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Introduction
Gout is a prevalent chronic inflammatory disease, which typi-
cally presents as gout arthritis, gout stone, or even kidney dam-
age. In many parts of the world, especially in developed 
countries, the rising incidence of gout is becoming a serious 
public health burden of comorbidities. Gout is caused by mono-
sodium urate crystal deposition, which has been suggested asso-
ciated with elevated serum urate level (the hyperuricemia). The 
disorder of purine metabolism and altered urate transport in the 
gut and kidneys can lead to hyperuricemia.1 Gout is strongly 
associated with various metabolic diseases, including hyperten-
sion, hyperlipidemia, atherosclerosis, obesity, chronic kidney 
disease, insulin resistance, and cardiovascular disease.2 As a 
complex phenotype, the incidence and development of gout 
involve many risk factors, such as inherited genetic variants, 
dietary, age, and sex.3-6 In the last decade and so, the prevalence 
of gout is increasing and has become the most common inflam-
matory arthritis in adults in many places of the world.4,7-9

Anti-inflammatory and urate-lowering are two major strat-
egies for gout therapies. The former strategy is the acute ther-
apy whose target is to directly suppress inflammation. Therapies 

based on this strategy include the use of colchicine, nonsteroi-
dal anti-inflammatory drugs, and corticosteroids, as well as 
blocking interleukin-1β (IL-1β), which is a key cytokine driv-
ing the inflammation of acute gout.10,11 There are three main 
approaches to reduce the urate (the second strategy): inhibiting 
urate production by inhibiting xanthine oxidase, promoting the 
excretion of uric acid (uricosuric), and promoting urate dissolu-
tion by using Pegloticase, which is a mammalian recombinant 
uricase.10,11

The human gut microbiome plays a critical role in metabo-
lism, immune defense, and behavior and the dysbiosis of the gut 
microbiome has been found to be associated with many metabo-
lism diseases including obesity and type II diabetes, and gout. 
Indeed, it has been postulated that gut microbiome dysbiosis is 
associated with disorders in uric acid excretion, purine metabo-
lism, and inflammatory responses. Some gut microbial metab-
olites, such as short-chain fatty acid, have been found to have 
anti-inflammatory effects.12,13 Short-chain fatty acids are nec-
essary for adequate inflammasome assembly and IL-1b pro-
duction, which play important roles in acute inflammatory 
responses.14 For example, with germ-free mice experiment, 
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Vieira et al14 demonstrated a lowered production of short-chain 
fatty acids and the lack of response to the acute inflammation 
caused by monosodium urate crystal. This suggested that the gut 
microbiota is essential for the host inflammatory responses, and 
participate in the development of gout. Guo et al15 sampled and 
characterized the gut microbiome from 35 gout patients and 33 
healthy controls. They found that there was a significant change 
in the gut microbiome composition in gout patients compared 
with healthy controls, in which Bacteroides caccae and Bacteroides 
xylanisolvens were increased but Faecalibacterium prausnitzii and 
Bifidobacterium pseudocatenulatum were decreased.15 The change 
in species composition may cause the loss of some important 
functions such as the disorders of purine degradation and butyric 
acid biosynthesis, and may lead to the enrichment of opportun-
istic pathogens, such as Bacteroides, Porphyromonadaceae, 
Rhodococcus, Erysipelatoclostridium, and Anaerolineaceae.15,16

Despite the above-mentioned advances in the relationship 
between gut microbiome compositions (diversity) and gout, to 
the best of our knowledge, all existing studies on composition/
diversity studies have been limited to individual-level studies. 
In other words, the basic scale of diversity analysis has been the 
individual subject, and no cohort or population level analysis 
has been performed. As Miller et al17 argued that lack of con-
sideration of scales beyond individual and ignoring of microbe 
dispersal are two crucial roadblocks in preventing deep under-
standing of the heterogeneity of the human microbiome. We 
concur with Miller et al17 assessments and further argue that 
population (cohort) level study of the disease effects (such as 
gout influences) on the gut microbiome is of significant impor-
tance. For example, the population study may provide necessary 
foundational information for investigating the disease epide-
miology and for possibly monitoring the occurrence and preva-
lence of diseases in pubic health domain.

In the present article, we apply the diversity-area relation-
ship (DAR),18-23 a recent extension to the classic SAR (species-
area relationship), for studying diversity scaling (changes) of 
gut microbiome across individuals of both gout patients and 
healthy controls. The classic SAR establishes the power-func-
tion relationship between the number of species (species rich-
ness) and the region area size (A) containing the species 
numbers, and it is well recognized as one of few classic laws in 
theoretical ecology. The SAR has played an important role in 
biodiversity conservation in practice. Given that the number of 
species (formally known as species richness) is a “rough” meas-
ure of biodiversity, one may wonder if the SAR also holds for a 
more “precise” measure of biodiversity. The more “precise” bio-
diversity should not only consider the number of species, but 
also the species abundance. This conjecture was not confirmed 
until a better metric system for biodiversity (the Hill numbers) 
was adopted for measuring biodiversity. This was because com-
monly used diversity metrics such as Shannon entropy and 
Simpson index do not fit the power-law (or log-linear) rela-
tionship of the classic SAR. Ma18 adopted Hill numbers (that 
is based on Renyi’s entropy) and successfully extended the 

classic SAR to the general DAR (diversity-area relationship). 
With the DAR, the species richness (the number of species) in 
classic SAR is replaced by the general diversity metrics (specifi-
cally, the Hill numbers), and the extension therefore expands 
the application of the SAR to the general diversity scaling 
(change) across individuals, which allows us to investigate the 
population (cohort) level diversity scaling associated with gout 
in the case of this study.

The objective of this study is set to determine whether or not 
gout influences the key parameters of DAR models built for the 
gut microbiomes sampled from the gout patients and healthy 
controls, respectively. The so-termed DAR scaling parameter 
can then be used to decipher the microbial diversity scaling 
(changes) rates across host individuals within a cohort (ie, the 
diversity changes at the cohort or population level). Another key 
DAR parameter, the maximal accrual diversity (of a cohort or 
population), also known as the potential diversity (or dark diver-
sity), measures the total microbial diversity of a cohort or popu-
lation. Different from traditionally reported microbial diversity 
(eg, Guo et al15), the potential diversity includes the diversity 
contributions of all microbial species that may be absent in some 
host individuals but with the potential to colonize the cohort (or 
population), and therefore the potential diversity is a cohort- or 
population-level property (parameter). Previously, Li and Ma22 
studied a similar problem  with ours here by investigating 25 
microbiome-associated diseases, and they found that in only 
approximately 1/3 of the cases, diseases led to statistically signifi-
cant differences. However, their study did not include gout dis-
ease, and our study here is aimed to fill the gap.

Materials and Methods
Dataset description

The datasets of gut microbiome we reanalyzed in this study 
were first reported by Guo et al.15 The stool samples were col-
lected from 83 Chinese adults, including 41 gout patients and 
42 healthy individuals. The collected stool samples were pyro-
sequenced on Roche GS FLX platform to obtain 535 153 
high-quality 16S-rRNA reads by amplifying the V1-V3 region. 
The 16S-rRNA reads were fed into the bioinformatics pipeline 
(QIIME V1.5), and a total of 3689 OTUs at 97% similarity 
level, and their abundances in the form of OTU (operational 
taxonomic unit) tables were obtained. Detailed information on 
the datasets is referred to Guo et al.15

DAR (diversity-area relationship) power law and 
its extensions

DAR is an extension of the classic species-area relationship 
(SAR), which relates the number of species (S) accumulated 
within a region (ie, species richness) and the area size (A) of the 
region in a power function model (eg, Tjørve24 and Plotkin  
et al25). In the DAR, the species richness (S) is replaced with 
general diversity in Hill numbers, but both DAR and SAR use 
the same form of mathematical formulas.18,19,20-23
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The process of constructing DAR models consists of the 
following three steps: (i) Bioinformatics analysis of 16S-rRNA 
data to get OTU tables26-28; (ii) Computing species or OTU 
diversities measured with the Hill numbers29-31; (iii) 
Constructing the DAR models.18,19

Diversity measured in Hill numbers

The Hill numbers,32 initially introduced into ecology from 
economics to measure community evenness, are considered the 
most appropriate metrics for alpha-diversity,29,30,33
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where S is the number of species, pi is the relative abundance of 
species i, q is the order number of diversity.

The general interpretation of 
qD (diversity of order q) is that the community has a diver-

sity of order q, which is equivalent to the diversity of a com-
munity with qD = x equally abundant species. Note that a series 
of the Hill numbers at different order q is termed diversity 
profile.29,30,33

Since Hill numbers are in the unit of species or species 
equivalents, a community with Hill numbers of qD = x means 
that the community consists of x equally abundant species. 
This allows for the comparisons of community diversities 
under a unified series of positive real numbers, corresponding 
to the diversity orders. The series of Hill numbers are termed 
diversity profile, and each Hill number in the profile was 
weighted differently by the species abundances. For example, 
when q = 0, the species abundance does not weigh at all, and the 
Hill number is simply the number of species in the community 
or the species richness. When q = 1, the Hill number is weighted 
equally by species abundances. When q = 2, the Hill number is 
weighted for more by more abundant species.

The DAR (diversity-area relationship) models

Since all Hill numbers are in units of species, and in fact, they are 
referred to as the effective number of species or as species equiva-
lents (eg, OTUs); intuitively, Hill numbers may be treated as 
“species” numbers. Following this reasoning, Ma18 extended clas-
sic SAR (species-area relationship), which established the 
power-function relationship between species numbers (S) and 
the area (A) of a region containing the species, to Hill numbers 
and established so-termed DAR (diversity-area relationship):

q zD cA= 	 (2)

where qD is diversity measured in Hill numbers of the q-th 
order, A is area, and c & z are model parameters.

The power-law with exponential cutoff (PLEC) model, 
originally introduced to SAR modeling by Plotkin et al25, 
Ulrich and Buszko34, and Tjørve24, is another DAR model:

q zD cA dA= exp( ), 	 (3)

where d is a parameter that should, in general, be negative in 
DAR scaling models. An advantage of PLEC model is that it 
can be utilized to estimate the so-termed potential diversity as 
explained below.

The following linear transformation can be used to fit the 
PL and PLEC models (equations (2) and (3)),

ln( ) ln( ) ln( )D c z A= + 	 (4)

ln( ) ln( ) ln( )D c z A dA= + + 	 (5)

To increase the robustness of DAR modeling, 100 times of re-
sampling were used to fit the DAR models and the average 
model parameters from the 100 times of repetitions were 
adopted as the final model parameters. This re-sampling pro-
cedure helps to eliminate the potential bias from arbitrarily 
ordering the accumulation of samples.

The diversity order stratifies diversity measures (Hill 
numbers) according to diversity order (q), with lower order 
weighted more by less abundant species and higher-order 
weighted more abundant species. At diversity order q = 0, 
species abundance does not weigh at all, and Hill numbers 
correspond to species richness. When q = 1, Hill numbers are 
weighted equally by all species; when q = 2, Hill numbers are 
weighted more by more abundant species; when q = 3, 
weighted even more by more abundant species. Therefore, 
Hill numbers at different orders provide a series of diversity 
metrics (ie, the so-termed diversity profile) for measuring 
diversity comprehensively.30 Similar to the diversity profile, 
Ma18 defined DAR prof ile as a series of DAR scaling param-
eter (z) corresponding to diversity order (q), that is, z-q series 
or pattern. It describes the change of diversity scaling param-
eter (z) with the diversity order (q).

Potential diversity: Predicting MAD (maximal 
accrual diversity) with PLEC-DAR models

The maximal accrual diversity (MAD) in a cohort (or popula-
tion) can be computed with PLEC parameters (equations (3) 
and (5)) according to the following formula18,20:

Max D D c z
d

z cA zq q z z( ) ( ) exp( ) exp( )max max= = − − = −     (6)

and the number of individuals reaching the maximum (Amax) 
can be estimated by

A z dmax = − 	 (7)

where all parameters are the same as equations (3) and (5).
The MAD profile (Dmax-q pattern) is a series of Dmax values 

corresponding to a series of diversity order numbers (q = 0, 1, 2, 
3,.  .  .). MAD can be considered as potential diversity in a 
cohort (population) or a region.20
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Pair-wise diversity overlap (PDO) profile

The pair-wise diversity overlap (g) is defined as18:

g z= −2 2 	 (8)

where z is the scaling parameter of PL DAR model (equations 
(2) and (4)). If z = 1, then g = 0, there is no diversity overlap; and 
if z = 0, g = 1, the diversity overlap is in total. In reality, g should 
between 0 and 1. Given that the range of g is between 0 and 1, 
we may even use percentage notation to measure pair-wise 
diversity overlap. Similar to the previously defined diversity 
profile (D-q), DAR profile (z-q series), and MAD profile 
(Dmax-q), PDO profile refers to the series of g corresponding 
with q, that is, g-q series.

Results and Discussion
Table 1 exhibited the model parameters from fitting the DAR 
(diversity-area relationship) with the gout, healthy, and their 
combined datasets. The left side of Table 1 is the PL (power-
law) model parameters and the right side is the PLEC (power-
law with exponential cutoff ) parameters. The p-values in Table 
1 show that both PL and PLEC fitted all three groups of the 
datasets extremely significant (in most cases P < .001). The 
PLEC model has an advantage of being able to estimate the 
MAD (maximal accrual diversity) profile or Dmax, which essen-
tially measures the accrued diversity in a population or cohort 
(or the so-termed potential diversity), at different diversity 
orders. The other two parameters from PL model, scaling 
parameter (z) and pair-wise diversity overlap (PDO) parame-
ter (g) define the DAR profile and PDO profile, respectively.

We performed a permutation test (refer to Collingridge35 
for the permutation algorithm) for the key parameters of DAR 
models and the results were listed in Table 2. It turned out that, 
statistically, gout does not significantly influence the values of 
those key DAR parameters. Given the lack of significant dif-
ferences between the healthy and diseased groups, to take 
advantage of the larger sample size, we also built DAR models 
with the combined datasets of gout and healthy groups. Given 
the lack of disease influence and the larger sample size, in the 
following interpretations, we use the parameters from the com-
bined dataset for simplicity and convenience.

From Table 1, we summarized the following findings:

(i) � The gut microbiome diversity scaling (changes across 
individuals) follows the DAR model, but gout has 
insignificant influence on the model parameters. This 
suggests that the gut microbiome is rather resilient 
against the disturbance from gout.

(ii) � The DAR profile (Figure 1): the scaling parameter (z) 
across the diversity order (q) from the PL model is: z-
q = {0.633 [q = 0], 0.263 [q = 1], 0.155 [q = 2], 0.099 
[q = 3]}, a monotonically decreasing trend with the 
increase of diversity order (q). This indicates that at 
lower diversity orders, the inter-subject heterogeneity 

is larger than that at higher orders. The highest het-
erogeneity is at the species richness level (q = 0). Since 
at higher diversity order, the dominant species were 
given more weights in computing the diversity (Hill 
numbers). This suggests that the humans gut microbi-
ome are more homogenous (less heterogeneous) in 
terms of their dominant species. Since at lower diver-
sity order, the rare species were given more weights in 
computing the diversity (Hill numbers). This suggests 
that the human gut microbiome is more heterogene-
ous in terms of rare species. In other words, people 
tend to be more similar in their gut microbiome com-
position in terms of dominant species and tend to be 
more dissimilar in terms of rare species. It may be the 
case, that we all share certain dominant species but 
each individual may have his or her own rare species. 
This should be true intuitively, but our study offers a 
piece of quantitative evidence to support this 
phenomenon.

(iii) � The PDO profile (Figure 2): the parameter g-q series 
from the PL model is: g-q = {0.448 [q = 0], 0.796 
[q = 1], 0.882 [q = 2], 0.924 [q = 3]}, a monotonically 
increasing trend with the increase of diversity order 
(q). This indicates that at lower diversity orders, the 
pair-wise diversity overlap (similarity) is larger than 
that at higher orders. The lowest diversity overlap 
(similarity) is at the species richness level (q = 0), and 
the highest similarity occurred at the diversity order 
q = 3. This finding further supports the finding 
revealed by the DAR profile in the previous (ii).

(iv) � The MAD profile (Figure 3): the parameter Dmax-q 
series estimated from the PLEC model is: 
Dmax-q ={5040 [q = 0], 83.1 [q = 1], 22.0 [q = 2], 13.3 
[q = 3]}, showing a monotonically decreasing popula-
tion potential diversity (Dmax) with the increase of 
diversity order (q). This, of course, is determined by 
the nature of the diversity (Hill numbers) and MAD.

The Dmax(0) = 5040 is simply the maximal accrual of species 
richness since the Hill numbers at q = 0 are the species richness. 
In other words, this is the expected maximum of species rich-
ness in the cohort of the population potential species richness. 
The term population here means the population of microbi-
ome hosts (individual subjects).

At diversity order q = 1, the Hill numbers are equivalent to 
an exponential function of Shannon diversity index. It repre-
sents the number of species in terms of “common species” or 
species with a typical abundance level. Dmax(1) = 83.1 suggests 
that there are potentially 83 commonly observed bacterial spe-
cies in the human gut microbiome. Dmax(2) = 22 suggests that 
there are potentially 22 dominant species in the human gut 
microbiome. Similar interpretations can be made for q = 3.

As reported in Guo et al,15 they obtained 3689 species 
(OTUs at 97% similarity level) from the whole sequencing 
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Table 2.  The permutation tests for differences in the alpha-DAR parameters between gout and healthy gut microbial communities.

DAR Diversity 
Order

Parameter Gout (G) Health (H) Delta  
Δ′ = |G-H|

Permutated 
Mean |Δ|

SD of |Δ| P-value

PL q = 0 z 0.696 0.628 0.068 0.102 0.076 .600

ln(c) 5.190 5.517 0.327 0.343 0.260 .463

q = 1 z 0.385 0.267 0.118 0.170 0.129 .582

ln(c) 2.958 3.378 0.42 0.564 0.432 .547

q = 2 z 0.235 0.195 0.04 0.190 0.139 .873

ln(c) 2.125 2.472 0.347 0.614 0.473 .645

q = 3 z 0.167 0.151 0.016 0.190 0.137 .952

ln(c) 1.864 2.177 0.313 0.607 0.462 .689

PLEC q = 0 z 0.799 0.679 0.12 0.197 0.133 .652

d –0.008 –0.004 0.004 0.009 0.007 .701

ln(c) 5.077 5.459 0.382 0.427 0.313 .484

MAD 2790 3900 1109 2659.595 10 798.106 .408

q = 1 z 0.587 0.411 0.176 0.332 0.254 .658

d –0.016 –0.011 0.005 0.017 0.013 .824

ln(c) 2.736 3.217 0.481 0.689 0.531 .555

MAD 71 72 1 19.095 27.955 .927

q = 2 z 0.429 0.326 0.103 0.376 0.280 .837

d –0.015 –0.010 0.005 0.021 0.016 .848

ln(c) 1.912 2.325 0.413 0.717 0.544 .653

MAD 18 23 5 7.026 7.360 .587

q = 3 z 0.352 0.279 0.073 0.383 0.283 .887

d –0.015 –0.010 0.005 0.023 0.017 .870

ln(c) 1.660 2.033 0.373 0.687 0.506 .680

MAD 11 15 4 4.885 3.693 .602

Note: Random permutations from 1000 times were used to test the difference between 2 groups .

Figure 1.  The DAR profile (z-q) for the healthy and gout groups, where  

z is the DAR scaling parameter and q is the diversity order.

Figure 2.  The PDO profile (pair-wise diversity overlap) (g-q) for the 

healthy and gout groups, where g is the pair-wise diversity overlap 

(similarity) parameter and q is the diversity order.
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experiment, this number is approximately 900 more than 
the maximal accrual species richness in our DAR model for 
the gout disease group estimated [Gout treatment: 
Dmax(0) = 2790, Table 1] and is 210 less than the number our 
DAR model estimated for the healthy treatment [Healthy 
treatment: Dmax(0) = 3900, Table 1]. This finding suggests 
that gout disease may lead to a decrease in species richness. 
The difference between the Dmax for the healthy control and 
gout group is 3900−2790 = 1100, which is approximately 
30% decline compared with the healthy control and 40% 
decline with the gout group. Although the statistical test 
(Table 2) did not support the significance level of the differ-
ence, we believe that the 30-40% difference between the 
healthy control and gout group is remarkable and worthy of 
further investigation.

While the statistical tests of the DAR parameters (Table 2) 
did not reveal significant differences between the healthy con-
trol and gout groups, we also computed the diversity of the 
healthy and gout groups (Table 3) and conducted statistical 
tests to compare their differences in the alpha-diversity (Hill 
numbers) (Table 4). Table 4 shows that there are significant 
differences between the healthy and gout groups in terms of 
the alpha-diversity (Hill numbers) per se. Then, why did not the 
DAR parameters show similar differences?

There are two possible explanations for the lack of differ-
ences in the DAR parameters between the healthy and gout 
groups. One is the stability (resilience) of the gut microbiome 
ecosystem, which can be sufficiently strong to resist the changes 
due to gout. Another is the difference between the diversity per 
se and the scaling of diversity (DAR). Using an analogy in 
physics, the relationship between diversity and diversity scaling 
parameter (z of DAR) is similar to that between gravity and 
the gravitational coefficient (which is g = 9.8 can be considered 
as a constant on the earth). The gravitational coefficient is 
essentially the acceleration rate of gravity, that is, the scaling 
(change) rate of gravity. Therefore, it can be the case that the 
gut microbiome has its characteristic diversity scaling parame-
ter (z) or DAR profile (z-q series), just as the earth has its 

Figure 3.  The MAD profile (maximal accrual diversity) (Dmax-q) for the 

healthy and gout groups, where Dmax is the maximal accrual diversity 

(MAD) and q is the diversity order.
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constant gravitational coefficient. Therefore, although we do 
not necessarily believe that the gut must have a constant diver-
sity scaling parameter, we should not be surprised that the gut 
microbiome diversity scaling parameters were not influenced 
significantly by gout.

Li and Ma22 found that in only approximately 1/3 of the 
studied cases, there were statistically significant differences 
between the healthy and diseased treatments in the DAR 
parameters. However, their study did not include the case 
study of gout-associated microbiomes, and our results here 
add another negative case of “no significant disease effects.” 
Still, we caution that further studies with larger datasets will 
be extremely helpful to validate or reject our findings. Finally, 
it should be noted that the findings from this study are not 
directly comparable with those reported originally by Guo  
et al,15 even though both articles analyzed the same datasets 
and both analyzed microbial diversity. This is because our 
diversity analysis is performed with the DAR modeling 
approach18-20,22 at the host cohort (population level), while 
the diversity analysis conducted by Guo et al15 adopted a 
standard, individual-level, alpha-diversity indexes such as 
Shannon entropy.

Conclusions
This study aims to investigate the diversity scaling of the gut 
microbiome under the influence of gout, and it was found 
that the potential number of microbial species in the cohort 
of gout patients is only 70% of that in the cohort of the 
healthy control (2790 vs 3900), although the difference may 
not be statistically significant. We postulate that, although 
the influence of gout on diversity measured in Hill numbers 
may not be statistically significant, the 30% difference in 
species numbers suggests that there may be a significant 
change in species composition associated with gout. In other 
words, the identities of some species may be changed in asso-
ciation with the disease, and the potential reduction of 
unique species numbers associated with gout can be as many 
as 1100 or 30%. Furthermore, the diversity scaling parameter 
in gout patients is apparently larger than in the healthy con-
trols, although the difference is again statistically insignifi-
cant. We hypothesize that the high resilience of the gut 
microbiome explains the lack of significant disease effects on 
the key DAR parameters such as the potential diversity and 
diversity scaling parameters. In perspective, our findings can 
be of important public health significance for preventing 
and/or managing gout through regulating the gut microbi-
ome at the host population level.
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