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Abstract

The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and
P49) and one clinical (SD9) isolates, with differences in their antibiotic susceptibility profiles have been sequenced and
analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the
highest number of differences were in ‘‘Related to phage, transposon or plasmid’’ and ‘‘Secreted factors’’ categories. The
clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region
in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes
assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes) than in isolates
P37 (24 genes), P47 (16 genes) and P49 (21 genes). CRISPR elements were found in all isolates and SD9 showed differences
in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons
indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved,
suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes
are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be
considered in the adaptation processes of isolates to the host and in microevolution studies.
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Introduction

Pseudomonas aeruginosa is a Gram negative, aerobic, rod-

shaped, gammaproteobacterium with polar inserted flagella.

Environmental isolates of this ubiquitous bacterium are highly

versatile and adapt easily to a large variety of natural ecosystems,

although water is considered to be the primary habitat of this

microorganism [1], [2]. P. aeruginosa can cause a wide range of

opportunistic infections in animals and humans [3]. The

colonisation of this broad spectrum of habitats results from the

ability to exploit many different nutrition sources and the high

potential to adapt to new (or changing) environmental conditions

[4].

The genomes of P. aeruginosa strains are larger than those of

most sequenced bacteria, varying from 5.2 to 7.1 Mbp [5]. The

divergence in genome size is caused by the so-called accessory

genome. The core genome, with a few exceptions of loci that are

subject to diversifying selection, is highly conserved among clonal

complexes and shows sequence diversities of 0.5–0.7% [6]–[8].

The elements of the accessory genome have apparently been

acquired by horizontal gene transfer from different sources,

including other species or genera. Therefore, a P. aeruginosa
chromosome is often described as a mosaic structure of a

conserved core genome frequently interrupted by the inserted

portions of the accessory genome. The individual mosaics also

show remarkable plasticity [9], [10]. The ongoing acquisition of

new foreign DNA, the mobilization of prophages, larger or smaller

deletion events, mutations of single nucleotides and even

chromosomal inversions [8], [11]–[15], are potentially affecting

portions of the core and the accessory genome, and these processes

continuously modify the genome and modulate the phenotype of a

P. aeruginosa strain, thus differentiating the strains from each

other.

P. aeruginosa strains have been preferentially studied in cystic

fibrosis (CF) patients in the clinical context. Fewer environmental

studies have been conducted than clinical studies [16]–[18]. The

ability of P. aeruginosa to adapt to different habitats provides an

excellent model for examining the mechanisms used by environ-

mental strains of the ubiquitous P. aeruginosa species. The

genomic structure of P. aeruginosa strains has also been analysed

in detail predominantly in the clinical isolates of patients with CF.

Klockgether et al. [10] have suggested that the sequencing of

strains from environmental habitats should provide an unbiased

overview of the genetic repertoire of the P. aeruginosa popula-

tions. Few environmental strains have been sequenced thus far [1],

[19]–[21]. More than 166 P. aeruginosa genome sequences are
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available on the National Centre of Biotechnology Information

(NCBI), and less than 10% are of environmental strains. In a

screening of P. aeruginosa strains isolated from water and clinical

specimens in Mallorca (Spain) a MultiLocus Sequence typing

(MLST) analysis was performed, and a new sequence type ST-

1146 was found. Interestingly this was the unique sequence type

that included environmental and clinical strains. In the present

study, 4 genomes of intimately related isolates from this sequence

type (ST-1146), 3 isolates from water samples (Mallorca, Spain)

and 1 clinical, non-CF isolate, obtained at the Son Dureta

University Hospital (Mallorca, Spain), were selected to be studied

by comparative genomics. These isolates can be considered a good

example of close-related strains to study microevolution. ST-1146

has the allelic profile 5-11-57-33-1-6-3 for the seven genes acsA,

aroE, guaA, mutL, nuoD, ppsA and trpE, which were established

by Curran et al. [22] for a P. aeruginosa MLST study and is

available in the P. aeruginosa MLST database (http://www.

pseudomonas.com/). MLST is the reference method for typing

clinical strains of P. aeruginosa and other bacteria. The

environmental isolates could be differentiated from the clinical

isolate by the antibiotic susceptibility profile according to the

Magiorakos et al. [23] classification. The environmental isolates

were non-multidrug resistant (non-MDR), and the clinical isolate

was multidrug resistant (MDR), resistant to aztreonam, ceftazi-

dime, imipenem and piperacillin-tazobactam. The main purpose

of this study is to fill the gap between precise genomic studies of

clinical strains and widespread studies on environmental strains by

studying in detail genomes from isolates of the same ST from both

origins, clinical and environmental. The genomic analysis of these

four isolates was focused on four main aspects: a) the presence of

exclusive and differentiating genes; b) the presence of nucleotide

substitutions when compared with strains P. aeruginosa PAO1-

UW and UCBPP-PA14 as references (the allele distribution in

gene categories, allelic profile comparisons) and the presence of

nucleotide substitutions among ST-1146 isolates; c) the analysis of

genes that are involved in pathogenicity (virulence factors, specific

killing regions, lung infection potential, or pyocin genes); and d)

contribution of phages and CRISPRs (Clustered Regularly

Interspaced Short Palindromic Repeats) sequences in isolates

differentiation.

Materials and Methods

P. aeruginosa isolates
Environmental P. aeruginosa isolates were isolated on Cetri-

mide Agar (Merck) as the selective medium from 2 subsurface

water samples taken from the same well in Santa Margalida

(Mallorca, Spain). One sample was taken in October 2010 (isolate

P37), and the second sample was taken in February 2011 (isolates

P47 and P49). The clinical isolate (SD9) was isolated on

MacConkey agar plates (bioMérieux) at 37uC from a patient’s

ulcer. The four isolates were assigned to ST-1146 following

previously described methods [24].

De novo assembled genome analysis
The draft genome sequence of the P37, P47, P49 and SD9

isolates were obtained using the reads from Illumina HiSeq 2000

paired-end libraries. The reads were de novo assembled using the

Newbler Assembler v2.7 program (Roche). Drafts were annotated

using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).

The Whole Genome Shotgun projects have been deposited at

DDBJ/EMBL/GenBank under the accessions AMVN00000000

(SD9), AMVO00000000 (P37), AMVP00000000 (P39) and

AMVQ00000000 (P49). The gene and protein prediction for the

ST-1146 isolates were performed using the Metagenemark

program [25]. Protein clustering analysis was initially performed

with strains P37, P47, P49 and SD9 and later including two P.
aeruginosa reference genomes, PAO1-UW (NC_002516.2)(PAO1)

and UCBPP-PA14 (NC_008463.1) (PA14), using the Cd-hit

program available at Cd-hit home page [26]. The protein

predictions from the two reference genomes were obtained from

the NCBI database. Two proteins with at least 50% sequence

identity over at least 50% of the protein length were considered to

belong to the same gene family. Proteins exclusive of each strain

and those shared between two or more strains were counted and

represented in Venn diagrams. UPGMA dendrogram were used

to compare the amino acid sequences distances. The isolate-

specific genes were deeply analyzed. Their functions were

established comparing with the sequences from the NCBI

database. BAGEL2 program was used for specific detection of

pyocines [27].

Furthermore, the isolate-specific proteins of this study were

compared by local BLAST with the exclusive predicted proteins

obtained by Grosso-Becerra et al. [21] in their study of 17 P.
aeruginosa strains isolated from different habitats (water, plant,

human origins).

Genome comparisons
A BLAST Matrix was calculated to display the conserved gene

families in a set of 25 P. aeruginosa genomes and the 4 isolates

(P37, P47, P49 and SD9) from our study, using the Biotools for

Comparative Microbial Genomics (CMG-Biotools) [28]. All

complete P. aeruginosa genomes available in the NCBI database

were used: YL84 (CP007147.1), PAO1 (NC_002516.2), UCBPP-

PA14 (NC_008463.1), PA7 (NC_009656.1), LESB58

(NC_011770.1), M18 (NC_017548.1), NCGM2.S1

(NC_017549.1), DK2 (NC_018080.1), B136-33 (NC_020912.1),

RP73 (NC_021577.1), PA1R (NC_022808.1), PA1

(NC_022806.1), MTB-1 (NC_023019.1), LES431

(NC_023066.1), SCV20265 (NC_023149.1), PACS2

(NZ_AAQW01000001.1), 39016 (NZ_AEEX01000000), 19BR

(NZ_AFXJ01000001.1), 213BR (NZ_AFXK01000001.1). Addi-

tionally, the P. aeruginosa draft genomes of strains 148

(ATAJ00000000), 2192 (AAKW00000000), C3719

(AAKV00000000), ID4365 (ATAI00000000), IGB83

(ATAH00000000) and M10 (ATAG00000000) were downloaded

in its last version from NCBI database and included in the analysis.

Two proteins with at least 50% sequence identity over at least 50%

of their length were considered as belonging in the same gene

family. The similarity percentage between the genomes were then

sorted into a distance matrix and then plotted as a UPGMA

dendrogram, using the Pearson coefficient implemented in the

PermutMatrix program [29]. The sequence types were established

for all genomes according to Currant et al. [22], using the

Pseudomonas aeruginosa MLST Database (http://pubmlst.org/

paeruginosa/).

Genome mutational profiles
The original Illumina reads of the 4 genomes sequenced were

processed using the GS Reference Mapper software package

version 2.6 (Roche Inc). High quality Illumina sequencing reads,

sequences with more than 1006 reads coverage, were aligned

using both P. aeruginosa PAO1 and PA14 as reference genomes.

Variants with respect to both reference sequences were identified

with the GS Reference Mapper v2.7 (Roche) software (AllDiff and

HCDiff reports). The presence of variant candidates (alleles) were

detected using the high-confidence method (i.e., observed in .

80% of the reads). The detected variants and positions were
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extracted for the purpose of comparison from the HCDiff output

file. The GFF files obtained from the Pseudomonas Database [30]

from both reference genomes were used to annotate and count

variants to generate the mutational gene profiles. The exclusive

alleles detected for each strain were classified in 27 functional

categories according to the PseudoCap functional classification

[30].

Polymorphic sites and nucleotide substitutions
The contigs obtained with the original Illumina reads mapped

against the P. aeruginosa PAO1 genome were aligned with the

Mauve program [31]. For that purpose, the sequences located at

the ends of the contigs and the sequences not present in all five

genomes were discarded. Polymorphic sites between P37, P47,

P49 and SD9 were calculated from this alignment with the DnaSP

package, version 5.0 [32] and were localised along the chromo-

some.

CRISPR analysis
The CRISPRFinder at the CRISPRs web server (http://crispr.

u-psud.fr) was used to identify the Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPRs) elements [33] in the de
novo assembled genomes. The CRISPRdb database [34] and

CRISPRcompar [35] tool, both available at the CRISPRs website

were used to display and compare the CRISPRs. A Pseudomonas
phages database was constructed by downloading from the NCBI

the corresponding FASTA files (ftp://ftp.ncbi.nih.gov/genomes/

Viruses). The final database was formatted and interactively

searched with BLAST in the context of the UGENE [36] software.

Results

Whole genome characteristics of strains in ST-1146
The Illumina reads obtained for the four strains in ST-1146

were de novo assembled and the draft genome annotated. The

main features for each assembly and annotation prediction are

provided in Table S1. The number of contigs ranged from 112 to

161. In all of the isolates, the percentages of bases with a consensus

quality score of at least 40 (Q40), were higher than 99.9%. Based

on the MetaGeneMark annotation prediction, between 5841 and

5873 ORFs were detected in the environmental isolates, and 5972

ORFs were detected in the clinical isolate SD9.

Genome comparisons
The 29 strains analyzed shared 4106 gene families in their core

genome from a total of 10473 gene families in the pangenome.

The analysis of the 29 genomes studied is represented in a

dendrogram (Figure S1). Minimal percentage of shared proteins

was detected with strain PA7 (range 68.9–78.4%) and maximal

values were found among groups of isolates classified in the same

ST: ST-146 (98.9%), ST-235 (86.0%), ST-277(98.1%), ST-782

(97.0%) and ST-1146 (95.0–97.9%). This last ST was the only one

with environmental and clinical isolates and the four isolates

clustered in a well differentiated branch in the dendrogram.

Gene comparisons with Cd-hit
Cluster comparisons of the four isolates in ST-1146 alone and

with the reference genomes PAO1 and PA14 were performed

using the program Cd-hit. Venn diagrams were generated to

visualise the cluster distributions (Fig. 1). A total of 6200 or 6403

clusters were determined when PAO1 or PA14 were included in

the analysis. As depicted in Fig. 1, 5038 genes were shared by the

4 strains of ST-1146 and PAO1, and 5150 genes were shared with

PA14. Four-hundred and forty-eight protein clusters were present

in the isolates of ST-1146 and not in PAO1, and 241 proteins were

PAO1 strain specific (Fig. 1A). Strain-specific proteins in the ST-

1146 strains when PAO1 was included in the analysis were 241,

191, 64, 38 and 63 in strains PAO1, SD9, P37, P47 and P49,

respectively. When strain PA14 was compared with the strains of

ST-1146, strain-specific proteins were 441, 189, 64, 37 and 63 in

strains PA14, SD9, P37, P47 and P49, respectively (Fig. 1B).

The four sequenced genomes of the ST-1146 isolates shared

5500 protein clusters from the total of 5959 analysed (Fig. 1C).

The number of proteins shared by the three environmental strains

was slightly higher (5543 proteins). The isolate-specific genes found

in internal regions of the contigs were 132, 24, 16 and 21 genes in

isolates SD9, P37, P47 and P49, respectively. Some isolate-specific

genes were located at the beginning or at the end of a contig (61 in

SD9, 37 in P37, 20 in P47 and 39 in P49), which represent 0.4–1%

of the total number of genes. These genes were incompletely

sequenced and they were not included in the analysis. The isolate-

specific proteins exhaustively analysed for the four strains are

shown in Table S2. Three genes of isolate P37, related to insertion

sequences from the IS1, IS3 and IS5 families, were not found in

the other genomes. One gene of SD9 was related to bacteriophage

Pf1 (hypothetical protein, gene_id 2506), and other 55 genes

related to bacteriophages F116 and/or H66 were not found in the

other genomes and will be discussed in a specific section.

Genome mutational profiles and allele comparisons
1. Nucleotide substitutions in the coding

genes. According to mutational profiling (Tables S3 and S4),

the nucleotide substitutions in the coding genes of strains in the

ST-1466 genomes compared with PAO1 were 49931 in SD9,

which was higher than in the environmental strains P37, P47 and

P49 (49545, 49444 and 49578, respectively). Compared with

PA14, the number of substitutions was lower than with PAO1:

32387 in SD9, 31982 in P37, 31964 in P47, and 32045 in P49.

From a total of 5565 genes present in strain PAO1, 5126 genes

with nucleotide substitutions were detected in ST-1146 isolates.

ST-1146 isolates shared 4506 (63.7%) identical genes: 4067 genes

identical among them but different to PAO1 and 439 genes

identical between them and PAO1. From a total of 5892 genes in

PA14, 4841 genes presented nucleotide substitutions in ST-1146

strains, 1051 genes were identical among the four strains and

PA14.

2. Isolate-exclusive alleles. The alleles exclusive to each

isolate and the alleles shared between two or more isolates

obtained from the two mutational profiles of ST-1146 were

counted and represented in Venn diagrams (Fig. 2). The allele

number compared to PAO1 and present in only one strain and not

in others was as follows: isolate P37, 205 alleles (4.0%); isolate P47,

196 alleles (3.8%); isolate P49, 211 alleles (4.1%); and finally,

isolate SD9, 548 alleles (10.7%). The number of alleles exclusive to

strain SD9 (548) was 2.5 times higher than the exclusive alleles in

the environmental strains, which shared 424 alleles not present in

SD9. Compared to PA14, the allele numbers present in only one

isolate were slightly lower, although isolate SD9 presented the

highest number (476) of isolate-exclusive alleles (an average of 3.6

times higher than the environmental strains).

3. Functional categories. All the genes of the isolates in ST-

1146 studied in the mutational profile were grouped by functional

categories (Fig. 3, Tables S5 and S6). All of these data are related

to the total number of genes that are not identical to PAO1 and

PA14 in each category, and the ratio among the alleles was

calculated (Fig. 3, Tables S5 and S6). Not considering the

categories ‘‘Hypothetical, unclassified, unknown’’ and ‘‘Putative

enzymes’’, the genes grouped in the functional category ‘‘Mem-

P. aeruginosa Environmental and Clinical Genomes

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e107754

http://crispr.u-psud.fr
http://crispr.u-psud.fr
ftp://ftp.ncbi.nih.gov/genomes/Viruses
ftp://ftp.ncbi.nih.gov/genomes/Viruses


brane proteins’’ presented the highest absolute values of nucleotide

substitutions and alleles in all ST-1146 isolates for the mutational

profile compared with PAO1 and the functional category

‘‘Transport of small molecules’’ when compared with PA14. The

percentage of exclusive alleles for each strain (p, q, r, s) in each

category (n) was calculated for the genes not identical to PAO1 or

PA14. In the mutational profile of PAO1 compared with ST-1146,

the categories of genes ‘‘Related to phage, transposon or plasmid’’

and ‘‘Secreted factors’’ predominated in all strains (range 10–22%

in the environmental isolates and 29–33% in the clinical isolate

SD9). In the comparison with PA14, nucleotide substitutions in

these two categories were also predominant in all cases, except for

P49. For P49, the predominant categories were ‘‘Related to phage,

transposon or plasmid’’ (11%) and ‘‘Motility and attachment’’

(10%).

The ratios of the different alleles between SD9 and each

environmental isolate were calculated for each PseudoCap

functional class (Tables S5 and S6). In isolate SD9, the ratio of

exclusive alleles in most of the categories was 2–15 times higher

than in the environmental strains or the comparison with PAO1

and 2–10 times higher for the comparison with PA14 (mean values

of 3.3 for PAO1 and 3.9 for PA14). All 14 genes in the category

‘‘Antibiotic resistance and susceptibility’’ were identical in isolates

P37 and P47, only one different allele was found in isolate P49,

and different alleles were found in SD9 compared with PAO1.

Some of these alleles were also different with PA14: 2 (P37, P47), 3

(P49) and 5 (SD9).

Nucleotide polymorphisms
The intraclonal diversity of the members of the clonal complex

ST-1146 was also studied by comparing the nucleotide sequences

of the four strains and mapping the sequences against the

reference genome PAO1 to determine the nucleotide polymorphic

sites distribution in the isolates. The number of polymorphic sites

for the 5 genomes was 56626. The total number of nucleotide

substitutions was 56657; therefore, practically all of the polymor-

phic sites (99.95%) presented only 1 nucleotide substitution. The

polymorphic sites for the four ST-1146 genomes were 1056, and

the total number of substitutions was 1072. The polymorphic sites

resulting from a different nucleotide in SD9, P37, P47 and P49

were 624, 147, 150 and 151, respectively. Nucleotide substitutions

are shown in Table 1.

A representation of the nucleotide substitutions along the

chromosome was created for each isolate (Fig. 4). The distribution

along the chromosome was not homogenous among the four

isolates. The three environmental isolates showed a similar

distribution of approximately 150 substitutions. A specific region

of polymorphic sites was more evident in the SD9 isolate. In SD9,

139 substitutions (22.3%) were located in an 8531 bp region of

genes related to phage Pf1. When this plateau was analysed in

more detail, a total of 71 substitutions were found in intergenic

regions, and 68 were located in genic regions.

Figure 1. Venn diagram showing the number of shared and exclusive genes of isolates. Number of genes of isolates P37, P47, P49 and
SD9 based on the Cd-hit results are shown, referred to A) P. aeruginosa PAO1; B) P. aeruginosa PA14; C) ST-1146 isolates.
doi:10.1371/journal.pone.0107754.g001

Figure 2. Venn diagram showing the number of shared and exclusive alleles of isolates. Number of alleles of P37, P47, P49 and SD9
referred to A) P. aeruginosa PAO1; B) P. aeruginosa PA14.
doi:10.1371/journal.pone.0107754.g002
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Figure 3. PseudoCAP functional classification of the exclusive alleles of isolates P37, P47, P49 and SD9. Comparison of the exclusive
alleles of isolates P37, P47, P49 and SD9 with P. aeruginosa PAO1 and P. aeruginosa PA14.
doi:10.1371/journal.pone.0107754.g003
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Pathogenicity factors
The presence of more than 300 pathogenicity factors have been

checked in the de novo assembled genomes of the four ST-1146

isolates.

1. Virulence factors. The 265 virulence factors proposed by

Wolfgang et al. [37] and the 41 virulence-related genes proposed

by Feinbaum et al. [38] were present, and no significant

differences were found between the virulence factors, as these

genes are highly conserved: 228 genes were identical in the four

ST-1146 isolates and only 19 genes presented more than one

nucleotide substitution; 98% of the 306 genes coding for virulence

factors presented 97–100% similarity with PAO1 (Table S3), with

the exceptions of 2 genes: wbpL (not found) and pilA (low coverage

with PAO1 but 99% similar with a 100% query coverage with

strain PAK). The gene exoS was not found, and exoU was detected

in the 4 isolates and showed a 99.4% similarity with exoU
PA14_51530 (Table 2).

2. Specific killing regions. Lee et al. [7] defined 6 common

and specific killing regions in strain P. aeruginosa PA14 that

consist of 9 genes required for Caenorhabditis elegans killing. Four

PA14 killing regions were present in ST-1146 isolates (Tables 2,

S3 and S4) and were identical between them (Tables 2, S3 and

S4). The protein PilC had 15 and 55 different amino acids when

compared with the corresponding PAO1 (PA4527) and PA14

(PA14_58760) proteins (95% and 85% similarity, respectively).

PilW was 99.6% similar to the corresponding protein from PAO1

(PA4552) and differed in 127 amino acids (53.5% similar from

PA14 (PA14_60690) (Tables 2, S3 and S4). Two PA14 killing

genes that were not present in PAO1 were also found in ST-1146

strains: one gene was identical and conserved (PA14_27680) and

PA14_27700 presented 99.6% identity in all isolates.

3. Lung infection genes. A list of 85 genes defined by

signature tagged mutagenesis in Winstanley et al. [39] and Potvin

et al. [40] was analysed in the ST-1146 isolates, and all of these

genes were detected (Tables 2, S3 and S4). With the exception of

only five genes (PA4226, PA2583, PA1569, PA4284 and PA5002),

the remaining 80 genes were conserved among all ST-1146

isolates but were different from those present in strains PAO1 and

PA14.

4. Pyocins. The isolates of ST-1146 presented one type of S-

pyocin: pys2 gene with 87% nucleotide identity with PAO1 gene

and was absent in PA14 (Table 2).

Antibiotic resistance genes
Many CF isolates acquire hyper-mutator capabilities by

mutations in mutS or mutT genes, increasing the mutation rate

and consequently the rate of mutations coding for antibiotic

resistances. Isolates of ST-1146 presented mutS and mutT genes

identical between them, and 99.1% and 98.9 similar to PAO1

genes. The major efflux pumps contributing to intrinsic and

mutational antibiotic resistance are coded by the operon MexAB-

OprM and by the ancillary system MexCD-OprJ. Both were

present, and the MexEF-OprN and the MexGHI-OpmD efflux

pump was also found (Table S7). This pump confers resistance to

aminoglycoside antibiotics, is required for biofilm formation,

facilitates cell to cell communication and promotes virulence and

growth in P. aeruginosa. No significant differences were found in

these genes between ST-1146 isolates. The comparison of efflux

pump genes with PA14 showed a considerably higher number of

nucleotide substitutions in mexD, with 62 different nucleotides

resulting in 10 different amino acids.

The oprD gene codes for a specialised pore protein OprD,

which allows for the selective permeation of basic amino acids and

their structural analogues, such as the carbapenem antibiotics

imipenem and meropenem. The oprD gene in ST-1146 presented

134 mutations in the environmental isolates and 135 mutations in

SD9, resulting in 28 different amino acids when compared to

PAO1 (PA0958) and two deletions in positions 372 and 381. This

gene was more similar to the one present in P. aeruginosa strain

PA7, an atypical, phylogenetically distant, non-respiratory P.
aeruginosa strain as depicted in the corresponding UPGMA

dendrogram (Figure S2). The similarities among the ST-1146

isolates were 93%, 91% and 89% respect to PA7, PA14 and PAO1

(Table S7 and Fig. S2). The AmpC beta-lactamase gene (PA4110,

PA14_10790) and the Cat chloramphenicol acetyl transferase gene

(PA0706, PA14_55170) were detected with a 98–99% identity

among ST1146 isolates and with PAO1 and PA14 strains.

Table 1. Nucleotide substitutions in the polymorphic sites of the isolates P37, P47, P49 and SD9.

Nucleotide substitutions P37 P47 P49 SD9 Total

A 33 34 34 184 285

T 32 27 25 158 242

G 40 34 43 139 256

C 39 45 44 134 262

Indel 3 10 5 9 27

Total 147 150 151 624 1072

doi:10.1371/journal.pone.0107754.t001

Figure 4. Distribution of nucleotide substitutions along the
genome of the isolates P37, P47, P49 and SD9.
doi:10.1371/journal.pone.0107754.g004
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Phage related genes
The accessory genome is central to P. aeruginosa biology as a

primary contributor to the genome evolution. The presence of

phages and phage-like elements are considered to be reservoirs of

genetic diversity. A high number of polymorphic sites were

detected between SD9 and the environmental strains in the Pf1

gene region (Fig. 5, Table 3). In the de novo assembled genomes

these genes were found in several contigs (5–6 contigs) in all ST-

1146 isolates. All genes, with the exception of the first hypothetical

protein (PA0717), could be located in the same order as in PAO1.

PA0717 hypothetical protein was located in all ST-1146 isolates in

a contig flanked by other genes not related to phage Pf1. Twelve

phage proteins related to Pf1-like phages (Pf4) were detected in

ST-1146 isolates together with the integrase (PA0728) as is

described in P. aeruginosa LESB58 [39] or other clinical P.
aeruginosa strains [41]. A local BLAST from Pf1 genes of SD9

against PA14 genome showed that Pf1 genes are present, with the

exception of the hypothetical protein PA0729 that was not present

and the integrase gene (PA0728) showed a low similarity value

(52%).

When the exclusive cluster of proteins based on the Cd-hit

analysis of each of the isolates was studied, the clinical strain SD9

presented exclusive CDS in a contig of 64363 bp related to

previously described P. aeruginosa phages: F116 (65195 bp, 70

genes) and H66 (65270 bp, 71 genes). A local BLAST analysis of

this contig indicated that phage F116 was 98% similar, with 76%

coverage, and phage H66 was 98% similar with 78% coverage. In

total, 55 of 70 genes presumptively belonging to phage similar to

F116 or H66 phages were detected. A schematic representation of

the phage is presented in Fig. 6, and the relationship of the genes is

shown in Table S2. The exclusive phage genes of ST-1146 were

compared with the exclusive protein database of the 17 P.
aeruginosa genomes studied by Grosso-Becerra et al. [21]. Forty-

two proteins similar to phage F116 were detected in the database:

35 of them were considered exclusively associated to a water strain

(P. aeruginosa ID4365) and 7 proteins were from unknown origin

(Table S8).

CRISPRs
Three CRISPR repetitive sequences (CRISPR1, CRISPR2 and

CRISPR3) were detected in the 4 Pseudomonas isolates of ST-

1146. The 3 CRISPRs showed a 28 bp conserved repeat

consensus sequence (59-GTTCACTGCCGTATAGGCAGC-

TAAGAAA-39). The differences were mainly detected in the

number of spacers, which represent potentially captured DNA. As

explained in Figure 7, the CRISPR1 and CRISPR2 were similar

and conserved in sequence and organization throughout the 4

isolates. Both regions were arranged in close proximity in the same

contig and flanking a series of a conserved CRISPR-associated

(cas) genes system. This CRISPR-Cas system could be included in

the type I, subtype I-F (Ypest or CASS3) according to the basis of

composition and structure detected [42]. The spacers of CRISPR1

and 2 had an average length of 32 bp. CRISPR1, with 18 spacers,

was identical in ST-1146 isolates, but CRISPR2 showed 29

Table 2. Exoenzymes, pyocins and killing regions detected in the isolates P37, P47, P49 and SD9.

Genes PAO1 PA14 ST-1146 Function

Exoenzymes

exoT PA0044 PA14_00560 PRESENT Exoenzyme

exoY PA2191 PA14_36345 PRESENT Exoenzyme

exoU ABSENT PA14_51530 PRESENT Exoenzyme

exoS PA3841 ABSENT NOT FOUND Exoenzyme

Pyocins

pys2 PA1150 ABSENT PRESENT E2 colicins

imm2 PA1151 ABSENT NOT FOUND E2 colicins

pyoS3A ABSENT PA14_ 49520 NOT FOUND S type pyocin protein

pyoS3I ABSENT PA14_ 49510 NOT FOUND immunity protein

S4 PA3866 PA14_13940 NOT FOUND S type pyocin protein

pyoS5 PA0985 PA14_ 59220 NOT FOUND Ia and Ib

imm S5 PA0984 PA14_59230 NOT FOUND immunity protein

R2 PA0622 PA14_08070 NOT FOUND R2 pyocin

Killing regions

Killing regions ABSENT PA14_03370 NOT FOUND Unknown

Killing regions ABSENT PA14_23420 NOT FOUND O-antigen biosynthesis

Killing regions ABSENT PA14_23430 NOT FOUND O-antigen biosynthesis

Killing regions ABSENT PA14_27680 PRESENT Unknown

Killing regions ABSENT PA14_27700 PRESENT Putative transcription regulator

Killing regions PA4527 PA14_58760 PRESENT pilC

Killing regions ABSENT PA14_59010 NOT FOUND Unknown

Killing regions ABSENT PA14_59070 NOT FOUND Unknown

Killing regions PA4552 PA14_60290 PRESENT pilW

The corresponding locus tag of strains P. aeruginosa PAO1 and PA14 are indicated.
doi:10.1371/journal.pone.0107754.t002
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spacers in the environmental isolates and an additional spacer in

isolate SD9 occupying the fourth position after a region lacking an

open reading frame that follows the first locus associated to cas
genes (cas1). The additional spacer of SD9 showed full identity

with short stretches (11–14 nucleotides length) of several Pseudo-
monas phages (LUZ27, YuA, M6). Finally, CRISPR3 was found in

a different contig, was not cas-associated, and with 18 spacers in

the environmental isolates, was conserved in terms of sequence

and arrangement. Again, the genome of isolate SD9 contained an

additional spacer that showed homology with short stretches of

11 bp with different Pseudomonas phages (LUZ24, LUZ19,

D3112, 201phi2-1, EL, D3, among other phages).

Strain PAO1 has no CRISPR systems, but some features in

common were found among those of strain PA14 and ST-1146

isolates. The 2 CRISPRs of PA14 corresponded also to a type I,

subtype I-F (Ypest or CASS3) structure and shared the same 28 bp

repeat consensus sequence detected in the 4 isolates of ST-1146.

One of the CRISPR of PA14 had 21 spacers with no homologous

in the isolates of ST-1146, and no cas gene system was detected in

its proximity. Conversely, the second CRISPR of PA14 was found

in the vicinity of a complete CRISPR-Cas system, closely linked to

the cas6f gene. This second CRISPR had up to 14 spacers from

which just one was present in the CRISPR1 of the 4 isolates of ST-

1146.

The detailed comparison of the different genes forming the cas
system between PA14 and its homologous in ST-1146 isolates

showed several levels of conservation. The cas1, csy3 and cas3
genes presented 6 (from 975 bp), 10 (from 1029 bp) and 18 (from

3231 bp) nucleotide substitutions respectively, resulting in 3, 2 and

9 amino acid changes in the protein sequence. The csy1 gene

accumulated 58 nucleotide changes (from 1305 bp) in P.
aeruginosa PA14 (20 amino acid changes) when compared with

the same sequence in the ST-1146 isolates. The csy2 and cas6f
genes of ST-1146 were more conserved. The csy2 gene showed 4

nucleotide changes in P. aeruginosa PA14 (from 984 bp), without

affecting the translated Csy2, and no nucleotide change was found

in cas6f gene (564 bp).

Discussion

In this paper, for the first time 4 P. aeruginosa genomes of the

same sequence type (S-T1146) have been studied by comparative

genomics. Two of the water isolates were recovered from the same

water sample and another was isolated 4 months earlier from the

same habitat. The fourth was a clinical isolate. The main objective

of our study was to assess the genomic differences and similarities

between closely related strains of the same sequence type. The

study of the three water isolates will allow the assessment of the

Figure 5. Nucleotide and amino acids substitutions in the hot spot region of original reads of SD9 mapped against PAO1. The genes
related to bacteriophage Pf1 found in this region (8531 pb located in two contigs) with known function are indicated in black; the hypothetical
proteins are indicated in white. The number of polymorphic sites located in intragenic and genic regions are indicated below each region. The
number of amino acids substitutions in the protein of the 3 environmental isolates are indicated in brackets. *shorter protein in SD9 as a result of a
deletion which produces a stop codon. bp:base pair. # ORFs detected in ST-1146 and not in PAO1, locus tag in SD9: C531_00040 and C531_14921.
doi:10.1371/journal.pone.0107754.g005
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microdiversity within the same population and the clinical isolate

SD9 can provide insights into the adaptation process to a total

different habitat. The interest of studying subpopulations of the

same bacterial species has been highlighted recently by Kashtan et

al. [43].

Whole genome comparisons based on CMG Biotools and Cd-

hit methods demonstrated that members of ST-1146 were

genomically closely related. Moreover, the environmental isolates

were more closely related among themselves than to the clinical

isolate, probably due to the adaptation to different habitats. These

isolates can be differentiated not only by the gene content but also

by the alleles of the shared genes. With the Cd-hit method and the

mutational profile analysis, strain PA14 is more closely related to

the ST-1146 isolates than PAO1. This is in accord with previous

analyses based on multilocus sequence typing and on ANIb

analysis (data not shown). Notably, PA14 is located in a separately

Figure 6. Gene map of phage present in SD9 and not present in the environmental isolates. Genes which first hit in BLAST was P.
aeruginosa phage F116 are indicated in black, genes which first hit was Pseudomonas phage H66 are indicated in white. Those genes which its first hit
was both phages with the same similarity and coverage percentage are indicated in grey. Genes not found in NCBI database are indicated with a
discontinuous line.
doi:10.1371/journal.pone.0107754.g006

Figure 7. The CRISPR-Cas system detected in the ST-1146 isolates. The system was constituted by the following elements: CRISPR2, contains
29 spacers in the environmental isolates and 30 in SD9 (additional spacer indicated by*); Cas1 (cas1) endonuclease; nuclease/helicase Cas3 (cas3); 3
associated proteins Csy1 (csy1), Csy2 (csy2) and Csy3 (csy3) and a CRISPR-associated endonuclease Cas6/Csy4 encoded by the cas6f gene. The spacers
(32 bp) are represented by gray rectangles between black triangles (repeats of 28 bp). The additional spacer found in the CRISPR2 of SD9 is labelled
by an asterisk. Two potential leader sequences (L) of up to 244 bp are represented in front of both CRISPR loci.
doi:10.1371/journal.pone.0107754.g007
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SNPs group of PAO1 [20] and considered significantly more

virulent than PAO1 [44], [45].

Two phenotypic typing methods have been classically applied to

discriminate P. aeruginosa strains: antibiotic profiles and pyocin

typing. Isolate SD9 is multidrug resistant (MDR), and OprD is

responsible for the selective permeation to carbapenem antibiotics.

Pirnay et al. [3] found 21 different defective oprD mutations

conferring resistance to carbapenem antibiotics in clinical strains

(CF and non-CF), and none these mutations were present in the

strains of that study. Members of narrow clonal complexes often

show identical oprD sequences [3]. In our study, the 3

environmental isolates showed identical nucleotide sequences for

oprD, and SD9 differed by only 1 nucleotide. Interestingly, the

environmental isolates were sensitive to imipenem while SD9 was

resistant (data not shown). However, alterations in OprD are not

the only mechanism for resistance against carbapenem antibiotics

[46]. Different types of bacteriocins have been described in P.
aeruginosa, and bacteriocin typing (production or sensitivity) has

been proposed for intraspecies differentiation. All ST-1146 isolates

presented the same conserved pys2 gene.

The differences among strains should be considered with respect

to not only what genes or alleles are present but also how efficient

these genes are regulated or expressed. A high number of

transcriptional regulators (at least 437) and two-component

regulatory systems (62) were found in the isolates of ST-1146

(9% of the total genes), which reveals the complexity of P.
aeruginosa metabolic regulation. Similarly in a previous work,

9.4% of P. aeruginosa genes were also considered to be involved

in regulation, but only 5.8% of the genes in Escherichia coli [47].

The differences in the allelic profile in these 2 PseudoCap

functional categories between the 4 isolates might indicate

adaptation to the habitat. The environmental strains share more

alleles in common in both categories than with SD9.

Single nucleotide substitutions have been studied in closely

related strains isolated from cystic fibrosis patients in Germany

(RN3) and in California (PA14) [10]. In RN3, 231 single

nucleotide substitutions (SNPs) were reported to PA14. The

authors suggested that the genes present in RN3 could provide a

selective advantage to adapt and persist in CF, accumulating SNPs

similar to those present in retS (major transcript regulators), mexH
(encoding efflux pumps), pvdD (siderophore), cndS (cyanide) or

phnA (quinolone). These 5 genes are present in all isolates of ST-

1146, although only retS and pvdD presented nucleotide

substitutions. The amino acid change (alanine, A, by threonine,

T) reported in RetS in clon C is considered an adaptive mutation

during a chronic infection in CF airways [8] and was also found in

isolate SD9 (position 190) of ST-1146. The environmental isolates

of ST-1146 and strains PAO1 and PA14 maintain an A in the

same position. The other amino acid substitution in clon C

(arginine, R by tryptophan, W) [8] was not found in any of the ST-

1146 isolates. The MexH protein was identical in ST-1146

isolates, but different from the corresponding PA14 protein. In our

study, MexD was identical in all of the ST-1146 isolates,

accumulating a high number of amino acid substitutions (10)

compared with PA14 (PA14_60830). It seems that the intraclonal

diversity did not evolve by random drift, but was driven by

selective forces that do not affect the same genes in different strains

of P. aeruginosa.

The category of genes ‘‘Related to phage, transposon or

plasmid’’ presented a relevant number of nucleotide substitutions.

All genes coding for phage Pf1 proteins were found in the ST-1146

strains, and the corresponding alleles were identical in the

environmental strains but were different from those present in

SD9. The prophage Pf1 genes were found in other P. aeruginosa

strains, as PA14 and RN3 and the Pf1-like genes are considered to

be the major mutation hot spot and the most rapidly evolving part

of the genome with 87 SNPs (PA14_48890-PA14_49000) [10].

This hot spot was also present in our isolates. Isolate SD9 showed

a higher number of nucleotide substitutions than the environmen-

tal isolates. These data imply that the specific affected loci were

subjected to the same diversifying selection pressure in the

environmental isolates but not in the corresponding Pf1 genes of

the clinical isolate.

The main difference in gene content between the environmental

isolates and SD9 are the genes similar to the phage F116/H66

genes, which were present only in the clinical SD9. These genes

are not present in the PA14 or PAO1 strains but 35 proteins are

present in P. aeruginosa ID4365 isolated from ocean water. The

presence of genes related to the phage F116/H66 in SD9 reflects

the genome plasticity of the studied isolates, which have adapted to

different environments. The presence of a Pf1 hot spot and the fact

that the prophage islands are critical determinants of in vivo
competitiveness [39] could justify the high number of nucleotide

substitutions detected in the clinical isolate SD9 but not in the

environmental isolates. A high percentage of different alleles in the

gene category ‘‘Related to phage transposon or plasmids’’ were

also found in the environmental isolates. Horizontal gene transfer

(HGT) may play a more important role than point mutations in

the adaptation of P. aeruginosa [48]. The detection and

characterization of the spacers contained among CRISPR

elements could be of significance in providing insights into the

evolutionary history of the bacterial isolates of ST-1146. The

spacers could store, in-between the conserved repeated elements,

the record of the succession of different episodes in which the

microorganism had to defend against the infection of foreign

genetic material (basically phages). The 4 isolates of ST-1146

could have been originated from the same clone since they have

almost the same CRISPR composition. The isolate SD9 presents

two additional and unique spacers in 2 of the 3 CRISPRs detected

in the 4 ST-1146 isolates, which can be the result of the infection

of foreign genetic material in its adaptation from the aquatic to a

new habitat. Alternatively, the similarities between the CRISPRs

in the environmental isolates could be the result of HGT among

strains occupying the same ecological niche [49], [50].

It has been argued that the ancestors of virulent bacteria and the

origin of virulence determinants lie mostly in the environmental

microbiota [51]. Almost all of the virulence factors, killing genes

and lung infection genes detected in experimental studies [8], [37],

[39] are present and highly conserved in our isolates but are

different from PAO1. The high level of conservation in the 18

strains studied by Wolfgang et al. [37] agrees with our results. Our

data indicate that 100% of these genes are present in the four

genomes studied. The ST-1146 isolates also have pilC and pilW,

which are killing genes [7] and are not present in the 4

environmental isolates studied by Wolfgang et al. [37].

P. aeruginosa presents a type III secretion system (T3SS), which

is not located in a pathogenicity island and is considered to be an

old element in the evolution of this species [47]. The exoenzymes

that belong to T3SS are exoU, a gene associated with increased

virulence that makes the strains more cytotoxic to mammalian

cells [52], and exoS, which is considered to be the major cytotoxin

required for colonisation and dissemination during infection [3].

All of the ST-1146 isolates possess exoU and not exoS confirming

the previous reports that exoS and exoU are mutually exclusive.

Our isolates have the PA14 specific killing genes [7], together

with the exoU gene. These genes are considered prototypical

elements that enhance the pathogenic characteristics in the strain

harbouring these genes [3] [48]. The relative conservation of the

P. aeruginosa Environmental and Clinical Genomes

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e107754



genomes of these strains implies that conserved selective pressures

contributed to the evolution of these genomes in different

environmental niches. The same virulence factors required for

infecting humans are also required for infecting plants, worms, or

insects [51]. Some authors argue that the natural eukaryotic hosts

(nematodes, insects, plants and amoebas) are the relevant natural

hosts in which the selection and evolution of pathogenic traits

occur, and the ability to infect humans is a secondary effect of this

interaction. Our results confirm the assumption of other authors

that there are no specific clones selected for a specific disease (or

habitat) [3], [21], [51] and that virulence is the result of a pool of

pathogenicity-related genes that interact in various combinations

in different genetic backgrounds [7]. The extensive conservation of

virulence genes in the genomes regardless of the clinical source

suggests that the disease-causing ability of this opportunistic

pathogen relies on a set of highly conserved pathogenic

mechanisms. The conservation of virulence gene determinants

also extends to the environmental reservoir, where a population is

constantly changing but conserving the necessary tools to survive

[37]. The clinical isolate SD9 has no specific gene that

distinguishes this isolate from the environmental isolates, although

different alleles could be detected, which is most likely due to the

pressure of the eukaryotic host.

The genomic comparison of the isolates of this study with strains

PAO1 and PA14 led us to conclude that not all genes of the

genome are subjected to the same evolutionary forces, as

demonstrated by the following: (a) The genomes are highly

conserved between our isolates, including those genes classified as

pathogenic factors, which shows that these genes are necessary to

colonise environmental and clinical habitats; although ST-1146

isolates have characteristics similar to strain PAO1, these isolates

present well-known genes that enhance the pathogenic character-

istics of powerful infective strain, such as PA14; (b) As

demonstrated in the mutational profile, some loci are subjected

to diversifying selection as an example of coevolution, as

phenazines and pyoverdines, that can be adapted in the

colonisation process; (c) Several genes are not commonly present

in all strains, such as exoU or killing genes, which are present in

PA14 and ST-1146 but not present in PAO1; the opposite is the

case of pyocins present in PAO1 and ST-1146 and absent in

PA14; (d) Some genes in ST-1146 are more similar to other P.
aeruginosa strains (not PAO1 and PA14), i.e., oprD gene is more

similar to the corresponding of P. aeruginosa PA7, a P.
aeruginosa outlier strain from the species that is not considered

P. aeruginosa by some researchers and pilA, B and C are similar

to P. aeruginosa PAK; (e) Other differences in the accessory

genome are represented by the presence of phages and prophages

with high mutation rates in the clinical strain, such as F166/H66

and Pf1. CRISPR elements organization and the associated genes

are also an evidence of the colonization of different habitats.

As a general conclusion, we consider the strains in the species P.
aeruginosa to constitute a monophyletic phylogenetic branch in

the genus [20], [21], [53]. The sequence type isolates selected are

very close-related in the whole genome comparisons. The

environmental isolates are closer related among them than to

SD9 in shared genes, common alleles and phage genes present.

Main differences in gene content are related to phages, and in the

interaction with phages detected in CRISPRs, which is a

consequence of the different habitats history. No differences in

virulence genes among clinical and environmental isolates are

detected. The genes implicated in pathogenicity are present and

conserved in the environmental strains and thus must be

considered potential pathogens. The difference must rely in the

regulation/expression of the genes.

Supporting Information

Figure S1 UPGMA dendrogram showing the distances
of common genes in 29 P. aeruginosa genomes. Bar
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chromosomal inversions on the adaptation and evolution of Pseudomonas
aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 47: 145–

158.

14. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, et al. (2006)
Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis

patients. Proc Natl Acad Sci USA 103: 8487–8492.

15. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, et al. (2010)

Genome diversity of Pseudomonas aeruginosa PAO1 Laboratory Strains.
J Bacteriol 192: 1113–1121.

16. Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, et al. (2008) Multilocus
sequence typing and phylogenetic analyses of Pseudomonas aeruginosa isolates

from the ocean. Appl Environ Microbiol 74: 6194–6205.

17. Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, et al. (2011)

Population structure of Pseudomonas aeruginosa from five Mediterranean
countries: evidence for frequent recombination and epidemic occurrence of

CC235. PLoS ONE 6: e25617.

18. Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC, et al. (2012)

Pseudomonas aeruginosa exhibits frequent recombination, but only a limited

association between genotype and ecological setting. PLoS ONE 7: e44199.

19. Bezuidt OK, Klockgether J, Elsen S, Attree I, Davenport CF, et al. (2013)
Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB.

BMC Genomics 14: 416.

20. Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, et al. (2013) Draft genomes of

12 host-adapted and environmental isolates of Pseudomonas aeruginosa and
their positions in the core genome phylogeny. Pathog Dis. doi: 10.1111/2049-

632X.12107 [Epub ahead of print].

21. Grosso-Becerra MV, Santos-Medellı́n C, González-Valdez A, Méndez JL,
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28. Özen AI, Ussery DW (2012) Defining the Pseudomonas genus: where do we

draw the line with Azotobacter? Microb Ecol 63:239–48.
29. Caraux G, Pinloche S (2005) PermutMatrix: a graphical environment to arrange

gene expression profiles in optimal linear order. Bioinformatics 7: 1280–1281.
30. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, et al. (2011)

Pseudomonas Genome Database: improved comparative analysis and popula-

tion genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:
D596–600.

31. Darling AE, Mau B, Perna NT (2010) Progressive Mauve: Multiple genome
alignment with gene gain, loss, and rearrangement. PLoS One 5: e11147.

32. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of
DNA polymorphism data. Bioinformatics 25: 1451–1452.

33. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify

clustered regularly interspaced short palindromic repeats. Nucleic Acids Res
35(Web Server issue): W52–7.

34. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to
display CRISPRs and to generate dictionaries of spacers and repeats. BMC

Bioinformatics 8: 172.

35. Grissa I, Vergnaud G, Pourcel C (2008) CRISPRcompar: a website to compare
clustered regularly interspaced short palindromic repeats. Nucleic Acids Res

36(Web Server issue): W145–8.
36. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified

bioinformatics toolkit. Bioinformatics 28: 1166–1167.
37. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, et al. (2003)

Conservation of genome content and virulence determinants among clinical and

environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA
100: 8484–8489.

38. Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, et al. (2012)
Genome wide identification of Pseudomonas aeruginosa virulence-relatedgenes

using a Caenorhabditis elegans infection model. PLoS Pathog 8: e1002813.

39. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C,
et al. (2009) Newly introduced genomic prophage islands are critical

determinants of in vivo competitiveness in the Liverpool Epidemic Strain of
Pseudomonas aeruginosa. Genome Research 19: 12–23.

40. Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, et al.
(2003) In vivo functional genomics of Pseudomonas aeruginosa for high-

throughput screening of new virulence factors and antibacterial targets. Environ

Microbiol 5: 1294–308.
41. Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in

Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 8066–8073.
42. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, et al. (2011)

Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:

467–477.
43. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, et al. (2014)

Single-cell genomics reveals hundreds of coexisting subpopulations in wild
Prochlorococcus. Science 344: 416–420.

44. Mikkelsen H, McMullan R, Filloux A (2011) The Pseudomonas aeruginosa
reference strain PA14 displays increased virulence due to a mutation in ladS.

PLoS ONE 6: e29113.

45. Li L, Abu Al-Soud W, Bergmark L, Riber L, Hansen LH, et al. (2013)
Investigating the diversity of Pseudomonas spp. in soil using culture dependent

and independent techniques. Curr Microbiol 67: 423–430.
46. Ocampo-Sosa AA, Cabot G, Rodrı́guez C, Roman E, Tubau F, et al. (2012)

Alterations of OprD in carbapenem-intermediate and -susceptible strains of

Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish
multicenter study. Antimicrob Agents Chemother 56: 1703–1713.

47. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, et al. (2000)
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunis-

tic pathogen. Nature 406: 959-064.

48. Kung VL, Ozer EA, Hauser AR (2010) The Accessory Genome of Pseudomonas
aeruginosa. Microbiol Mol Biol Rev 74: 621–641.

49. Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs
and their associated genes: evidence of horizontal transfer among prokaryotes.

J Mol Evol 62: 718–29.
50. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-

associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in

prokaryotic genomes. PLoS Comput Biol 1: e60.
51. Martı́nez JL (2013) Bacterial pathogens: from natural ecosystems to human

hosts. Environ Microbiol 15: 325–333.
52. Sato H, Frank DW (2004) ExoU is a potent intracellular phospholipase. Mol

Microbiol 53: 1279–1290.

53. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, et al. (2012) Concordance
between whole-cell matrix-assisted laser-desorption/ionization time-of-flight

mass spectrometry and multilocus sequence analysis approaches in species
discrimination within the genus Pseudomonas. Syst Appl Microbiol 35: 455–464.

P. aeruginosa Environmental and Clinical Genomes

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e107754


