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Abstract: B cells and in particular IL-10-secreting B cells emerge as important players in immune
balance during pregnancy. We have recently revealed that CD19-deficient (CD19−/−), B cell-specific
IL-10-deficient (BIL-10−/−) and B cell-deficient µMT pregnant mice are highly susceptible to LPS-
induced preterm birth (PTB). We aimed to analyze the ability of IL-10-secreting cells to protect from
PTB and the underlying mechanisms. Wild type (WT), CD19−/−, BIL-10−/− and µMT mice were
treated with LPS at gd16 and the cellular immune response was investigated 24 h later. LPS-treated
BIL-10−/− dams showed a more pronounced PTB phenotype compared to WT, CD19−/− and µMT
females, and increased inflammatory and reduced anti-inflammatory mediator concentrations in
the peritoneal cavity and serum. CD19−/−, BIL-10−/− and µMT mice displayed altered immune
cell population frequencies in the blood and uterus with lower numbers of IL-10-secreting B cells
and T cells. BIL-10−/− mothers presented decreased frequencies of uterine CD4+CD25+Foxp3+ Treg
cells. Co-stimulatory molecules are critical for feto-maternal tolerance and IL-10 secretion. We found
dysregulated PD-1 expression in peripheral blood and ICOS expression in the uterus of CD19−/−,
BIL-10−/− and µMT dams. Our data show that B cell-specific IL-10-signaling is essential for a
balanced maternal immune response to an inflammatory stimulant that cannot be hampered without
IL-10-secreting B cells.

Keywords: B cells; IL-10; B10 cells; regulatory B cells; programmed cell death protein-1 (PD-);
inducible costimulator (ICOS); preterm birth

1. Introduction

Preterm birth (PTB), the delivery of an infant at less than 37 weeks’ gestational age, is
still a major global obstetric problem. PTB is the leading cause of perinatal morbidity and
mortality in developed countries [1,2]. PTB is regarded as a complex syndrome initiated
by multiple mechanisms, including infection or inflammation and other immunologically
mediated processes [3].

We have recently introduced B cells as central players in human pregnancy and
of relevance for PTB [4,5]. B cells are mostly known as mediators of humoral immune
responses since they are able to secrete antibodies following activation and differentiation.
Despite this, B cells play multifaceted roles as enhancers and regulators of immunity. They
act as professional antigen-presenting cells (APCs), provide co-stimulation and thereby
contribute to autoimmunity and alloimmunity [6]. B cells can release pro-inflammatory
cytokines and thereby further trigger inflammation and influence the differentiation of
other immune cells such as T cells. B cells can also secrete anti-inflammatory cytokines.
These so-called Regulatory B cells (Bregs) are activated by toll-like receptors (TLRs) rather
than antigen receptors and operate earlier than regulatory T cells (Tregs) [7]. Breg cells
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suppress T effector cells, B effector cells, NK cells and monocytes/macrophages among
others [8].

During pregnancy, a finely coordinated maternal immune balance is required for
implantation, pregnancy maintenance and delivery. B cells contribute to the establishment
of a tolerant environment by producing protective asymmetric antibodies and exerting
immune-regulatory functions [9,10].

Escherichia coli is a gram-negative bacterium and the most common pathogen associ-
ated with bacteriuria, linked to urinary tract infections. E. coli is the most common bacterial
infection in pregnancy, and also increases the risk of maternal and neonatal morbidity and
mortality such as preeclampsia (PE), preterm birth (PTB), intrauterine growth restriction
(IUGR), low birth weight and early-onset sepsis [11,12]. The endotoxin of gram-negative
bacteria, lipopolysaccharide (LPS), is known to cause PTB in rodents and contributes to
human PTB [3]. TLR4 plays a central role in the recognition of LPS, activates myeloid
differentiation primary response protein 88 (MyD88)-dependent and MyD88-independent
signaling pathways and induces the production of pro-inflammatory cytokines, which
activate potent immune responses [13,14]. Besides, another TLR protein, RP105, also
regulates B cell responses to LPS stimulation [15]. RP105 is complexed with MD-1 and
mainly expressed on murine and human mature B cells. RP105/MD-1 is indispensable for
TLR4/MD-2-dependent proliferation and the differentiation of marginal zone B cells into
IgM-secreting plasma cells [16], while regulating B cell sensitivity to LPS [15]. Moreover, B
cell stimulation with an anti-RP105 antibody and LPS induced CD19 phosphorylation, and
CD19-deficient mice present an altered LPS response, both indicating an important role for
RP105/CD19 interactions for activation of B cells [17].

We previously reported that the loss of B cell-specific MyD88 or IL-10 expression
hinders an appropriate in utero development and influences the susceptibility to LPS-
induced PTB [18]. Moreover, we found an enhanced uterine artery resistance in BIL-10−/−

dams at gestational day (gd)10 [18]. Here, we addressed the functional consequences of B
cell-specific loss of CD19 or IL-10 expression and B cell deficiency for LPS-mediated PTB.

2. Materials and Methods
2.1. Animal Experiments and Sample Collection

Animal experiments complied with the ARRIVE guidelines and were carried out
according to institutional guidelines after ministerial approval and in conformity with
the European Communities Council Directive (EU Directive 2010/63/EU for animal ex-
periments; approval number: 42502-2-1332 Uni MD). Eight–twelve weeks old C57BL/6
(H2b) wildtype littermates (WT), CD19cre/wt IL-10flox/flox B cell-specific IL-10 deficient
mice (BIL-10−/−) (IL-10flox/flox mice were provided by Axel Roers (TU Dresden, Dres-
den, Germany [19] CD19−/− mice lacking CD19 expression (B6.129P2(C)Cd19tm1(cre)Cgn/J
CD19−/− [20]; obtained from Jackson Laboratories, Bar Harbor, ME, USA) and B cell
deficient µMT mice (B6.129S2-Ighmtm1Cgn/J [21]; obtained from Jackson Laboratories, Bar
Harbor, ME, USA) were bred in the animal facility at the Medical University of Magdeburg.
BALB/c (H2d) males were purchased from Janvier (Le Genest-Saint-Isle, France). Mice
were kept under controlled light and humidity conditions in a 12 h light cycle. Chow and
water were given ad libitum. Virgin female WT, BIL-10−/−, CD19−/−, µMT mice were
mated with BALB/c males. Females were inspected twice a day for vaginal plug. The
presence of a vaginal plug was designated as day 0 of pregnancy (gd0).

According to our previous study [18], 0.4 mg LPS (#L4391; Sigma Aldrich, Munich,
Germany)/kg BW were i.p. injected on gd16 [18]. Mice were sacrificed 24 h later. Peritoneal
lavage was taken by flushing the peritoneum with 1ml of 0.9% NaCl solution (Fresenius
Kabi, Bad Homburg, Germany), centrifuged at 250× g, collected and stored at −80 ◦C. The
cell pellet was resuspended in FACS buffer and stained (see below). Blood was obtained
by puncture of the heart and stored in heparinized tubes on ice. Blood was centrifuged at
7000 rpm for 10 min. at RT. Serum was collected and stored at −80 ◦C.
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2.2. Cell Staining and Flow Cytometry

Single-cell suspensions from peritoneal lavage, blood and uterus were stained with
cell surface marker-directed antibodies and a viability dye for 30 min at 4 ◦C. For detection
of the intracellular expression of cytokines and transcriptions factors, cell suspensions
were fixed overnight using Fix and Perm (#00-5123-43, 00-5223-56; ebioscience, Dreieich,
Germany), and stained with the intracellular antibodies in perm buffer (#00-8333-56) for
30 min at 4 ◦C. A list of the used antibodies is found in Table S1 while the composition of
the panels is presented in Table S2. Measurements were performed using an Attune NxT
flow cytometer (Thermo Fisher Scientific, Dreieich, Germany). Data were analyzed with
FlowJo software.

2.3. Cytokine and Chemokine Detection in Sera and Peritoneal Lavage

Cytokines in sera and peritoneal lavage were measured by the cytometric bead array
(CBA) mouse Th1/Th2/Th17 Cytokine Kit from BD Biosciences (#560485), Heidelberg,
Germany, according to the supplier’s recommendation. Briefly, cytokine capture beads
were incubated with recombinant standards or samples and the PE-conjugated detection
antibodies. The capture antibodies were directed against IL2, IL-4, IL-6, IFN-γ, TNF-α,
IL-17A and IL-10. Chemokine levels (IP-10, LIX, MDC, MIP-1α, MIP-1β, Eotaxin, BLC, KC,
MCP-1, MIP-3α, RANTES, TARC and MIG) were determined with Legendplex murine
proinflammatory chemokine panel (13-plex; #740007) assay following supplier’s recom-
mendation (Biolegend, San Diego, CA, USA). Briefly, standards or samples were incubated
with premixed beads, followed by the detection antibodies and finally Streptavidin-PE.

2.4. Measurement of Progesterone Concentrations

The levels of progesterone in serum and peritoneal lavage were determined according
to the manufacturer’s recommendation (#582601; Cayman, Ann Arbor, MI, USA). Briefly,
diluted serum samples and undiluted peritoneal lavage were incubated with progesterone
AChE tracer and progesterone ELISA antiserum, developed with Ellman’s reagent and
read on an ELISA reader (BioTek Synergy HT, Agilent Technologies, Winooski, VT, USA).

2.5. Data Analysis and Statistics

Statistical analysis was performed using GraphPad Prism 8.0 software. Normality
of distribution was determined by a Shapiro–Wilk test. Data were analyzed by either
One-way ANOVA, followed by Dunnett’s multiple comparisons test or a Kruskal–Wallis
test, followed by Dunn’s multiple comparisons test or a Mann–Whitney U test. Significance
was defined as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Loss of B Cell-Specific IL-10 Influences Maternal Well-Being after LPS-Induced Preterm Birth

Under the experimental conditions that we used, PTB occurs about 18h following
an LPS injection [18]. 24 h after LPS, WT dams did not deliver and presented a healthy
appearance. CD19−/− and µMT B cell-deficient mice delivered preterm, recovered from
early birth and showed only low burden (scoring: Table S3). However, BIL-10−/− dams
appeared to be severely affected by delivery (Figure 1). They presented signs of lethargy,
tachypnea, and tremor and were cold when they were touched. Signs of maternal sickness
were e.g., the maternal liver, which looked grey and bloodless, the gut, which appeared to
be collapsed, and the bloody peritoneal cavity (PC). One out of six dams died in the course
of PTB. This clearly indicates that B cell-specific IL-10 deficiency impacts maternal health
during preterm delivery.
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Figure 1. Scoring of maternal well-being 24 h after LPS injection at gd16. The score rating to define 

maternal well-being 24 h after LPS injection at gd16 was dependent on the measures and observation 

of mice and is shown for WT, CD19−/−, BIL-10−/− and µMT mice. Data were analyzed by the Kruskal–

Wallis test, followed by Dunn ś multiple comparisons test. N = 5–6 mice/group; *** p < 0.001. 

3.2. B Cell-Specific IL-10 Deficiency Impacts on the Cellular Composition and Cytokine 

Concentrations in Peritoneal Cavity after LPS Challenge at gd16 

The peritoneal cavity (PC) is the primary site of inflammation in our model of LPS-

induced PTB (17), and the pregnant uterus is located within. Therefore, we measured the 

cellular distribution in control and LPS-treated dams. As expected, compared to WT 

dams, µMT mice lacked B cells in PC (Figure S1A), but had enhanced frequencies of CD8+ 

T cells (Figure S1B), CD4+ T cells (Figure 2A) and CD11c+ dendritic cells (DC) (Figure 2B), 

which decrease after LPS challenge in all mouse strains except in BIL-10−/− dams (Figure 

2A,B). LPS treatment was associated with an increased percentage of Ly6G+CD11b- gran-

ulocytes in all mothers, which was significantly higher in BIL-10−/− compared to WT dams 

(Figure 2C). The macrophages from WT and CD19−/− dams upregulated NOS2 after LPS, 

while BIL-10−/− and µMT mice failed to do so (Figure 2D). 

 

Figure 1. Scoring of maternal well-being 24 h after LPS injection at gd16. The score rating to define
maternal well-being 24 h after LPS injection at gd16 was dependent on the measures and observation
of mice and is shown for WT, CD19−/−, BIL-10−/− and µMT mice. Data were analyzed by the
Kruskal–Wallis test, followed by Dunn´s multiple comparisons test. N = 5–6 mice/group; *** p < 0.001.

3.2. B Cell-Specific IL-10 Deficiency Impacts on the Cellular Composition and Cytokine
Concentrations in Peritoneal Cavity after LPS Challenge at gd16

The peritoneal cavity (PC) is the primary site of inflammation in our model of LPS-
induced PTB (17), and the pregnant uterus is located within. Therefore, we measured the
cellular distribution in control and LPS-treated dams. As expected, compared to WT dams,
µMT mice lacked B cells in PC (Figure S1A), but had enhanced frequencies of CD8+ T cells
(Figure S1B), CD4+ T cells (Figure 2A) and CD11c+ dendritic cells (DC) (Figure 2B), which
decrease after LPS challenge in all mouse strains except in BIL-10−/− dams (Figure 2A,B). LPS
treatment was associated with an increased percentage of Ly6G+CD11b- granulocytes in all
mothers, which was significantly higher in BIL-10−/− compared to WT dams (Figure 2C). The
macrophages from WT and CD19−/− dams upregulated NOS2 after LPS, while BIL-10−/−

and µMT mice failed to do so (Figure 2D).

1 
 

 
Figure 2. Loss of B cell-specific IL-10 influences the cellular composition in peritoneal cavity after
LPS challenge at gd16. 24 h after PBS or LPS injection in WT, CD19−/−, BIL-10−/− and µMT mice,
percentages of CD4+ T cells (A), CD11c+ DC (B) and Ly6G+CD11b- granulocytes (C), analyzed within
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the CD45+ cell population, the frequency of NOS2+CD11b+ (D) analyzed within the CD11b+ cells,
were determined in PC by flow cytometry. Data were analyzed by Kruskal–Wallis test, followed
by Dunn’s multiple comparisons test. N = 4–6 mice/group. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

In the peritoneal lavage, LPS-treated BIL-10−/− dams had a higher level of IL-6
(Figure 3A) and TNF-α (Figure 3B), but no detectable IL-10 compared to WT dams
(Figure 3C).
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Figure 3. Loss of B cell-specific IL-10 influences the cytokine release into the peritoneal cavity after
LPS challenge at gd16. In the peritoneal lavage, IL-6 (A), TNF-α (B) and IL-10 (C) were measured
24 h after PBS or LPS injection in WT, CD19−/−, BIL-10−/− and µMT mice. Data were analyzed by
Kruskal–Wallis test, followed by Dunn’s multiple comparisons test. N = 4–6 mice/group. * p < 0.05.

These data imply that the percentages and function of peritoneal immune cells are
changed in BIL-10−/− dams upon LPS challenge compared to the other groups. Some
alterations overlap with observations in B cell-deficient µMT mice, but some are uniquely
connected to the inability of B cells to secrete IL-10.

3.3. CD19 Deficiency or B Cell Specific IL-10 Knockout Influence the Level of Cytokines and
Chemokines Observed in Blood from Pregnant Animals That Received LPS

Among all investigated mouse strains, the serum levels of IL-6 and TNF-α were
enhanced following LPS (Figure S2A,B). IL-17A was lower in the serum of LPS-treated WT
dams compared to BIL-10−/− mice (Figure 4A). The level of several chemokines increased
after LPS in all mouse strains, among them IP-10, MIP-1α, MIP-1β and eotaxin (Table 1).

Table 1. Chemokine levels (in pg/mL) in serum of PBS- and LPS-treated WT, CD19−/−, BIL-10−/−

and µMT mice. Chemokines were measured by flow cytometry. Presented are the mean values; the p
values were calculated by One-way ANOVA or Kruskal–Wallis test after Shapiro–Wilk test.

Chemokine WT
PBS

WT
LPS

CD19−/−

PBS
CD19−/−

LPS
BIL-10−/−

PBS
BIL-10−/−

LPS
µMT
PBS

µMT
LPS p

IP-10 13.9 32.6 13.6 45.4 19.0 28.3 7.7 15.6 <0.0001

LIX 334.0 587.0 733.5 841.5 205.5 341.3 662.7 440.7 0.0176

MDC 86.8 150.2 121.8 136.5 108.7 106.0 88.2 93.3 0.0386

MIP-1α 28.6 72.2 39.9 97.6 41.1 85.7 31.7 59.4 <0.0001

MIP-1β 26.2 124.9 17.0 100.3 36.5 76.0 9.0 38.6 0.0002

Eotaxin 179.6 350.6 200.3 278.3 199.1 237.4 144.8 202.7 0.0057

KC 130.5 195.7 134.8 314.9 142.9 185.9 112.8 141.3 <0.0001

MCP-1 111.6 190.2 103.7 457.0 108.1 294.9 116.2 228.8 <0.0001

MIP-3α 82.2 100.2 79.5 86.8 72.6 88.0 63.8 68.9 0.0268

RANTES 46.1 101.2 50.6 292.6 55.7 234.3 44.5 234.0 <0.0001

TARC 42.7 102.2 52.0 94.8 49.1 74.3 39.2 44.3 0.0180

MIG 38.3 115.3 55.5 117.1 58.3 99.9 40.2 69.6 <0.0001
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Figure 4. Alterations in B cell-specific CD19 or IL-10 expression and B cell deficiency influence the
level of cytokines and chemokines in the blood. The level of IL-17A (A), RANTES (B) and MCP-1
(C) in serum of WT, CD19−/−, BIL-10−/− and µMT mice was measured by flow cytometry, the
progesterone level was determined by ELISA (D). The frequencies of IL-10+B220+ B cells (E), IL-
10+CD4+ (F), IL-10+CD8+ T cells (G) and the expression of PD-1 by CD4+ (H) and CD8+ T cells
(I) were determined by flow cytometry. Data were analyzed by Kruskal–Wallis test, followed by
Dunn´s multiple comparisons test. N = 4–6 mice/group. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

However, the serum level of RANTES was not significantly changed in WT dams
upon LPS treatment, but increased in CD19−/−, BIL-10−/− and µMT mice 24 h after LPS
(Figure 4B). MCP-1 was lower in WT dams compared to CD19−/− mice after LPS challenge
(Figure 4C). The progesterone levels remained unchanged in WT LPS dams but decreased
in LPS-treated CD19−/− mice and significantly in LPS-challenged BIL-10−/− and µMT
dams (Figure 4D).
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Treatment of dams with LPS at gd16 did not affect the frequency of B220+ B cells
in the blood of WT mice, but a reduced percentage of B cells was found in CD19−/−

and BIL-10−/− mice (Figure S2C). In the spleen and paraaortic lymph nodes (PLN), the
percentage of B cells was not altered by the LPS challenge (Tables 2 and 3). In WT, there
were also no changes in the frequencies of IL-10-expressing B cells, IL-10+ CD4+ and IL-10+
CD8+ T cells (Figure 4E–G) following LPS, but LPS-treated CD19−/− and BIL-10−/− mice
had lower IL-10+B220+ frequencies (Figure 4E). The percentages of IL-10+CD4+ and IL-10+
CD8+ T cells were lower in CD19−/−, BIL-10−/− and µMT mice, independent of treatment,
compared to LPS WT dams (Figure 4F,G). The frequency of IL-10+CD8+ T cells was higher
in LPS-treated WT than BIL-10−/− dams in the spleen and PLN and there was a similar
trend also in IL-10+ CD4+ T cells and IL-10+CD4+CD25+Foxp3+ Treg, but this did not
reach statistical significance (Tables 2 and 3).

Table 2. Immune cell populations in spleen. Shown are the the mean frequencies of B220+ B cells,
ICOS-expressing CD4+ and CD8+ T cells, PD-1-expressing CD4+ and CD8+ T cells as well as IL-10-
expressing CD4+, CD4+CD25+Foxp3+ Treg cells and CD8+ T cells in spleen, determined by flow
cytometry. N = 4–6 mice/group, the p values were analyzed by One-way ANOVA or Kruskal–Wallis
test after Shapiro–Wilk test.

Cell
Population

WT
PBS

WT
LPS

CD19−/−

PBS
CD19−/−

LPS
BIL-10−/−

PBS
BIL-10−/−

LPS
µMT
PBS

µMT
LPS p

B220+ 61.0 57.3 42.7 42.9 54.5 40.6 0.2972

CD4+CD25+
Foxp3+ 8.4 8.4 7.0 9.7 3.7 4.9 4.7 4.2 0.0019

ICOS+CD4+ 8.6 5.6 5.2 5.1 1.6 2.0 3.3 2.6 <0.0001

ICOS+CD8+ 2.0 2.3 2.7 2.5 0.8 0.6 1.4 1.5 0.0461

PD-1+CD4+ 4.9 3.4 5.2 3.1 1.3 0.9 2.5 1.8 0.0036

PD-1+CD8+ 2.0 3.1 2.6 3.7 1.0 1.0 2.7 2.4 0.0352

IL-10+CD4+ 5.2 5.0 1.9 1.9 1.0 0.9 2.3 2.5 0.0036

IL-10+CD4+
Treg 6.5 7.0 3.5 3.4 1.2 2.1 3.8 3.4 0.0555

IL-10+CD8+ 5.6 4.9 2.7 2.3 0.6 1.3 2.6 2.4 0.0055

Peripheral B cells may travel to lymph organs and act there as APCs. Therefore, we
determined the expression of CD80, CD86, PD-L1, PD-L2 and MHC class II by B cells 24 h
after the LPS challenge. However, none of these molecules was altered by LPS treatment in
B cells, either in B cell-deficient mice and B cell-specific CD19- or IL-10 deficient mice, or in
WT controls (data not shown). Despite this, we determined that the LPS challenge induced
the expression of PD-1 by CD4+ T cells (Figure 4H) and CD8+ T cells (Figure 4I) in WT
dams. The frequency of PD-1+CD4+ T cells was higher in LPS-treated WT than in CD19−/−

PBS and LPS-treated µMT mice (Figure 4H), while the frequency of PD-1+CD8+ T cells
was enhanced in WT LPS but no modifications were observed in all other investigated
groups. We also investigated the expression of costimulatory molecules by CD4+ and
CD8+ T cells in the spleen and PLN. The expression of ICOS by CD4+ T cells was higher in
LPS-treated WT than BIL-10−/− dams in the spleen and PLN (Tables 2 and 3). Additionally,
in PLN, LPS-challenged WT dams showed increased percentages of ICOS+CD8+ T cells
and PD-1-expressing CD4+ T cells (Tables 2 and 3).

The findings suggest that WT dams present a moderate induction of inflammatory
cytokines and chemokines and only full B cell-competent WT dams have B cells and T cells
secreting IL-10 in sufficient concentrations to protect against LPS-induced PTB. The data
also indicate that IL-10-secreting B cells are needed to induce IL-10-secreting T cells.
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Table 3. Immune cell populations in paraaortic lymph nodes (PLN). Shown are the the mean
frequencies of B220+ B cells, ICOS-expressing CD4+ and CD8+ T cells, PD-1-expressing CD4+ and
CD8+ T cells as well as IL-10-expressing CD4+, CD4+CD25+Foxp3+ Treg cells and CD8+ T cells in
PLN, determined by flow cytometry. N = 4–6 mice/group; the p values were analyzed by One-way
ANOVA or Kruskal–Wallis test after Shapiro–Wilk test.

Cell
Population

WT
PBS

WT
LPS

CD19−/−

PBS
CD19−/−

LPS
BIL-10−/−

PBS
BIL-10−/−

LPS
µMT
PBS

µMT
LPS p

B220+ 65.0 62.0 46.3 56.1 46.5 61.9 0.0041

CD4+CD25+
Foxp3+ 8.3 10.9 6.2 9.3 2.4 2.8 4.4 6.9 0.0002

ICOS+CD4+ 12.9 17.1 9.8 9.8 0.7 3.0 7.6 7.4 <0.0001

ICOS+CD8+ 14.1 14.1 7.2 12.2 0.6 1.1 9.8 8.5 0.0062

PD-1+CD4+ 12.9 17.1 9.8 9.8 1.59 2.8 7.6 7.4 <0.0001

PD-1+CD8+ 9.8 9.0 9.8 9.7 1.3 1.9 7.0 9.1 0.1422

IL-10+CD4+ 1.9 4.82 1.8 1.3 0.3 0.7 1.9 2.2 0.0967

IL-10+CD4+
Treg 2.2 2.5 3.5 2.5 0.3 0.9 2.6 2.0 0.1539

IL-10+CD8+ 3.5 3.3 2.7 1.6 0.4 0.7 2.4 2.7 0.0037

3.4. B Cell-Specific IL-10 Deficiency Influences the Frequency of Uterine Cell Populations

In the uterus, the frequency of CD11c+ cells was reduced in LPS-treated BIL-10−/−

mice compared to LPS WT dams (Figure 5A). Despite the fact that uterine frequency of
B220+ B cells was not changed by pregnancy or LPS treatment (Figure 5B), alterations in B
cell subpopulations were present: LPS challenge upregulated the expression of TACI by B
cells in WT dams, which was higher than in LPS-treated BIL-10−/− mice (Figure 5C). The
frequency of CXCR4+ B cells decreased 24 h after LPS in WT dams and was also lower in
LPS-treated BIL-10−/− mice compared to WT dams (Figure 5D). While no changes were
found for the percentages of uterine CD4+ and CD8+ T cells (data not shown), the frequency
of CD4+CD25+Foxp3+ Treg cells was diminished in LPS-treated BIL-10−/− mice compared
to LPS WT dams (Figure 5E). BIL-10−/− mice had lower percentages of ICOS-expressing
CD4+ T cells (Figure 5F) as well as CD8+ T cells (Figure 5G) and no detectable IL-10+ B
cells in the uterus (Figure 5H). Compared to LPS-treated WT mice, BIL-10−/− dams had
more uterine TNF-α+ B cells (Figure 5I). WT CD4+ T cells induced IFN-γ 24 h after LPS,
which was enhanced compared to all other groups (Figure 5J).

These observations refer to an imbalance between regulatory and inflammatory im-
mune cells in the pregnant uterus of BIL-10−/− mice upon an LPS challenge to inflammatory
cells with fatal consequences.
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Figure 5. B cell-specific IL-10 deficiency influences the uterine cell populations. In the uterus, the
frequencies of CD11c+ cells (A), B220+ B cells (B), TACI+IgM+ cells (C), CXCR4+IgM+ B cells (D),
CD4+CD25+Foxp3+ Treg cells (E), ICOS+CD4+ T cells (F), ICOS+CD8+ T cells (G), IL-10+ B220+ B
cells (H), TNF-α+ B220+ (I) and IFN-γ+CD4+ T cells (J) were detected by flow cytometry. Data were
analyzed by Kruskal–Wallis test, followed by Dunn´s multiple comparisons test. N = 4–6 mice/group.
* p < 0.05, ** p < 0.01.
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4. Discussion

In the last couple of years, B cells have emerged as important players in pregnancy.
We and others showed that B cells contribute to an immune balance in early pregnancy via
multiple mechanisms of action [22–26]. Besides maturating to plasma cells and secreting
antibodies [27], they secrete soluble factors that modulate T cell function, most prominently
IL-10. IL-10 secretion by B cells was shown to be essential if pregnancy is jeopardized by
inflammation as in the case of infections [28]. In mice, we showed that µMT mice lacking
mature B cells, mice lacking CD19 expression (CD19−/−) or B cell-specific IL-10 deficient
mice (BIL-10−/−) not only present smaller fetuses but also deliver preterm in response to
LPS doses that do not induce PTB in WT controls [18]. Within the present paper, we extend
the knowledge on how the absence of IL-10 secreting B cells impacts on cellular immune
balance during pregnancy and LPS-induced murine PTB. This is analyzed together with the
absence of mature B cells (µMT mice) or CD19 expression by B cells to better understand
the different contributions of the missing B cell subpopulations.

It was shown before that IL-10-deficient (null mutant) mice have apparently normal
pregnancies but are more susceptible to preterm fetal loss and display more inflammation
in the serum and gestational tissues (uterus and placenta) [29]. However, the source of
IL-10 during pregnancy was not addressed. Here, we confirm that B cell-specific IL-10
deficiency is related to increased susceptibility to LPS-induced PTB. Furthermore, the LPS
challenge impacts maternal health during preterm delivery as well. In contrast to WT
mice that did not deliver upon LPS challenge at the concentrations used here, CD19−/−,
µMT and BIL-10−/− mice delivered after LPS application at gd16, therefore, earlier. While
CD19−/− and µMT dams were only slightly affected in their general condition, LPS-
treated BIL-10−/− dams showed moderate burden and sickness. This was associated
with increased IL-6 and TNF-α and decreased IL-10 levels in the peritoneal lavage and
increased IL-17A and RANTES concentrations in the maternal serum. Increased RANTES
and MCP-1 levels were also detected in the serum from CD19−/− and µMT mice. We
previously observed enhanced inflammatory cytokine concentrations in human PTB [4,5,30].
Others found this connection also in murine PTB models [31,32]. Several hematopoietic
and non-hematopoietic cells expressed RANTES (regulated upon activation, normal T-
cell expressed and secreted)/CCL5 (CC chemokine ligand 5). The chemokine acts as a
potent chemoattractant for many cell types including monocytes, NK cells, memory T
cells, granulocytes and dendritic cells [33]. The expression of RANTES was shown to
dramatically increase at inflammatory sites [34]. Increased RANTES levels were associated
with spontaneous PTB within 14 days after presentation with symptoms of preterm labor
with [35]. In addition, RANTES was increased in the maternal plasma and placenta in
preeclampsia patients [36]. In a murine LPS-induced PTB model, MCP-1 was determined in
the maternal serum and uterus, in the myometrium and endometrium, indicating that MCP-
1 potentially contributes to the pro-inflammatory immune response that leads to PTB [37].
Our data indicate that B cell-specific IL-10 contributes to resistance to preterm birth by
downregulating inflammatory cytokines and chemokines in the serum and peritoneum
with RANTES, IL-17 and MCP-1 as potential targets.

In our study, the absence of mature B cells, CD19+ B cells and B cell-specific IL-10
deficiency altered the cell frequencies in the peritoneum with increased numbers of CD4+
T cells and CD11c+ DCs as well as insufficient upregulation of NOS2 by macrophages
after LPS. 24 h after LPS treatment, higher percentages of granulocytes and lower numbers
of macrophages were found in the peritoneal cavity. The percentages of granulocytes
were higher in LPS-treated BIL-10−/− mice compared to LPS-treated controls. It is well
established that human and murine parturition is associated with an influx of granulocytes
in gestational tissues [38–40]. This is more pronounced in PTB [41]. Inflammatory immune
responses alter the survival and differentiation of macrophages, based on the microenvi-
ronment. M1 macrophages are characterized by the production of NO through induction
of NOS2 synthesis, helping to clear the inflammation [42,43]. µMT and BIL-10−/− dams
failed to induce NOS2+ macrophages after the LPS challenge. Induction of NOS2 by peri-
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toneal macrophages was dependent on MyD88 and TLR4 expression in murine PTB [44].
Besides, reduced expression of NOS2 by alveolar macrophages was found in preterm
human neonates with fulminant early-onset pneumonia, a disorder that is associated with
ascending intrauterine infection [45].

Healthy pregnancies are associated with increased IL-10 levels [46,47]. IL-10-deficient
mice and µMT B cell-deficient mice presented an increased susceptibility to LPS-induced
preterm delivery compared to WT mice [29,48]. In our study, we found that the absence of
CD19-expressing B cells, B cell specific IL-10 deficiency or mature B cells was associated
with decreased IL-10 and PD-1 expression by CD4+ and CD8+ T cells in the blood. The
inhibitory receptor PD-1 and its ligand PD-L1 help to maintain peripheral tolerance by
inhibiting the activation of self-reactive lymphocytes. Blockage of PD-1 signaling abrogates
the protective effect of regulatory T cells in pregnancy [49]. PD-1 further induces apoptosis
of paternal antigen-specific T cells during pregnancy [50] and the interplay PD-1/PD-L1
is important for Treg cell development in a healthy pregnancy [51]. PD-1 expression by
murine T cells in a healthy pregnancy was associated with enhanced IL-10 expression [52].
PD-1 and PD-L1 expression is also important for the polarization of decidual macrophages
to an anti-inflammatory M2 phenotype in an early human pregnancy [53].

It was reported that the number of CD11c+ DCs increases in the uterus from gd5
on and reaches a plateau at gd17, indicating an immune-regulatory function throughout
gestation at the feto-maternal interface [54,55]. In the uterus of LPS-treated BIL-10−/−

mice, we detected decreased numbers of CD11c+ DCs compared to WT dams. It was
shown recently that uterine CD11c+ cells induce the development of paternal antigen-
specific Treg cells [56]. Therefore, it is not surprising that BIL-10−/− mice also had lower
uterine CD4+CD25+Foxp3+ Treg cells when compared to WT dams. This seems to be a
characteristic of the genotype of the mice rather than the LPS challenge since the treatment
did not influence the frequency of CD11c+ DCs or Treg cells. It also goes in line with our
previous observation that B cell-derived IL-10 was able to support the conversion of naive
T cells into Treg cells [28].

We observed an increased percentage of B cells expressing the transmembrane activator
and CAML interactor (TACI) in WT mice upon an LPS challenge. TACI expression was
previously reported in human term placentas [57]. TACI is an immune regulatory molecule
that promotes the differentiation and survival of plasma cells [58]. Since plasma cells are
a known source of IL-10 [59], enhanced TACI expression in WT dams may contribute to
their enhanced IL-10 expression. Besides, expression of TACI by B1b cells was shown to be
induced by TLR signaling and provided a heightened protective response [60]. CD19−/−

and BIL-10−/− dams failed to induce TACI. Patients with defective CD19 alleles presented
a defective upregulation of TACI following TLR9 stimulation [61]. It was further shown
that the expression of TACI was greater in IL-10-expressing B cells than in IL-10-negative
B cells [62], which properly contributes to the lower frequency of TACI+ B cells in BIL-
10−/− dams.

Further, we observed a lower CXCR4 expression by uterine B cells in BIL-10−/−

mice compared to control WT B cells. Since CXCR4 is involved in B cell maturation,
trafficking and humoral immunity [63], these functions may be affected in BIL-10−/− mice.
The percentage of CXCR4-expressing B cells was decreased in WT mice and unaltered in
CD19−/− mice after an LPS challenge. It was reported that LPS induced CXCR4 expression
by peritoneal B1 cells, which then actively migrated out of the peritoneal cavity [64].
Whether such a pathway also exists in uterine CXCR4+ B cells remains to be investigated.

Although we found an altered PD-1 expression dependent on the mouse strain in
the blood, the PD1-PD-L1/L2 pathway was not affected in the uterus. However, we
investigated other costimulatory molecules in the uterus and found in BIL-10−/− dams
reduced frequencies of ICOS-expressing CD4+ and CD8+ T cells compared to WT mice. The
ICOS/ICOS-L costimulatory pathway is important for the maintenance of feto-maternal
tolerance since ICOS+ T cells were shown to secrete IL-10 [65]. Blockade of this pathway
increased fetal resorption [66], in the same way as we have previously seen in BIL-10−/−
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mice [18]. This was associated with enhanced CD8+ T effector cells and reduced CD8+ Treg
cells [66]. A reduced number of ICOS-expressing peripheral T cells were determined in
patients with spontaneous preterm labor, preeclampsia and HELLP syndrome [67,68]. Since
we have shown that patients with spontaneous preterm labor, preeclampsia or HELLP
syndrome had elevated levels of pro-inflammatory cytokines such as IL-6 and a diminished
percentage of IL-10-secreting B cells [4,5,30], ICOS-expressing T cells may be involved in
the regulation of IL-10-secreting B cells.

Both costimulatory molecules, PD-1 and ICOS, are also expressed in peripheral, uterine
and placental T follicular helper cells (Tfh). Tfh cells are pivotal to efficient humoral
immunity and important for a successful pregnancy [69–71].

Taken together, our data suggest that B cell-competent WT mice have the ability to
induce an immune response to eliminate the inflammatory stimulus and immunologically
tolerate and support the unborn at once. The absence of IL-10-producing B cells has a
deep impact on several immune cell types, such as macrophages, dendritic cells and T
cells. Consequently, an inflammatory insult such as LPS induces a break in feto-maternal
tolerance resulting in preterm delivery, characterized by an overwhelming release of
inflammatory mediators and a defective upregulation of protective signaling molecules
such as PD-1 or ICOS, and finally also affects maternal well-being.
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