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Simple Summary: Some non-pathogenic viruses that do not cause serious illness in humans can
efficiently target and kill cancer cells and may be considered candidates for cancer treatment
with virotherapy. However, many cancer cells are protected from viruses. An important goal
of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells.
To this end, researchers investigate expression patterns of cell entry receptors, which viruses use
to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of
two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these
viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses
the prospects for using these paramyxovirus receptors as biomarkers for successful personalized
virotherapy for certain types of cancer.

Abstract: The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors,
including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell,
virus replication, and the release of progeny virions from infected cells. The multi-stage process is
influenced by the efficiency with which the virus enters host cells via specific receptors. This review
describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles,
and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans
(sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published
data reviewed here show different levels of expression of cell surface receptors for both viruses in
different malignancies. Patients whose tumor cells have low or no expression of receptors for a
specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have
revealed that an expression signature for immune genes is another important factor that determines
the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures
of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective
for specific malignancies.

Keywords: oncolytic viruses; oncolytic virotherapy; viral oncolysis; measles virus; Sendai virus;
biomarkers; virus receptors; receptor retargeting; virus receptor expression; protein receptors;
glycosphingolipid receptors; gangliosides

1. Introduction

Oncolytic viruses are promising new agents for cancer treatment. They can kill cancer cells directly
through infection or indirectly through activation of the immune system [1,2]. For the most effective
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virotherapy, elimination of malignant cells with a combination of both direct and indirect destruction
is desirable. Like all viruses, oncolytic viruses use specific receptors to bind to and enter host cells.
This review describes the tendency of tumor cells to overexpress certain viral receptors, but it also
shows that, to varying degrees, these receptors are also expressed in many normal cells. However,
regardless of whether cells are normal or malignant, absence of receptors for a particular virus makes
the cells resistant to this virus infection. So, for better identification of individual patients who are
most likely to benefit from virotherapy, their tumor cells should be screened for the presence of virus
receptors. For many oncolytic viruses, such receptors are well characterized. Thus, simple tests that
evaluate protein or RNA levels in tumor tissue could provide information about expression levels of a
virus receptor.

Receptor mediated virus entry into a cell is only the first step in viral infection. Next, the virus
must break through the cellular antiviral defense system, which usually effectively protects normal
cells from any virus infection. Key players in such protection are interferons (IFNs); they help cells
detect the presence of a virus and, in response, restrict proliferation, slow down metabolic processes,
and trigger apoptosis [3,4]. However, malignant cells frequently have dysfunctional IFN pathways.
Such dysfunction helps them to evade the immune system and survive, thus promoting tumor growth.
The same IFN defects that help cancer cells escape immune surveillance make them vulnerable to virus
infection [5]. Nevertheless, not all malignant cells have dysfunctional IFN pathways. Some of them can
produce and/or respond to IFN signals and protect themselves from a virus infection. So, theoretically,
even if a cancer cell had receptors for a particular oncolytic virus it still could be resistant to infection
by the virus.

Some viruses require cells to express processing enzymes that modify or cleave the viral proteins
necessary for the formation of mature infectious virions. Thus, fusion protein in paramyxoviruses
is synthesized as an inactive precursor and is activated through proteolytic cleavage by the cellular
protease. Without such cleavage the virus is unable to sustain infection. For MV, this activating protease
is furin [6] and for SeV it can be a number of serine proteases (TPSB2 [7–9], PRSS1 [10], PLG [11],
F10 [12], and TMPRSS2 [13]). Some of these proteases are overexpressed in cancer cells [14–16].
In addition to those listed, the expression levels of other host genes influence vulnerability of cancer
cells to a virus infection. Figure 1 illustrates factors necessary for a cell to become vulnerable to
paramyxovirus infection.
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Figure 1. Factors influencing cells’ vulnerability to paramyxovirus infection. The host cell needs to
(1) express virus receptors (2) have a malfunctioning IFN pathway, (3) express proteases responsible for
proteolytic activation of virus fusion rotein, and (4) have other genes that require further identification.
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To predict if a patient is likely to respond to oncolytic virotherapy, testing for the presence of virus
receptors in tumor tissue is not sufficient. Additional tests are also needed to reveal the presence of
impaired IFN signaling in the patient’s cancer cells, and the expression of virus processing enzymes
and yet to be identified other proteins that accommodate virus infection. Currently, such tests are
commercially unavailable and need to be developed to optimize patient selection protocols for future
clinical trials.

Oncolytic paramyxoviruses might become powerful anticancer agents [17–19]. Figure 2 shows
the life cycle of the viruses, which can trigger syncytium (a polykarion) formation that protects virions
from host neutralizing antibodies during intratumor virus replication and spreading.
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Figure 2. A visual representation of the cell cycle of measles virus (MV) and Sendai virus (SeV). Both
viruses belong to the Paramyxoviridae family, but MV belongs to the Morbillivirus genus and SeV to
the Respirovirus genus. The life cycles of MV and SeV are very similar, but there are several important
differences. Their attachment to host cells occurs through different cell entry receptors and different
viral cell attachment proteins. The MV virus uses an H protein with hemagglutinin activity, while SeV
uses the HN protein with hemagglutinin (H) and neuraminidase (N) activities. In addition to these
proteins, the genomes of these viruses encode 5 structural proteins and accessary proteins. The main
structural proteins for both viruses are: Nucleoprotein (N), Phosphoprotein (P), Matrix protein (M),
Fusion protein (F), and Large Protein (L). The MV genome encodes two non-structural proteins,
C and V, [20], while the SeV genome encodes a set of non-structural proteins, collectively referred as
C-proteins (C’, C, Y1, Y2, V, W) [21]. Viral replication for MV and SeV follows a negative-stranded
RNA virus replication model in which genomic RNA (minus strand) is used as a template to create
a copy of positive sense RNA, employing the RNA-dependent RNA polymerase embedded in the
virion. The plus RNA is further used as a template for making multiple copies of the minus RNA.
The plus RNA is also translated by the host’s ribosomes, producing all viral proteins. Viruses are then
assembled from these proteins along with genomic RNA and budded from the host cell. Both MV and
SeV can form syncytia by fusing neighboring infected and non-infected cells into a polykayion.
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So, two related processes can occur: Efficient intratumor virus spread and the resulting mass
death of malignant cells. In general, oncolytic paramyxoviruses stimulate strong innate and adaptive
anticancer immune responses by generating multiple danger signals. They are potent inducers of IFN
and other immuno-stimulating cytokines, and they efficiently induce anticancer activity of natural
killer cells, dendritic cells, and cytotoxic T lymphocytes [18]. Finally, the viruses require proteolytic
cleavage of their fusion proteins by cellular serine proteases, which are sometimes overexpressed in
cancer cells [14–16], and could add an additional level of specificity to viral oncolytic activity. Moreover,
the gene that encodes a fusion protein in the paramyxovirus genome can be replaced with a constructed
fusion protein that could be processed by tumor-associated matrix metalloproteases.

The purpose of this review is to summarize and analyze information related to expression patterns
of receptors for oncolytic paramyxoviruses (both natural and artificially retargeted). In current literature
and existing databases, receptor expression patterns are evaluated by quantitative and semi-quantitative
measurements of RNA or protein. Analysis of the collected information may ultimately aid
in the development of tests to identify oncolytic viruses that are more effective against specific
malignancies. To compare expression levels in normal and cancerous tissues for each studied
virus receptor, we analyzed a Human Protein Atlas (HPA) database [15,16,22]. HPA accumulates
protein expression information from experiments performed by HPA project participants along with
RNA-Seq information from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx)
and Functional Annotation of the Mammalian Genomes (FANTOM5) project databases [16]. We also
analyzed relevant literature and gene expression patterns in the PubMed database.

Several paramyxovirus representatives have oncolytic properties. Among them are attenuated
measles and mumps viruses, Newcastle disease virus, and SeV [17,18]. In this review, information
related to MV and SeV receptors is compiled and analyzed.

2. Measles Virus as an Oncolytic Agent

MV (Box 1, Figure 3) causes a highly contagious disease transmitted by respiratory aerosols that
can trigger severe immunosuppression and even immune amnesia.

Box 1. Measles Virus (MV).

Taxonomy: The virus belongs to the genus Morbillivirus within the family Paramyxoviridae [23,24].
Host: Human
Origin: Most likely MV originated from a virus of non-human species.
Genome: MV has a single-stranded, negative-sense, non-segmented RNA genome that is ~16K nucleotides long.
Virion: MV is an enveloped virus with a lipid membrane.
Proteins: Nucleoprotein (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H),
large protein (L), and two nonstructural proteins C and V. Protein C is translated from the same mRNA as the
P protein but using an alternative start codon in an overlapping ORF. Protein V is translated from an edited
P mRNA.

Significant efforts by virologists in the second half of the 20th century were focused on finding a
safe and effective vaccine against MV. In 1954, one MV isolated strain, when passaged in cell culture,
gradually lost its pathogenicity, and became attenuated. From this attenuated variant of the virus,
one of the first vaccine strain (Edmonston, denoted in the following text as MV-Edm) was obtained.
Further passages of MV-Edm generated the more attenuated Schwarz and Moraten strains, which are
still in use for vaccination against measles [24,25].

During the 20th century clinicians reported on isolated cases where measles disease relieved or
caused remission of certain malignancies. Reports include descriptions of the regression of a number
of hematological malignancies that took place after MV infection (reviewed in [26]). At the end of the
century, virologists and oncologists started to investigate oncolytic properties of attenuated MV strains
that are incapable of causing serious infection.
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Figure 3. Schematic representation of the MV genome (A), virion (B) and host cell entry receptors
(C). The RNA genome (gRNA) contains six transcription units that codes 6 main structural proteins:
nucleoprotein (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H),
and large protein (L) RNA dependent RNA polymerase (RdRp). The viral genome also codes the
nonstructural V and C proteins, which are antagonists of host innate immunity. The transcription
units for each structural gene are separated by non-transcribed trinucleotide intergenic sequences and
together are flanked by short leader and trailer sequences containing the genomic promoter (on the
minus strand) and the antigenomic promoter (on the plus strand). Inside the virion, genomic RNA
forms a complex with N, L, and P proteins. The virus is enveloped by a lipid membrane that has
glycoproteins H and F associated with it as virion surface proteins. These proteins coordinate how the
virus finds cells and enters them. For H protein, three receptors have been identified: Complement
regulatory molecule CD46, the cell adhesion molecule nectin-4 and the signaling lymphocyte activation
molecule (SLAM). MV wild-type strains use SLAM and nectin-4 as cell entry receptors. Vaccine strains
and a small fraction of wild type strains, in addition, use CD46 as a cell entry receptor.

MV-Edm and its derivatives were the primary strains tested as oncolytic agents [27,28].
These strains can infect and kill a wide variety of cancer cells in vitro and in vivo. They are
currently being investigated preclinically and in clinical trials for treatment of a large spectrum
of malignancies, including ovarian, breast, head and neck cancers, as well as glioblastoma, multiple
myeloma, mesothelioma, and T-cell lymphoma [27,28]. A virus with oncolytic properties can be
delivered not only locally intratumorally, but also systemically, including by intraperitoneal and
intravenous injection routes. In some trials patients survival compared favorably with that of historical
controls and the side effects of the virotherapy were mainly mild [27,28].

3. Natural MV Receptors

For wild type and vaccine MV strains, the proteins CD150 (SLAM or SLAMF1) [29,30] and/or
nectin-4 (also called poliovirus-receptor-like 4 (PVRL4)) [31–33] function mainly as cell entry receptors.
A small fraction of wild type MV strains and all modern vaccine strains derived from the Edmonston
strain also use CD46 receptors (Table 1, Figure 3C) [34,35].
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Table 1. Natural receptors for MV and their expression in normal cells.

Receptor High Expression in Normal Cells Expression Evaluation

CD150/SLAM

Hematopoietic stem and progenitor cells
including T, B, natural killer,
and dendritic cells [36–38]

Multicolor flow-cytometry

Spleen red pulp cells and thymus cortical
and medullary cells [14–16]

Immunohistochemical
tissue staining
AB: HPA069319,CAB002438

Nectin-4/PVLR 4 Glandular cells of breast, stomach colon,
gall bladder and others [14–16]

Immunohistochemical tissue
staining
AB: HPA016903,CAB010401

CD46/membrane cofactor protein Glandular cells of breast, stomach, colon
and others [14–16]

Immunohistochemical tissue
staining
AB: HPA010775

Abbreviations: AB: Antibodies.

RNA and protein expression patterns of MV receptors are estimated by several different
approaches, including array technology, quantitative RT-PCR and RNA-Seq for RNAs, as well
as immunohistochemical tissue staining, flow cytometry and western blotting for proteins. Tables 1
and 2 respectively summarize expression patterns of natural MV receptors described in normal and
malignant cells.

Table 2. Expression of natural MV-Edm receptors in malignancies.

Malignancy CD150/SLAM
(Ref/Evidence)

CD46/Membrane Cofactor Protein
(Ref/Evidence)

Nectin-4
(Ref/Evidence)

Breast cancer [39]/IS, [14–16]/IS, TCGA dataset [33,40–45]/IS, FC, PCR
Cervical cancer [14–16]/IS, TCGA dataset

Colorectal cancer [14–16]/IS, TCGA dataset,
[46]/oligo-array

[14–16,33,45,46]/IS,
TCGA dataset

Endometrial cancer [14–16]/IS, TCGA dataset
Glioma [47] IS, FC
Liver cancer [14–16]/IS, TCGA dataset [48]/PCR, IS
Lung cancer [33,49]/IS, ELISA
Non-small cell lung cancer [50] IS, FC [46]/Oligo-array
Lymphoma [51]/PCR, IS, WB, FC [52] IS, FC
Melanoma [14–16]/IS, TCGA
Multiple myeloma [53]/IS, [46]/Oligo-array
Ovarian cancer [54]/IS, WB [55,56]/PCR, IS, WB, FC
Pancreatic cancer

[14–16]/IS, TCGA dataset
[57]/IS

Prostate cancer
Stomach cancer
Thyroid cancer [14–16]/IS, TCGA dataset
Urothelial cancer [14–16]/IS, TCGA dataset

Abbreviations: IS: Immunohistochemical staining; FC: Flow Cytometry; PCR: Quantitative RT-PCR; TCGA: Tissue
Cancer Genome Atlas; WB: Western immunoblotting.

CD150 (also called signaling lymphocytic activation molecule 1 (SLAM or SLAMF1)) is a
transmembrane glycoprotein member of the signaling lymphocytic activation molecule family.
It modulates the activation and differentiation of a wide variety of immune cells and is involved in
the regulation of both innate and adaptive immune responses [36,58–60]. CD150 is expressed on
the surface of hematopoietic stem and progenitor cells including natural killer cells, dendritic cells,
and memory B and T cells [36–38] (Table 1). Therefore, wild-type MV can infect various cells that are
involved in the host’s immune response, resulting in strong immunosuppressive effects and erasure of
immune memory from previous pathogen infections, causing immune amnesia [61,62].

In Japan, a set of MV-based oncolytic constructs was produced by removing MV’s ability to
interact with CD150 [63–65]. The removal of interaction ability between a virus and its receptor is called
“blinding”. It has been demonstrated that “blinding” results in the pathogenicity loss of the constructs,
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effectively making the MV strains non-infective to monkeys [66]. However, the constructs maintain
the ability to kill malignant cells, including tumors, in model animals [63–65]. Three types of human
malignancies were tested as murine xenografts, including breast, pancreatic, and lung carcinomas.
The animals treated with intratumoral injections of the experimental constructs survived longer
(Table 3).

Table 3. Retargeting MV receptors by blinding to CD150.

Blinding to Effect Cell Type or
Malignancy

Model and Type
of Virus Delivery

to Animals
Reference

CD150/SLAM,
no natural CD46

Viability of CD150-positive lymphoid
cells unaffected; reduced infection of
CD46-positive primary normal human
cells; tumor stabilized or regressed

Breast carcinoma Xenografts;
IT virus delivery [63]

Tumor stabilized;
animal survival prolonged

Pancreatic
carcinomas

Xenografts;
IT virus delivery

[64]

Lung carcinoma [65]

Nevertheless, some malignancies do overexpress CD150. Many cell lines generated from Hodgkin’s
and Burkitt’s lymphomas are characterized by very high levels of CD150 mRNA and proteins [51].
Both types of lymphomas can sometimes regress after natural infection with wild-type MV (reviewed
in [26]). It is likely that these malignancies could be successfully targeted by an oncolytic virus that
interacts with CD150 as a cell entry receptor. This hypothesis is supported by observations that MV-Edm
can infect metastases and primary tumors in mantle cell lymphoma murine xenografts [67]. Perhaps
other cancers that express high levels of CD150 could also be successfully targeted by attenuated MV
with the ability to interact with CD150.

CD46 (complement regulatory protein or membrane cofactor protein) is a membrane glycoprotein
that serves as a regulator of the complement system. By inhibiting complement activation in host
cells, this protein protects cells from complement associated damage [68]. CD46 is also involved in
other processes: It interacts with at least seven human pathogens and regulates the adaptive immune
response by inducing differentiation of T cells into regulatory T cells [69,70].

According to HPA, CD46 protein is expressed at comparatively high levels in glandular cells of the
breast, stomach, and colon as well as in several other cell types. At low levels it is expressed in almost
all human cells and tissues [14–16]. CD46 expression protects a cell from complement-dependent
cytotoxicity, so expression in a cancer cell promotes escape from immune surveillance and provides
the cancer cell with a strong survival advantage [71]. Therefore, advanced cancers are frequently
characterized by high levels of CD46 (Table 2). Two studies demonstrate that efficiency of cellular
virus entry into and killing of tumor cells correlates with CD46 cell surface protein expression [52,72].
The cell vulnerability to virus infection and syncytia formation has been shown to correlate with
the level of CD46 expression. Thus, at a low expression level of CD46, which is typical of normal
cells, infection occurs, but intercellular fusion is negligible. However, tumor cells with a higher CD46
expression are much more vulnerable to virus infection along with the formation of syncytia [72].

Based on these observations, CD46 could be included in a list of biomarkers to predict potential
tumor response to virotherapy by attenuated MV.

Nectin-4 (also called PVRL4—Poliovirus-Receptor-Like 4) is a transmembrane protein that belongs
to a family of Ca2+-independent immunoglobulin-like cell adhesion molecules. It contributes to cell
to cell adhesion and intercellular communication [73,74] and serves as a receptor for MV (Table 1,
Figure 3A). According to HPA, the nectin-4 protein is expressed at high or medium levels in glandular
cells of breast, colon, gall bladder, and stomach as well as in some other cells and tissues [14–16].

Nectin-4 gene expression promotes malignant cells’ evasion of growth constraints related to
matrix detachment. This gene has been frequently found to be amplified and overexpressed in some
solid tumors [75,76]. A summary of malignancies in which nectin-4 has high expression levels is
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presented in Table 2. Most likely, this protein helps MV-Edm to enter a malignant cell. The observation
that nectin-4 was specifically used for MV entry into nectin-4 positive cancerous breast and colon
cells supports this hypothesis [45]. Therefore, nectin-4 is another candidate to be included in a list of
sensitivity biomarkers for oncolytic attenuated MV.

4. MV Retargeting for Binding New Cancer-Associated Proteins

Cellular entry of MV-Edm requires the interaction between viral H protein and cell surface
receptors. In many types of normal cells, expression of CD150, CD46, or nectin-4 is detected. To make
the oncolytic virus safer by targeting cancer cells more specifically, it would be beneficial to modify
the virus preference for host cell entry. By changing viral H protein, which is responsible for the
virus–receptor interaction, MV-Edm can be retargeted to infect different cells.

The affinity of the receptor for the virus is an important determinant of infectivity and, consequently,
infection-induced cell fusion. In this context, affinity is a measure of the strength with which a virus
binds to a cellular receptor. The fusion of infected cells with each other depends on this affinity and on
the density of receptors on the cell surface, which is a measure of the concentration of receptors in
the cell membrane. This density depends on the levels of intracellular expression of the receptor that
can be measured. There is a threshold for receptor expression below which cell fusion is ineffective.
There is also another threshold for receptor expression, above which there is no further increase
in membrane fusion in cell culture [77,78]. Because of this non-linear relationship between viral
infection-induced cell fusion and the level of expression of the receptor in vivo, it is very important to
test any retargeting strategy.

Retargeting can be achieved by inserting genes that encode single-chain fragments of antibodies
or other receptor-binding ligands into the viral genome (Figure 3A). This genetic engineering procedure
allows for the creation of MV constructs that target a wide range of cancer associated proteins.
Several studies describe such virus retargeting modifications (Table 4). The retargeting is a result
of genomic changes that enable MV to use different cancer cell associated proteins as cell entry
receptors (Table 4).

Table 4. Retargeting MV for binding to new receptors.

Blinding to Introducing
Property to Bind Effect Cell Type or

Malignancy

Model and Type of
Virus Delivery to

Animals
Reference

Via fusion of viral H protein with epidermal growth factor (EGF) or insulin-like growth factor 1 (IGF1)
receptor binding domains

None

EGF or IGF1
receptors

Infection of EGF or IGF1
receptor positive and
CD46 negative cells

EGF or IGF1
receptor positive
cells

Cell culture [79]

Via fusion of viral H protein with a single-chain variable fragment (scFv)

Carcino-embryonic
antigen (CEA)

Infection of CEA
positive cells CEA-positive cells Cell culture [80]

CD20 Delayed growth Fibrosarcoma Xenografts;
IP virus delivery [81]

CD38

Malignant cells less
tumorigenic,
animal survival
prolonged

Multiple myeloma

Xenografts;
construct premixed
with tumor cells
before implantation

[82]

Via fusion of viral H protein with echistatin, which is a 49-residue peptide from family of disintegrins

Integrin
alpha(v)beta3

Tumor regressed or
stabilized Multiple myeloma Xenografts;

IT virus delivery [83]
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A proof of the possibility of redirection of MV cell targeting was obtained with engineered MV-Edm
based constructs targeting three cancer associated proteins: EGF, IGF1 [79], and carcinoembryonic
antigen (CEA) [80]. In cell cultures, MV-Edm constructs can successfully target, infect, and destroy
corresponding malignant cells that overexpress one of these three proteins.

The retargeting genetic engineering approach was further used for creation of viral constructs
with ability to recognize two other membrane associated proteins. One was phosphoprotein CD20 [81],
which is expressed in normal hematopoietic cells and overexpressed in B-cell lymphomas, leukemias
and some other malignancies (Table 5). Another was glycoprotein CD38 [82], expression of which
characterizes immune cells and overexpression characterizes NK/T-cell lymphomas, lymphocytic
leukemias, multiple myelomas and other malignancies (Table 5). Antitumor effects of both constructs
were tested in animal xenografts. Implanted CD20-positive fibrosarcomas demonstrated delayed
growth after IP construct delivery, while CD38-positive multiple myeloma cells became less tumorigenic
after premixing with the corresponding viral construct.

Table 5. Expression of retargeted measles virus receptors in normal and malignant cells.

Receptor Name Alternative Name
Expression

In Malignancies In Normal Cells and Tissues

CEA
glyco-proteins

Carcinoembryonic
antigen-related cell
adhesion molecules

High or moderate in gastric,
colorectal, lung ovarian, breast,
and cervical cancers [84]

Different subfamily members
expressed to different degrees
in hematopoietic cells,
glandular cells of
colon, etc. [14–16]

CD133 Prominin-1 (PROM1)

High in leukemias [85],
gliomas [86,87], colorectal,
prostate, endometrial,
pancreatic and thyroid
cancers [14–16], and non-small
cell lung cancers [88].
Levels in gliomas [87] and
non-small cell lung cancers [88]
are negatively correlated with
patient survival [87]

High in glandular cells of gall
bladder, endometrium, cervix
and uterus [14–16].
Also expressed on the surfaces
of hematopoietic stem
cells [89], epithelial progenitor
cells [90], and neural and glial
stem cells [86]

CD20

MS4A1, B1, Bp35, CVID5,
LEU-16, MS4A2, S7,
membrane spanning
4-domains A1

Frequently high in B-cell
lymphomas [91], B-cell
leukemias [92], and melanoma
stem cells [93]. Less frequent
in Hodgkin’s lymphoma [94],
myeloma [95],
and thymoma [96]

Low and moderate expression
in white and red pulp in
spleen, hematopoietic cells of
bone marrow, lymphoid
tissues of appendix. and
other tissues [14–16]

CD38 Cyclic ADP ribose
hydrolase

High in chronic lymphocytic
leukemia [97,98]
in NK/T-cell lymphomas [99],
and in multiple myeloma [100]

High in large spectrum of
immune cells as well as
glandular cells of prostate and
seminal vesicles [14–16]

Epidermal growth factor
receptor 1 (EGFR1) ErbB 1, HER1

Particular high in gliomas,
high in renal, urothelial, lung,
liver, and many
other cancers [14–16]

Low levels in a number of
normal tissues but high levels
in trophoblastic cells of
placenta [14–16]

Epidermal growth factor
receptor 2 (EGFR2)

Receptor
tyrosine-protein kinase,
ErbB-2, HER2/neu,
ERBB2, CD340

Frequently highly
overexpressed in malignancies
including breast [101],
stomach [102],
endometrial [103,104], ovarian,
uterine [105] colorectal [106],
thyroid [107], urothelial [108]

Medium levels in glandular
cells of appendix, breast,
and cervix, myocytes,
respiratory epithelium,
and urothelial cells [14–16]
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Table 5. Cont.

Receptor Name Alternative Name
Expression

In Malignancies In Normal Cells and Tissues

Insulin-like growth
factor receptor (IGF1R) IGF-1 receptor

High in lymphomas, thyroid,
liver, pancreatic, and many
other cancers [14–16]

Low level of expression in
bone marrow hematopoietic
cells, respiratory cells, and
glandular cells of
gallbladder [14–16]

Folate receptor 1
(FOLR1)

Folate receptor alpha,
Glutamate
carboxypeptidase II
(GCPII), and folate
hydrolase 1

High in ovarian
cancers [14–16]; particularly
strong and frequent expression
of mRNA observed in
non-mucinous ovarian
cancers [109]

Medium levels in brain, lung,
and salivary gland
tissues [14–16]

Prostate specific
membrane antigen,
(PSMA)

High expression in malignant
prostate cells [110]

High expression in prostate
tissues [110]

Urokinase receptor UPA, UPAR, CD87,
PLAUR

Infrequently expressed in
malignant cells [14–16]

High in bone marrow,
lymphoid tissues, neutrophils,
and respiratory epithelial cells
of the nasopharynx and
bronchus

An alternative approach for MV-Edm retargeting to cell surface antigens of choice was developed
by using cystine knot proteins instead of single chain antibodies [83,111]. These short proteins are
capable of binding integrins, which are frequently overexpressed by a tumor’s vascular endothelium.
The retargeted virus was able to infect and kill cancer cells that expressed the integrins, including
glioblastoma, medulloblastoma, melanoma and others [111]. Most importantly, when injected
intravenously into animals carrying glioblastoma, the construct reached the tumor and caused
cytopathic effects [111].

The introduction of the ability to bind new viral receptors may be accompanied by blinding
to the natural receptors CD150 and CD46. This blinding reduces the potential infection of CD150-
and CD46-positive normal cells because CD150 is expressed on the surface of normal hematopoietic
stem and progenitor cells [36–38], while high CD46 expression characterizes glandular cells of many
organs [14–16]. Blinding increases the safety of viral construct application because MV infection is
usually detrimental to host healthy cells.

Blinding to specific receptors became possible after identification of residues in H protein that
are necessary for CD150 or CD46 binding [112]. Multiple retargeting strategies have been used to
modify the MV-Edm genome. These include the genomic introduction of genes encoding single-chain
antibody fragments (scFv), cystine knot proteins, and designed ankyrin repeat proteins (DARPins).
The antibody fragment strategy allowed the targeting of various cancer associated proteins such as
CD38, epidermal growth factor receptor 1 [113,114], folate receptor 1 [109], prostate specific membrane
antigen [110], human epidermal growth factor receptor 2 (HER2/neu) [77], prominin or CD133 [115,116],
and plasminogen activator urokinase receptor [117,118]. The cystine knot strategy targeted integrins,
which are highly expressed in glioblastomas, medulloblastomas and melanomas [111]. Finally,
the DARPin strategy targeted ovarian carcinomas that express HER2/neu or/and epithelial cell adhesion
molecule (EpCAM) [119,120], along with EGFR-expressing glioblastomas [121]. To reduce bystander
killing of receptor-expressing normal cells, a gene that encodes an engineered viral fusion protein
and that can be processed by tumor-associated matrix metalloproteases was added to the virus
genome. This introduction made the targeting of the virus to tumor cells very specific [121]. All of
these new constructs were tested in cell lines and some in xenograft models of human malignancies,
and demonstrated strong or moderate antitumor effects (Table 6).
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Table 6. MV receptor blinding and retargeting.

Blinding to Introducing
Property to Bind Effect Cell Type or

Malignancy

Model; Route
of Virus

Delivery to
Animals

Reference

CD150/SLAM
and CD46

Via fusion of viral H protein with scFv

CD38 or EGFR
Tumor stabilized;
animal survival
prolonged

CD38 or EGFR
positive cancers

Xenografts; IT
or IV [113,114]

Folate receptor 1
(FOLR1)

Biodistribution more
specific towards
malignant tissues;
tumor stabilized;
animal survival
prolonged

Ovarian cancer Xenografts; IV [109]

Prostate specific
membrane antigen,
(PSMA)

Tumor stabilized;
animal survival
prolonged

Prostate cancer Xenografts; IT [122]

HER2 protein

Malignant cells
infected in vitro,
tumor regressed,
animal survival
prolonged

Ovarian cancer Xenografts; IP [77,78]

CD133, Prominin1
(PROM1)

Tumor formation
inhibited; animal
survival prolonged

Glioblastoma, lung
metastases of colon
cancer and
hepatocellular
carcinoma

Xenografts; IT
or IV [115,116]

Urokinase receptor

Delayed
development of lung
metastases, animal
survival prolonged

Breast cancer Syngeneic and
xenografts; IV [117,118]

Via fusion of viral H protein with cystine knot proteins

Integrins

Malignant cells
killed in vitro;
cytopathic effects
produced in vivo

Glioblastoma,
medullo-blastoma,
melanoma

Glioblastoma
xenografts; IV [111]

Via fusion of viral H protein with designed ankyrin repeat proteins (DARPin)

Bispecific binding
to HER2/neu,
and/or EpCAM

Animal survival
significantly
prolonged, tumor
burden reduced

Ovarian cancer Xenografts; IT [119,120]

EGFR Malignant cells
killed in vitro

Glioblastoma
multiforme Cell lines [121]

5. SeV as an Oncolytic Agent

SeV causes respiratory infections in mice and other rodents (Box 2). However, it is not associated
with any human disease and can be a safe oncolytic agent. Safety of SeV for humans, including small
children, has been confirmed experimentally. The virus in the form of nasal drops has been tested as a
vaccine against human parainfluenza virus type 1 (HPIV-1), which causes respiratory symptoms in
humans. Testing in adults and children demonstrated that experimental administration of wild type
SeV triggered production of neutralizing antibodies towards HPIV-1 and was well tolerated [123,124].
Replication competent SeV vector showed an excellent safety profile in a stage 1 clinical trial [125] and
is considered highly suitable as an antigen delivery tool [126,127]. Pre-existing anti-vector immunity
didn’t affect the immunogenicity of SeV-delivered antigens [126].
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Box 2. Sendai Virus (SeV).

Taxonomy: The virus belongs to the genus Respirovirus within the family Paramyxoviridae [23].
Host: The virus causes respiratory infections in mice, hamsters, guinea pigs, rats, and other rodents [128].
Genome: SeV has single-stranded, negative-sense, non-segmented RNA genome that is ~15K nucleotides
long [129].
Virion: SeV is an enveloped virus with a lipid membrane.
Proteins: Nucleoprotein (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin-
neuraminidase (HN), large protein (L), and nonstructural proteins collectively referred as C-proteins (C’, C, Y1,
Y2, V, W) that are translated from an alternative RNA transcript of the P gene [129].

Wild-type SeV can replicate and productively infect a large spectrum of malignant cells ex vivo
(Table 7). A pilot study demonstrated that some canine mastocytomas can be eradicated with the help
of SeV injections [130]. However, the virus is infectious and immunosuppressive for laboratory rodents.
Therefore, for studying SeV oncolytic properties in a rodent model, a set of viral constructs that are
nonpathogenic for experimental mice was created. These constructs were tested in animals bearing a
variety of human xenograft tumors including sarcoma, melanoma, pancreas, colon, hepatocellular
and prostate carcinomas. The SeV constructs promoted growth suppression or even complete tumor
eradication of these malignancies [131–134], and elimination of established brain tumors [135].

In addition, UV- inactivated SeV virions have immune-stimulating properties: In syngeneic mice
they promote immunomodulated tumor regression of colon [136,137], bladder [138], and kidney [139]
cancers. In murine xenografts these virions contribute to the eradication of human prostate cancer [140].

Table 7. Cancer cell-lines susceptible to SeV infection.

Cell Line Type of Malignancy Reference

Human origin

MCF7 Breast carcinoma [141]

HeLa Cervical carcinoma [142]

CaCo2 Colon carcinoma [13]

U118 Glioblastoma [143]

U87MG Most likely, human glioma [144]

Hep G2 Hepatic carcinoma [142,145,146]

Huh7 [146,147]

A549 Lung carcinoma [142,148–150]

Calu-3 [13]

U937 Histiocytic lymphoma [149]

Namalwa Burkitt’s lymphoma [149,151]

PC-3 Prostate carcinoma derived from metastatic site in bone [152]
DU145 Prostate carcinoma derived from metastatic site in brain

Murine origin

4T1 Mammary gland metastatic adenocarcinoma [142]

So far, SeV has not been widely tested in clinical settings. An attempt to treat one case of human
leukemia with a set of viruses, including SeV, was undertaken in 1964 at the Clinical Research Center of
University Hospitals of Cleveland. Short-term remission in one patient affected by acute leukemia was
observed after IV virus injection [153]. A few patients affected by various malignancies were treated
with intradermally or intratumorally injected SeV in Moscow (Russia) in the 1990s. In a small fraction
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of patients treated with the virus, primary tumors and metastases disappeared, even when virotherapy
was a monotherapy. These patients experienced a pronounced long-term remission that sometimes
lasted more than 5–10 years [154].

6. SeV receptors

SeV, as a representative of respiratory viruses, uses mainly molecules containing sialic acid
residues (sialylated proteins as well as lipids) as cell entry receptors. Thus, bovine sialoglycoprotein
(GP2) [155], human asialoglycoprotein receptor (ASGR1) [145,156], and sialoglycoprotein (glycophorin
A (GYPA)) [157] bind SeV with high affinity and could act as virus receptors. Glycans (polysaccharides)
attached to lipids could also bind SeV and serve as entry receptors. For example, two carbohydrates,
sialyl Lewis-x and VIM-2, when attached to lipids, are capable of binding to SeV with high affinity [158].
Other SeV receptors are represented by gangliosides (Table 8, Figure 4).

Table 8. Cell entry receptors for sendai virus.

Sub-Type of
Molecule Receptor Affinity to

SeV Ref. Function in Normal
Human Cells

Expression in
Normal Human

Cells

Glycoproteins

Human
asialoglyco-protein
receptor 1

ASGR1 High [145,156]

Removes the target
glycoproteins from
circulation in the
liver

Hepatocytes [14–16]

Bovine
glycoprotein 2 Glycoprotein2/GP2 High [155] -

Human
sialo-glycoprotein

Glycophorin
A/GYPA/CD235a High [157]

Defines the antigenic
determinants for
some blood groups

Bone marrow,
immune cells,
[14–16]

Fucosylated glycans

Tetra-saccharide
Sialyl Lewis-x
antigen
(sLeX/CD15s) High [158]

Serves as a blood
group antigen and
participates in
cell-cell recognition
process.

Bone marrow,
erythrocytes [14–16]

Ceramide-
dodeca-saccharide

VIM-2 antigen
(CD65s) Unknown Granulocytes and

monocytes [158]

Sialylated gangliosides

Ganglio-series

GD1a, GT1b, and
GQ1b, Not reported [159]

Cell-cell recognition,
adhesion, and signal
transduction

Granulocytes,
normal myeloid cells
[160]

GT1a, GP1c High [161–163] -

Many cell types, but
mainly the cells of
the nervous system
[164]

GD1a, GT1b Moderate [161–163] -

GQ1b Very high

GM3 Low [165] Cell–cell recognition Blood cells, liver

Neolacto-series

Sialosylparagloboside
(SPG,
NeuAcα2-3PG)

Very high [163,166] - Common for
non-neural cells

NeuAcα2-3I
NeuAcα2-3i [165] -

NeuGca2-3I
NeuAca2-6PG
NeuAca2-6I

Moderate -
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Sialyl-Lewis X antigen (sLeX), also called stage-specific embryonic antigen 1 or cluster of
differentiation 15 (CD15s), is one of the most important blood group antigens. It is a tetrasaccharide
and may be attached to a lipid or a protein [92–94]. SLeX demonstrated high binding affinity to SeV
when attached to sphingolipid [158]. However, whether sLeX can bind with a virus when attached
to a protein is unknown. Expression of sLeX correlates significantly with malignant cell invasion,
tumor recurrence and overall patient survival for an extremely broad range of cancers (Table 9)
(reviewed in [167]). It is likely that sLeX positive cancer cells use the leukocyte adhesion pathway
for extravasation, which facilitates tumor invasion and spread. Tumors with high expression of this
antigen can bind SeV and are potential candidates for SeV therapy.

Table 9. Receptors for SeV and their expression in malignancies.

Receptor Malignancy/Effect of Receptor Expression Ref. Monoclonal AB
Availability

Human
asialoglyco-protein
receptor 1

High expression in liver cancer and occasionally
moderate expression in gliomas, renal, pancreatic,
colorectal, and ovarian cancers

[14–16] Two variants [14–16]

Sialyl-Lewisx

Antigen (sLeX/CD15)

Non-small cell lung cancer/enhances post-operative
recurrence [168,169]

Many variants [170]

Lung cancer, distant metastases [171]

Colorectal cancer/promotes liver metastases, decreases
time of disease-free survival [172–174]

Gastric cancers/decreases patient survival time [175,176]

Breast cancer/decreases patient survival time [177–179]

Prostate tumor/promotes bone metastases [180–182]

Cell lines of variable origin/high expression enhances
adhesion of malignant cells to vascular endothelium [183]

Variable cancers/high expression related to lymphatic
invasion, venous invasion, T stage, N stage, M stage,
tumor stage, recurrence, and overall patient survival

Review [167]
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Table 9. Cont.

Receptor Malignancy/Effect of Receptor Expression Ref. Monoclonal AB
Availability

VIM-2 antigen
(CD65s) Acute myeloblastic leukemias [160,184,185] One variant [170]

GD1a
Breast cancer stem cells [186] Many variants [170]
Castration-resistant prostate cancer cells [187]

GT1b Brain metastases from colon, renal, lung, esophagus,
pancreas, and mammary carcinomas [188] Three variants [170]

SPG
Castration-resistant prostate cancer cells [187] One variant [189]
Lymphoid leukemia cells [189,190]

VIM-2 antigen, (also called cluster of differentiation 65 sialylated [CD65s]), is a carbohydrate that
can be attached to a sphingolipid and has high binding affinity to SeV [158]. VIM-2 is expressed on
surfaces of granulocytes, normal myeloid cells, and cells of acute myeloblastic leukemias [160,184].
Its expression is critically important for extravascular infiltration of acute myeloid leukemia cells [185].
Perhaps myeloblastic leukemias that are resistant to modern therapies could be treated with SeV.

Gangliosides are sialic acid-containing glycosphingolipids that are capable of binding SeV. It has
been demonstrated that these molecules can serve as SeV cell entry receptors (Table 7). There is
substantial evidence that at least three of them, SPG, GD1a, and GT1b, are highly involved in
carcinogenesis and metastasis (Table 8). High expression of SPG characterizes lymphoid leukemia
cells [189,190] and GD1a characterizes breast cancer stem cells [186]. High expression of both SPG
and GD1a was found in castration-resistant prostate cancer cells [187]. High expression of GT1b is
universally associated with brain metastases that originate from an extremely broad spectrum of
cancers [188].

GM3, GD1a, and GT1b expression in a cell might be less predictive of SeV infectability than
the expression of other molecules (104). Therefore, sLeX, VIM-2 and SPG are potential biomarkers for
identification of cancers that could be efficiently infected by the virus. However, it is likely that new
receptors for the SeV virus will be identified in the future.

Cellular expression of gangliosides is currently evaluated using glycan-specific antibody-based
methods. These methods are not always suitable for large-scale screenings. Moreover, anti-ganglioside
monoclonal antibodies are not always commercially available [170]. Therefore, indirect measurement
of ganglioside expression through expression levels of fucosyltransferases and glycosyltransferases,
which are enzymes that finalize ganglioside synthesis, represents an alternative. Expression of these
enzymes and production of gangliosides are highly correlated [187]. At least five representatives of
the fucosyltransferase family and six representatives of the glycosyltransferase family are responsible
for synthesis of gangliosides that could serve as SeV receptors (Table S1). All these proteins are
frequently overexpressed in various tumors and their expression levels correlate with tumor metastatic
status and duration of patient survival (Table S2). These enzymes deserve to be studied as potential
biomarkers of the oncolytic infectivity of SeV.

7. Potential Problems of Virus Delivery and Retargeting

7.1. Preexisting Immunity

One potential problem of MV and SeV applications as oncolytic agents is pre-existing antiviral
immunity, which might affect systemic tumor-targeted viral delivery and intratumoral infection spread.
For MV, this immunity is a result of childhood vaccination or measles disease. For SeV, previous
infection with human parainfluenza virus type 1 (HPIV1) causes this immunity to the extent that the
two viruses share some antigenic determinants [123,124]. It has been shown for SeV [191] and for
MV [192] that prevalence of specific neutralizing antibodies against these viruses in adult human
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population is extremely variable. It is still largely unknown to what degree preexisting immunity may
decrease the effect of oncolytic virotherapy. However, some virus delivery approaches discussed in the
next section might help minimize this problem.

7.2. Virus Transportation and Tumor Delivery

Oncolytic virus constructs can be preloaded to specific cell carriers ex vivo and subsequently,
after intravenous injection, transported to tumor sites in vivo [193,194]. Hypothetically, dendritic cells
(DCs) could serve as oncolytic virus transportation vehicles. These cells can be infected by both vaccine
and wild type strains of MV [195] via the CD150 cell receptor [196]. MV-infected DCs have higher
motility toward the epithelial cell layer compared to uninfected ones. Therefore, MV infection enables
rapid trafficking of the virus toward epithelial cells [197] and, perhaps, to other tissues including
malignant tumors and metastases. Blinding of MV constructs to CD150 increases virus safety but
might decrease efficiency of virus tumor delivery through its natural cell carriers such as DCs. SeV can
also infect DCs [198] and can transform them into activated mature cells that efficiently contribute to
tumor clearance and animal survival [199]. It is not known if MV-Edm or SeV-loaded DCs could ensure
viral antibody protection and efficient tumor delivery; however, it is likely. Researchers should not
ignore this hypothetical natural route of virus delivery to the tumor. For example, reovirus-loaded DCs
protect the virus from neutralizing antibodies and facilitate viral infection of transplanted melanoma
cells in model animals [200,201]. The ability of DCs to migrate after viral infection may facilitate viral
tumor delivery without detection by host pre-existing immunity. Consequently, this ability might be a
great asset for oncolytic virotherapy.

8. Additional Factors Determining Cell Sensitivity to Viruses

The presence of viral receptors is a necessary but not sufficient condition for a cell to be vulnerable
to viral infection. Despite the presence of the receptors, a malignant cell can be resistant to the virus
when the functioning of the IFN pathway is not impaired [202]. If the pathway is active in the cancer
cell and the IFN signal is transduced from the cell surface to its nucleus, the cell can be protected from
viral infection.

The cells’ ability to activate constitutively expressed genes of the IFN response pathway (ISGs)
was the main prognostic factor for detection of carcinomas resistant to MV-Edm. Virus resistance
of ovarian carcinomas and gliomas was linked to characteristic expression patterns of 22 ISGs [28].
Similar results were obtained for other malignancies; the sensitivity of melanoma cells to attenuated
MV was associated with their response to type I IFN, even though MV receptor levels were the same
among the tested cells [203].

The absence of certain proteases is another reason for the inability of the host cell to produce
infectious virus. Expression of type II transmembrane serine proteases (TTSPs) by a cell is critical for
the proteolytic activation of paramyxovirus F-proteins. Furin serves as an F-protein activating protease
for MV [6] while other proteases such as PSB2 [7–9], PRSS1 [10], PLG [11], F10 [12], and TMPRSS2 [13])
serve a similar function for SeV. A host cell that does not express high enough levels of TTSPs can
produce only noninfectious virions, rather than infectious virus particles. Expression patterns of
TTSPs are variable among malignant cells and some cancers’ progression has been shown to relate to
alteration of these patterns [204]. Therefore, in some cancer cells that express paramyxovirus F-protein
activating TTSPs, the virus can undergo multiple rounds of infection, whereas in other cells which do
not express these proteases, the virus can undergo only one, if any, rounds of infection.

In addition to those listed above, there are probably many more genes and proteins that affect the
vulnerability of cancer cells to viral infection. Therefore, more research is needed to determine the
target tumor cell pathways responsible for productive viral replication, post-replication processing,
assembly, and budding of virions.
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9. Conclusions

The cell entry receptors of oncolytic paramyxoviruses are represented by different types of
molecules such as proteins and glycans. The molecules that serve as viral receptors for attenuated MV
and SeV have extremely variable expression patterns in malignancies. A reliable predictive model for
categorization of tumor cells according to their susceptibility to oncolytic virus infection requires many
input parameters, which include but are not limited to expression patterns of viral receptors. Most
likely, gene signatures of several immune-related genes such as IRGs and certain type II transmembrane
serine proteases may serve as useful input parameters for predictive models. The creation and
verification of a multi-parameter predictive model should have measurable therapeutic benefits for
oncolytic virotherapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3659/s1,
Table S1: Processing transferases for Sendai virus receptors; Table S2: Overexpression of processing transferases
for Sendai virus receptors in malignancies.
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CEA Carcinoembryonic antigen
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
FOLR1 Folate receptor 1
HER2/neu Tyrosine-protein kinase erbB-2 (human epidermal growth factor receptor 2)
IFN Interferon
IP Intraperitoneal delivery
IT Intratumoral delivery
IV Intravenous delivery
MV Measles virus
PVRL4 Poliovirus-receptor-like 4, molecule (nectin-4)
SeV Sendai virus
SLAM/SLAMF1/CD150 Signaling lymphocytic activation molecule 1
SPG Sialosylparagloboside
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