis genes (128) as well as NFkB, which
increases the rate of aerobic glycolysis in part by increasing
transcription of glucose transporters, particularly in the absence
of p53 (129).

Hypoxia-inducible factor (HIF1) regulates the expression
of genes that contribute to aerobic glycolysis such as
PFK1 and HK, glucose transporters such as GLUT1, and
lactate dehydrogenase (LDH) (125) while carbohydrate
responsive element binding protein (ChREBP) regulates PK
isoforms and lipogenic enzymes such as acetyl-CoA
carboxylase (ACC) (130, 131). HIF1 is composed of a and b
subunits. Hydroxylation by prolyl hydroxylase domain protein
2 (PHD2) using O2 and a-ketoglutarate (a-KG) as substrates
marks the a subunit for proteasomal degradation. Akin to
hypoxia, O-GlcNAcylation prevents HIF1a destruction and
upregulates HIF1 expression by inhibiting production of a-
KG (125, 132). O-GlcNAcylation directly protects ChREBP
from the proteasome to increase its level and transcriptional
activity (130).

AKT/mTOR and AMPK are two other major regulators of the
metabolic program of a cancer cell. The AKT/mTOR pathway
promotes glucose uptake and utilization along with lipid and
protein synthesis that are associated with the Warburg effect
(122). In contrast, AMPK is activated by a low energy charge
reflecting a high AMP/ATP ratio and phosphorylates substrates
such as ACC1 and ACC2 to decrease lipogenesis along with
TSC1/2 and Raptor to suppress mTORC1 activity and protein
synthesis (133, 134).

O-GlcNAcylation of Akt has context-dependent effects and
can sometimes promote or inhibit Akt activity (2, 85) but OGT
and O-GlcNAcylation appear to clearly negatively regulate
AMPK in solid tumor cells (125). O-GlcNAcylation of AMPK
subunits inhibits kinase activity (135) and increases mTOR
activity and protein synthesis (125). Inhibition of OGT by
shRNA or small molecules to lower O-GlcNAcylated protein
levels activated AMPK and decreased HIF1 activity along with
growth and proliferation of breast cancer cells (125).
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It is unclear how aberrant O-GlcNAcylation affects the
metabolic program of CLL cells as they traffic from the
circulation to lymph nodes and ultimately evolve a Richter’s
transformation. Total O-GlcNAcylated protein levels appear to
increase in lymph nodes (2) and likely increase even more as a
result of increased Akt activity in a Richter’s transformation (59).
Perhaps the relative decrease in O-GlcNAcylated protein levels
in the circulation activates AMPK and increases fatty acid
oxidation similar to the result of lowering O-GlcNAcylation in
breast cancer cells (125).
O-GlcNAcylation AND T CELLS

Increased T cell numbers are central to the development and
evolution of CLL. CD4+ T cell subsets exhibit dysregulation and
the ratio of CD4+ to CD8+ T cells becomes increasingly skewed
with more aggressive disease (136). Th1 and Th2 cells
characterized by IFN-g and IL-4 production respectively are
increased in the blood of CLL patients compared to healthy
controls and Th1 cells are even higher in progressive disease
(137). Numbers of Th17 cells that make IL-17 are lower than Th1
and Th2 cells but still higher than in normal controls (138) while
Tregs that make IL-10 and TGF-b are increased in the blood and
lymph nodes of CLL patients (139) and correlate directly with
more aggressive disease (140). A decrease in Th17 cells is
associated with Treg expansion and disease progression while
high Th17 cell numbers correlate with improved survival (141).
CD8+ cells are also increased in the blood of CLL patients and
correlate inversely with a more benign course (142).

CD4+ T cells are thought to promote the growth of CLL cells.
They show evidence of activation in vivo and IFN-g, IL-4, and IL-
17 all increase survival of CLL cells in vitro (117, 143, 144). CD4+

but not CD8+ T cells are required to engraft human CLL cells in
immunodeficient mice (145) and cytotoxic drugs like fludarabine
may work in part by depleting CD4+ T cells (146).

In contrast, CD8+ T cells are thought to protect against tumor
progression. They also show evidence of in vivo activation and
depletion of CD8+ T cells hastened development of CLL in a
transgenic mouse model (147). However, CD8+ T cells become
exhausted, evidenced by decreased cytokine production and
cytotoxic ability along with increased expression of checkpoint
molecules such as PD1, and ultimately fail to control CLL
(147, 148).

The metabolic program employed by a T cell is intimately
connected with its phenotype and function (149) and involves
many of the factors discussed above. The AKT/mTOR
pathway coordinates glycolysis, lipid synthesis, and oxidative
phosphorylation in part through HIF1a and c-MYC to promote
Th1 and Th2 cell differentiation (150). Similarly, AKT/mTOR
positively regulates the functional differentiation of Th17 cells
that exhibit aerobic glycolysis and glutamine oxidation (151). In
contrast, Tregs and memory CD8+ T cells rely more on AMPK
and fatty acid oxidation (123, 152). T cell exhaustion is
accompanied by metabolic dysregulation consisting of
inhibited AKT/mTOR signaling, suppressed glycolysis, limited
Frontiers in Immunology | www.frontiersin.org 8
spare respiratory capacity, and dysregulated mitochondrial
function causing oxidative stress (153).

Given its relationship with cellular metabolism, aberrant O-
GlcNAcylation may also be associated with T cell defects in CLL.
Activation of T cells is associated with O-GlcNAcylation of over
1000 proteins (4, 154) including c-MYC and NFAT (2, 155).
When O-GlcNAcylation is blocked, T cells fail to increase c-
MYC, produce cytokines, proliferate, or undergo proper thymic
development in mice (156). Functional cytotoxic CD8+ effector T
cells require strong HBP activity and contain higher amounts of
UDP-GlcNAc than activated CD4+ T cells that are both higher
than naïve T cells in mice (156).

O-GlcNAcylation is also involved in the differentiation of T
cell subsets. Th2 differentiation requires activation of the mTOR
complex mTORC2 (157), which leads to upregulation of GFAT1
in part by regulating the expression of XBP1s (15, 158). STAT5
activity also promotes Th2 differentiation (159) and is enhanced
by O-GlcNAcylation (118).

Upregulation of O-GlcNAcylated protein levels by OGA
inhibition in CD4+ T cells promoted Th17 function evidenced
by increased IL-17 production. Fatty acid and cholesterol ligands
for retinoic acid receptor-related orphan receptor gamma
(RORgt), the lineage-defining transcription factor of Th17 cells,
were increased by enhanced activity of O-GlcNAcylated ACC1,
the rate-limiting enzyme in lipogenesis (160). Upregulation of
NFkB activity by O-GlcNAcylation (94, 95) may also increase
transcription of RORgt (161). Down-regulation of miR-15b,
which negatively regulates OGT gene expression, is associated
with increased Th17 cells in multiple sclerosis (162).

O-GlcNAcylation is also required for lineage stability and
function of Tregs. Genetic deletion of OGT in Treg cells
destabilized the lineage-defining transcription factor FoxP3,
inhibited IL-2-mediated STAT5 activation that regulates
functional capabilities of Tregs, and produced a severe
inflammatory phenotype in mice (163).

How O-GlcNAcylation selectively promotes the differentiation
of myriad Th subsets is not clear. The magnitude of total O-
GlcNAcylation may confer some specificity similar to the switch
from glycolysis to fatty acid oxidation that occurs when O-
GlcNAcylated protein levels are lowered in breast cancer cells
(125) or when CLL cells exit a lymph node (90). For example,
Th17 cells and Tregs are linked in that they both require TGF-b
to develop from precursors (164). Addition of the pro-
inflammatory cytokine IL-6 diverts T cell differentiation
from the Treg pathway toward the Th17 pathway (165).
Perhaps increased glucose uptake imposed by IL-6 (166) leads
to higher O-GlcNAcylated protein levels and a switch to the
Th17 phenotype.

Limited information is available about the functional role of
O-GlcNAcylation in CD8+ T cells and T cell exhaustion. Down-
regulation of glycolysis in exhausted T cells (153) might lead to
decreased HBP flux and lower O-GlcNAcylated protein levels.
Highly glycolytic tumor cells can “steal” glucose from T cells and
potentially lower O-GlcNAcylated protein expression together
with mTOR activity, glycolysis, and cytokine production (167)
but this mechanism seems unlikely to occur in CLL in the
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absence of Richter’s transformation (124). CLL cells make factors
including exosomes (168) that cause CD8+ T cells to lose glucose
transporter expression and mitochondrial mass and undergo
oxidative stress consistent with features of exhaustion (148).
Evaluation of the public database GSE8835 (169) suggests OGT,
OGA and GFPT1 expression trend downward in healthy CD4+ T
cells and are significantly down-regulated in CD8+ T cells when
they are cultured with CLL cells (170).

Tumor Associated Macrophages (TAMs)
In addition to CLL cells and T cells (Figure 2), O-GlcNAcylation
affects other cell-types in the tumor microenvironment
such as TAMs that are an important source of oncogenic and
immunosuppressive factors. Inflammatory cytokine production
by TLR-activated macrophages is limited by O-GlcNAcylation
(99, 171). TAMs have properties of M2 macrophages (45, 46)
and OGT mediates M2 polarization in human macrophages
(172) . Increased UDP-GlcNAc has been associated
with M2 polarization of murine macrophages (173) but
another study found OGT and O-GlcNAcylation did not
affect the M2 pathway although M1 polarization was
suppressed by inhibiting S6K1 through O-GlcNAcylation of
Ser489 (174).
O-GlcNAcylation IN OTHER
HEMATOLOGICAL MALIGNANCIES

Aberrant O-GlcNAcylation appears to be a feature of other
hematological malignancies, including myelodysplastic
syndromes (MDS), acute myeloid leukemia (AML), acute
lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL),
diffuse large cell lymphoma (DLCL), and multiple myeloma
(MM). A lack of data, some of which appears contradictory,
currently limits the understanding of the role of O-
GlcNAcylation in blood cancers. Interestingly, cell-lines from
hematological malignancies express higher levels of OGT
compared to all other solid tumor cell lines (22). Moreover,
high OGT expression in primary cells is associated with an
adverse clinical outcome in DLCL and MM as well as CLL
(Figure 3A), although a complete picture of the role of O-
GlcNAcylation requires information on OGT and OGA protein
expression along with a catalogue of the cancer specific O-
GlcNAcome. While this association suggests OGT is a tumor
promoter and novel therapeutic target, there is also evidence
in AML and MDS that O-GlcNAcylation helps slow
disease progression.

AML
Primary AML cells have increased OGT and GFAT1 expression
compared to normal PBMCs (175). Inhibition of HBP activity
with the purported GFAT inhibitor DON (13) resulted in
growth arrest, differentiation, and death of OCI-AML3 and
HL60 AML cell lines in vitro and decreased growth of HL-60
cells in immunodeficient mice without major toxicity (175).
Resistance to chemotherapy was also associated with
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increased O-GlcNAcylated protein levels and the OGT-
inhibitor OSMI-1 enhanced killing by doxorubicin in HL-60
cells and primary AML cells from patients with recurrent or
resistant disease (176). Similarly, resveratrol inhibited growth of
erythroleukemia cells in immunocompetent mice associated
with down-regulation of O-GlcNAcylated proteins (9). Taken
together, these results suggest OGT and O-GlcNAcylation may
promote the growth of AML cells and constitute therapeutic
targets in this cancer.

In contrast, OGT was found to stabilize ASXL1 by O-
GlcNAcylation on Ser199 (177). ASXL1 is a tumor suppressor
in hematologic malignancies that activates gene expression by
methylating histones and forming the H3K4me3 mark associated
with active transcription. Impaired activity of mutated ASXL1 is
associated with failure of differentiation and development of
MDS and AML. Knockdown of OGT prevented differentiation of
HL-60 cells in response to ATRA while the OGA inhibitor
PUGNAC increased O-GlcNAcylation and promoted
differentiation as indicated by expression of the myeloid
marker CD11b. Pretreatment with PUGNAC also prevented
engraftment of leukemic cell-lines expressing a mutant form of
ASXL1 in immunodeficient mice but not leukemic cells
expressing another oncogene (177). Consistent with these
findings, differentiation of leukemic blasts by cannabinoids
produced clinical responses associated with increased
expression of OGT in vitro and in vivo (178). Cannabinoid-
mediated differentiation of Jurkat and MOLMM14 cell-lines
used to model acute leukemia in vitro was blocked by gene-
silencing of OGT and enhanced by increasing O-GlcNAcylation
with the OGA inhibitor TMG (178).

The findings that inhibition of O-GlcNAcylation can both
induce (175) and prevent (177, 178) differentiation of AML cells
suggest OGT- and O-GlcNAc moieties may promote MDS and
AML in some conditions and suppress it in others. Reasons for
these discordant results are unclear. It may be that O-
GlcNAcylation changes microenvironmental conditions
induced by different chemotherapeutic drugs or has different
outcomes depending on the stage of disease. For example, OGT
and O-GlcNAcylation may have tumor suppressor activity early
in the course of MDS and AML when ASXL1 is intact (179) but
acquire tumor promoting activity when ASXL1 is inactivated by
mutation. O-GlcNAcylation may also have different effects on
specific AML subtypes and a detailed characterization of the
genetic makeup of the AML cell or perhaps consideration of the
state of the p53 axis as in CLL (62) may be required to know if
inhibition or enhancement of O-GlcNAcylation is the
appropriate treatment strategy.

ALL
Less information is available about ALL. OGT and O-
GlcNAcylated proteins are increased while OGA is decreased
in CD19+ cells from B-ALL patients compared to healthy donors
(85). O-GlcNAcylated protein levels correlated directly with
LDH in blood, perhaps reflecting enhanced glycolysis in more
aggressive leukemia cells due to high levels of PI3K activity,
phospho-AKT, and c-MYC (85). Inhibition of OGT lowered
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glycolysis and the PI3K/AKT/MYC axis in NALM-6 cells used to
model ALL (85).

Lymphoma
OGT transcripts and protein levels are higher in DLCL cell lines
and OGT mRNA is higher in primary DLCL cells than normal B
cells (127, 180). Nuclear O-GlcNAcylated proteins are also
higher in DLCL cell lines and primary cells (180). High OGT
expression is associated with poor responses to chemotherapy
(180) (Figure 3) and expression of OGA was also inversely
associated with survival of DLCL patients (181). OGT was
shown to O-GlcNAcylate pyruvate kinase M2 (PKM2), forcing
formation of the dimer that shunts glucose into the pentose
phosphate pathway to increase proliferation and growth of
cancer cells (127). Inhibition of HBP pathway and O-
GlcNAcylation with azaserine, another purported competitive
GFAT inhibitor, down-regulated NFkB activity and increased
killing of DLCL cell-lines. Cells with higher expression of OGT
were more sensitive to azaserine (180).

As with AML, other forms of lymphoma gave opposite
results. MCL cell-lines and primary cells were protected from
bortezomib by alloxan used as an OGT inhibitor. Alloxan is not
specific for OGT but the authors also showed the MCL cells were
sensitized by several OGA inhibitors including PUGNAC, TMG,
and ketoconazole. O-GlcNAcylation prevented degradation of
tBID and increased its interactions with BCL2 family members
and BAK to cause mitochondrial permeabilization and
apoptosis (181).

MM
O-GlcNAcylated proteins may be especially important in
myeloma given the role of XBP1 in both the pathogenesis of
this blood cancer (182) and the hexosamine pathway (15). OGT
levels are high in hematological cancer cell-lines and highest in
myeloma models (22). Moreover, analysis of the GEO dataset
GSE24080 suggests high OGT mRNA expression in primary
myeloma cells is associated with an adverse outcome (183).

Public databases suggest O-GlcNAcylation is actually reduced
in myeloma as OGA was significantly higher in 133 primary
myeloma samples compared to normal plasma cells from 5
normal donors with similar OGT expression (184, 185).
Myeloma microenvironments contain high levels of calcium
released by osteolysis. Calcium-signaling in myeloma cell lines
was found to decrease total O-GlcNAcylated protein levels
associated with up-regulation of the integrins ITGB7 and
ITGA4, enhanced motility, and more aggressive clinical
behavior. Increasing O-GlcNAcylation by inhibiting calcium-
signaling or genetic ablation of OGA resulted in proteasomal
degradation of the integrins, decreased motility and decreased
growth of RPMI8226 myeloma cells in immunodeficient mice
(184). These findings recall results in CLL where higher O-
GlcNAcylated protein levels are associated with a more indolent
clinical course (2) and suggest disease progression might be
slowed by strategies to increase O-GlcNAcylated protein levels in
MM cells. In contrast, resistance of RPMI8226 cells to
bortezomib, a drug used commonly to treat myeloma, was
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associated with increased O-GlcNAcylated protein levels and
reversed by inhibiting OGT (186).

Overall, O-GlcNAcylation appears to have different effects in
cancer cells depending on underlying genetic events and
metabolic environments. Therapeutic manipulation of O-
GlcNAcylation holds promise in blood cancers but requires
knowing when O-GlcNAcylation has tumor promoting or
tumor suppressing effects.
O-GlcNAcylation AS A TUMOR
PROMOTER

Dysregulation of signaling pathways by O-GlcNAcylation
orchestrates programs that promote growth and survival of
cancer cells. Enhanced AKT-signaling by O-GlcNAcylation
(85) inhibits apoptosis by phosphorylating the pro-apoptotic
protein Bad and preventing caspase-3 activation (187). Enhanced
NFkB activity (92, 94, 96, 188) prevents apoptosis by
upregulating MCL-1 (189). O-GlcNAcylation can inhibit
cleavage of apoptotic caspases, necroptosis (99, 100, 190), and
TRAIL-mediated death by preventing oligomerization of DR5
and transmission of death-receptor signaling (191). Promotion
of cancer cell proliferation and inhibition of apoptosis by O-
GlcNAcylation is further supported by OGT-mediated O-
GlcNAcylation and stabilization of the polycomb group
transcription repressor Bmi-1, which inhibits transcription of
p53, PTEN, and CDKN1A/CDKN2A genes and prevents their
tumor suppressive activities (192).

The link between endoplasmic reticulum (ER) stress and the
HBP (14, 15) suggests O-GlcNAcylation may enable cancer cells
to survive in harsh microenvironmental environments. Limited
nutrients and cytotoxic agents in the microenvironment impose
stresses on cancer cells (25). O-GlcNAcylation affects metabolic
changes that allow cancer cells to thrive in harsh conditions. For
example, O-GlcNAcylation at Ser172 of the glycolytic regulator
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
(PFKFB3) is needed for tumor proliferation in hypoxic
conditions. This modification promotes nuclear localization of
PKFB3, which then prevents build-up of hypoxia-induced-P27
to allow growth in these conditions (193). O-GlcNAcylation of
glucose-6-phosphate dehydrogenase (G6PD) promotes the
pentose phosphate pathway that produces antioxidants and
ribose sugars for nucletotide synthesis to support tumor
growth in hypoxia (194). O-GlcNAcylation of fumarase (FH)
prevents FH-catalyzed fumarate from inhibiting KDM2A
demethylase activity that would otherwise facilitate expression
of genes that mediate cell-cycle arrest in low-glucose (195).

Upregulation of O-GlcNAcylated proteins may also
overcome oxidative and ER stresses imposed in the cancer
microenvironment by radiation and cytotoxic drugs. Oxidative
stress causes DNA damage that can be repaired by the HBP and
OGT through O-GlcNAcylation of H2AX, H2AS40, and H2B
histones, the Polycomb Related Complex 2 (PRK2) HMT
catalytic subunit Ezh2, and the scaffold protein MDC1 to
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prevent radiation-induced senescence and cell-death (196, 197).
Blocking OGT increases sensitivity to oxidative stress and DNA
damage, leading to apoptosis or senescence and preventing
tumor progression (196, 198).

ER stress in CLL cells is partly related to signaling through the
BCR (199, 200) and may increase HBP activity through a IRE1/
XBP1s/GFAT axis that can protect cells from death (15).
Inhibition of this O-GlcNAcylation-mediated regulatory loop
helps sensitize cancer cells to stress (201). Taken together, these
observations are consistent with a view that O-GlcNAcylation
may sustain cancer cells and that blocking OGT and the
hexosamine pathway offers a novel approach to treatment for
many cancers including CLL.
O-GlcNAcylation AS A TUMOR
SUPPRESSOR

Situations also exist in which O-GlcNAcylation has anti-tumor
activity. As described above, O-GlcNAcylation potentiates the
tumor suppressive activity of wild-type p53 (80, 81) and down-
regulates AKT and NFkB activity in non-proliferating CLL cells
(2) (Figure 2). Stabilization of MYC by O-GlcNAcylation
promotes cell growth under nutrient-rich conditions but causes
activation-induced death in nutrient- and growth factor-poor
conditions that can exist in a tumor microenvironment (202).
Low OGT activity promotes c-MYC degradation to maintain
survival in low glucose of cancer cells that were killed when O-
GlcNAcylation was increased by the OGA inhibitor PUGNAC
(203). Blocking OGT would then be expected to protect cancer
cells in these conditions.

Nuclear factor erythroid 2 like 2 (NRF2) encoded by NFE2L2
is a master regulator of antioxidants that protect cancer cells from
oxidative stress (25). KEAP1 is the primary negative regulator of
NRF2 and OGT-mediated O-GlcNAcylation at Ser104 is required
for efficient ubiquitination and degradation of NRF2. Glucose
deprivation lowers O-GlcNAcylation and stabilizes NRF2,
allowing cancer cells to survive in harsh conditions. The effects
of low glucose on both O-GlcNAcylated proteins and NRF2 levels
can be overcome by adding GlcNAc or GlcN to increase UDP-
GlcNAc or by inhibiting OGA (204).

Autophagy is another mechanism employed by cancer cells to
survive in nutritionally poor conditions. Autophagy is promoted
by the formation of a SNARE complex containing the protein
SNAP-29 that fuses autophagosomes with endosomes and
lysomes. O-GlcNAcylation of SNAP-29 prevents assembly of
the complex and negatively regulates autophagy (205, 206) in
solid tumors. It is unclear if this mechanism applies to CLL cells
or other hematological cancers.
O-GlcNAcylation AS A THERAPEUTIC
TARGET

Blocking O-GlcNAcylation
Strategies to block OGT activity include direct inhibitors of OGT
(10) and HBP enzymes, particularly GFAT (13). XBP1 inhibitors
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may also block O-GlcNAcylation (207) given XBP1 is a
transcriptional regulator of GFAT (15). Flavonoid compounds
like resveratrol can induce rapid proteasomal clearance of O-
GlcNAcylated proteins from CLL cells (9).

Specific targeting of glycosyltransferases is difficult and no
OGT inhibitors are currently available for clinical use.
However, new inhibitors like OSMI-4 have low nanomolar
potency and less off-target activity than previous ones (2, 10),
suggesting they may form the basis for future phase 1 testing.
5SGlcNAc (11, 12) potently decreases O-GlcNAcylated
proteins and UDP-GlcNAc in vitro by generating UDP-
5SGlcNAc, a competitive OGT inhibitor with Ki=8 mM (11,
12). Poor aqueous solubility limits the use of such metabolic
inhibitors but new analogs have greater activity in vivo and may
ultimately be incorporated into leukemia treatment strategies
(12). The glutamine antagonist DON inhibits GFAT
non-specifically and has anti-cancer activity in vivo at the
expense of toxicity that may be minimized with lower
concentrations in novel dosing strategies (13).

Inhibition of OGT and O-GlcNAcylation prevent progression
of a number of solid tumors (22, 102). Genetic ablation of OGT
in pre-B cells downregulates c-MYC and prevents B cell
development in mice (91) suggesting OGT may be a novel
therapeutic target for B cell cancers such as ALL. Observations
that resveratrol decreased O-GlcNAcylated protein levels and
slowed tumor growth in CLL patients provide more support for
O-GlcNAcylation inhibitors in leukemia (9). However, the anti-
leukemic effects were transient and overcome by factors such as
IFN that stimulated HBP activity (9). 5SGlcNAc analogues also
had only transient effects in vivo (11, 12). Direct inhibition of
OGT causes increased transcription of a reservoir pool of non-
spliced OGT mRNA to restore O-GlcNAcylation (10).
Accordingly, OGT inhibitors may be most effective when used
with other therapeutic strategies including combination with
GFAT inhibitors.

Consistent with this idea, inhibition of OGT enhances killing
of solid tumor cells by conventional chemotherapeutic agents
such as anthracyclines (176, 208). OGT promotes NRF1-
mediated up-regulation of proteasome subunits (209), which
may account in part for the intrinsic resistance of CLL cells to the
proteasome inhibitor bortezomib and suggesting it may be
overcome by inhibiting OGT (210). OGT inhibitors improve
killing of cancer cells by PI3K inhibitors, suggesting OGT
mediates resistance to PI3K inhibitors and possibly identifying
a strategy to improve outcomes with kinase inhibitors in CLL
patients (211, 212).

Enhancing O-GlcNAcylation
In contrast to OGT, OGA inhibitors are available for clinical use.
MK-8719 has orphan drug status in the USA for the neurological
condition progressive supranuclear palsy (PSP) but has not yet
been explored in leukemia (213).

Cancer cells may be sensitized to chemotherapy in some
situations by increasing O-GlcNAcylated proteins and protected
by inhibiting O-GlcNAcylation. The status of the p53 axis may
perhaps indicate these situations as wildtype p53 activity is
potentiated by O-GlcNAcylation (80, 81). The OGA inhibitor
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TMG sensitizes human leukemia cells to the microtubule
inhibitor paclitaxel (214) and mantle cell lymphoma cells to
bortezomib (181). HBP- and OGT-inhibitors promote resistance
of ovarian cancer cells to platinum-based chemotherapy by
inducing autophagy (205, 206) and secretion of exosomes that
decrease intracellular drug levels (215). O-GlcNAcylation of the
death receptor DR4 on Ser424 sensitizes cancer cells to TRAIL-
mediated apoptosis and necrosis. TRAIL-induced apoptosis is
then increased by the OGA inhibitor TMG but prevented by the
OGT inhibitor ST04589 (216).

Glucocorticoids (GCs) remain important drugs for blood
cancers including CLL (217) and OGT has been shown to bind
the glucocorticoid receptor (GR) and mediate transrepression of
NFkB by O-GlcNAcylating RNA polymerase II (218). Inhibition
of OGT prevents GC-mediated apoptosis (218).

Taken together, these observations suggest more detailed
knowledge of its distinct role in the biological processes that
underlie cancer hallmarks is still required to effectively
manipulate O-GlcNAcylation as a treatment strategy (19).
Global inhibition or enhancement of O-GlcNAcylation may
not be the best treatment strategy as OGT is the only enzyme in
humans capable of transferring GlcNAc moieties to proteins
and inhibiting OGT may cause major toxicities. Consistent
with this, mice injected with high doses of 5SGlcNHex became
moribund although lower amounts were better tolerated (12).
Given the role of O-GlcNAcylation in T cell biology (4, 156,
160), direct OGT inhibition may also cause significant
immunosuppression. O-GlcNAcylated and de-glycosylated
proteins can both mediate survival of cancer cells in different
conditions and cancer cells with intact p53 functioning that
may respond to increasing O-GlcNAcylation (81) could
possibly be accelerated by HBP and OGT inhibition. If OGT-
activity promotes the development and progression of cancers
with impaired p53 axes but decreased OGT-activity helps them
live in harsh microenvironments, a useful strategy in such
cases might involve brief treatments with OGT inhibitors
followed by infusion of GlcN or OGA inhibitors to block
survival processes induced by prior OGT-inhibition. Another
option might be to try to identify cancer cell specific
vulnerabilities that are lethal in the presence of a low dose of
an OGT inhibitor. For example, the GFAT2 inhibitor
cycloserine was found to exhibit synthetic lethality with an
OGT inhibitor in prostate cancer cells (219).
SUMMARY AND FUTURE WORK

Tremendous progress in the understanding of O-GlcNAcylation
and its role in cancer has been made in the last decade. O-
GlcNAcylation has emerged as a new cancer “hallmark” with an
established role in a number of central oncogenic processes.
Targeting O-GlcNAcylation offers a novel approach to improve
results of current therapies and the lives of patients with
hematological and other cancers.

Despite this progress, much remains to be done. More
information is needed about how O-GlcNAcylation affects
Frontiers in Immunology | www.frontiersin.org 12
different blood cancers. It seems clear that O-GlcNAcylation
can suppress or promote cancer development depending on the
stage of disease, type of cancer, and microenvironmental
conditions. Development of better mouse models might help
clarify the effect of O-GlcNAc during oncogenesis. For
example, the role of OGT as a tumor promoter or suppressor
in CLL could be addressed in more detail by B cell lineage
specific deletion of OGT in TCL1-transgenic mice, considered
an excellent model of aggressive IGHV unmutated CLL
(59, 200).

Cellular processes affected by aberrant O-GlcNAcylation in
different cancers require additional investigation. OGT and O-
GlcNAcylation are regulated by cell type-specific mechanisms so
that results in one cancer do not necessarily generalize to others.
Simply cataloguing proteins that are O-GlcNAcylated in different
cancers and in different microenvironments would be helpful to
implicate affected processes. Advances in chemoenzymatic
labeling strategies for identifying O-GlcNAc modifications by
mass-spectrometry (7, 190) make this possible and the results
should be correlated with underlying genetic aberrations of the
cancer cells.

Also needed is more detailed understanding of how O-
GlcNAcylation affects important oncogenic signaling processes.
Precise genetic subtyping of individual leukemia cells is required
as different types have different levels of O-GlcNAcylation and
protein targets that may have disparate effects on signaling
responses. These studies should also be done in conditions that
more accurately reflect conditions in a cancer microenvironment,
including hypoxia, low-glucose, and three-dimensions (220). The
role of O-GlcNAcylation in the T cell compartment of CLL
(Figure 2) and its relationship to failure to clear leukemia cells
also requires further study.

Clinically relevant OGT inhibitors may soon be available (10).
As discussed above, results of globally increasing or decreasing O-
GlcNAc levels may be limited but short-term blockade of OGT to
minimize toxicity may synergize with many cytotoxic drugs and
kinase inhibitors. Appropriate modulation of O-GlcNAcylation
in T cells may lead to improved immunotherapies (221). The
apparent importance of O-GlcNAcylation in hematologic
malignancies suggests they may be useful models for evaluating
OGT modulators in clinical trials.
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