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Glutathione binding to the plant 
AtAtm3 transporter and implications 
for the conformational coupling of 
ABC transporters
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Abstract The ATP binding cassette (ABC) transporter of mitochondria (Atm) from Arabidopsis 
thaliana (AtAtm3) has been implicated in the maturation of cytosolic iron-sulfur proteins and 
heavy metal detoxification, plausibly by exporting glutathione derivatives. Using single-particle 
cryo-electron microscopy, we have determined four structures of AtAtm3 in three different confor-
mational states: two inward-facing conformations (with and without bound oxidized glutathione 
[GSSG]), together with closed and outward-facing states stabilized by MgADP-VO4. These structures 
not only provide a structural framework for defining the alternating access transport cycle, but also 
reveal the paucity of cysteine residues in the glutathione binding site that could potentially form 
inhibitory mixed disulfides with GSSG. Despite extensive efforts, we were unable to prepare the 
ternary complex of AtAtm3 containing both GSSG and MgATP. A survey of structurally characterized 
type IV ABC transporters that includes AtAtm3 establishes that while nucleotides are found associ-
ated with all conformational states, they are effectively required to stabilize occluded, closed, and 
outward-facing conformations. In contrast, transport substrates have only been observed associated 
with inward-facing conformations. The absence of structures with dimerized nucleotide binding 
domains containing both nucleotide and transport substrate suggests that this form of the ternary 
complex exists only transiently during the transport cycle.

Editor's evaluation
Mitochondrial glutathione is an important line of defence against free radical production. The ATP 
binding cassette (ABC) transporter Atm3 exports oxidized glutathione out of the mitochondria to 
help maintain a suitable reducing environment. In this study, the authors have biochemically char-
acterized Atm3 and determined four cryo-EM structures exhibiting three different conformational 
states, revealing new insights into the transport mechanism. This well-executed study will be of 
broad interest to the membrane biology and transport communities.

Introduction
The ATP binding cassette (ABC) transporter of mitochondria (Atm) family plays a vital (Leighton and 
Schatz, 1995), but enigmatic, role broadly related to transition metal homeostasis in eukaryotes (Lill 
et al., 2014). The best characterized member is Saccharomyces cerevisiae Atm1 (ScAtm1) present in 
the inner membrane of mitochondria (Leighton and Schatz, 1995) and required for the formation 
of cytosolic iron-sulfur cluster containing proteins (Kispal et al., 1999). Defects in ScAtm1 lead to an 
overaccumulation of iron in the mitochondria (Kispal et al., 1997). Atm1 is proposed to transport a 
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sulfur containing intermediate (Kispal et al., 1999) that may also include iron (Pandey et al., 2019). 
It is also likely to transport a similar sulfur containing species from the mitochondria that is required 
for the cytoplasmic thiolation of tRNA (Pandey et al., 2018). While the precise substrate that is trans-
ported remains unknown, derivatives of glutathione have been implicated based on their ability to 
stimulate the ATPase activity of Atm1 (Kuhnke et al., 2006).

Structures for Atm family members are currently available for ScAtm1 (Srinivasan et al., 2014), the 
bacterial homolog NaAtm1 from Novosphingobium aromaticivorans (Lee et al., 2014) and human 
ABCB6 (Wang et  al., 2020); the pairwise sequence identities between these homologous trans-
porters range from 40% to 46%. These proteins occur as homodimers of half-transporters, where 
each half-transporter contains a transmembrane domain (TMD) followed by the canonical nucleotide 
binding domain (NBD) that defines the ABC transporter family. Each TMD consists of six transmem-
brane helices (TMs) that exhibit the exporter type I fold first observed for Sav1866 (Dawson and 
Locher, 2006); a recent re-classification now identifies this group as type IV ABC transporters (Thomas 
et al., 2020). The translocation of substrates across the membrane proceeds through an alternating 
access mechanism involving the ATP-dependent interconversion between inward- and outward-facing 
conformational states. Among the Atm1 family, these conformations have been most extensively char-
acterized for NaAtm1 and include the occluded and closed states that provide a structural framework 
for the unidirectional transport cycle (Fan et al., 2020). Structures of ScAtm1 with reduced gluta-
thione (GSH) (Srinivasan et  al., 2014), and of NaAtm1 complexed with reduced (GSH), oxidized 
(GSSG), and metallated (GS-Hg-SG) (Lee et al., 2014), have defined the general substrate binding 
site in the TMD for the transport substrates.

Plants have been found to have large numbers of transporters (Hwang et al., 2016), including 
Arabidopsis with three Atm orthologues, AtAtm1, AtAtm2, and AtAtm3 (Chen et  al., 2007). Of 
these, AtAtm3 (also known as ABCB25) rescues the ScAtm1 phenotype (Chen et al., 2007), and has 
been shown to be associated with maturation of cytosolic iron-sulfur proteins (Kushnir et al., 2001), 
confer resistance to heavy metals such as cadmium and lead (Kim et al., 2006), and participate in 
the formation of molybdenum-cofactor containing enzymes (Bernard et al., 2009; Teschner et al., 
2010). Unlike yeast, defects in AtAtm3 are not associated with iron accumulation in mitochondria 
(Bernard et al., 2009). While the physiological substrate is unknown, AtAtm3 has been shown to 
transport GSSG and glutathione polysulfide, with the persulfidated species perhaps relevant to cyto-
solic iron-sulfur cluster assembly (Schaedler et al., 2014). The ability of AtAtm3 to export GSSG has 
been implicated in helping stabilize against excessive glutathione oxidation in the mitochondria and 
thereby serving to maintain a suitable reduction potential (Marty et al., 2019).

To help address the functional role(s) of Atm transporters, we have determined structures of 
AtAtm3 in multiple conformational states by single-particle cryo-electron microscopy (cryoEM). These 
structures not only provide a structural framework for defining the alternating access transport cycle, 
but they also illuminate an unappreciated feature of the glutathione binding site, namely the paucity 
of cysteine residues that could potentially form inhibitory mixed disulfides during the transport cycle. 
A survey of structurally characterized members of the type IV family of ABC transporters, including the 
Atm1 family, establishes that nucleotides are effectively required for the stabilization of the occluded, 
closed, and outward-facing conformations. In contrast to the nucleotide states, transport substrates 
and related inhibitors have only been observed associated with inward-facing conformational states. 
The absence of structures with dimerized NBDs containing both nucleotide and transport substrate 
suggests that this form of the ternary complex exists only transiently during the transport cycle.

Results
AtAtm3 contains an N-terminal mitochondrial targeting sequence that directs the translated protein to the 
mitochondria, where it is cleaved following delivery to the inner membrane. Since this targeting sequence 
consists of ~80 residues and is anticipated to be poorly ordered, we generated three different N-terminal 
truncation mutants of AtAtm3 through deletion of 60, 70, or 80 residues to identify the best-behaved 
construct. Together with the wild-type construct, these three variants were heterologously overexpressed 
in Escherichia coli. The construct with the 80 amino acids deletion showed the highest expression level and 
proportionally less aggregation by size exclusion chromatography (Figure 1—figure supplement 1) and 
hence was used for further functional and structural studies.

https://doi.org/10.7554/eLife.76140
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ATPase activities
Using the 80-residue truncation construct, AtAtm3 was purified in the detergent n-dodecyl-β-D-
maltoside (DDM) and reconstituted into nanodiscs formed from the membrane scaffolding protein 
(MSP) 1D1 and the lipid 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). The ATPase activity 
of this construct was measured as a function of MgATP concentration in the absence and presence of 
either 2.5 mM GSSG or 10 mM GSH, which approximate their physiological concentrations in E. coli 
(Bennett et al., 2009). The rate of ATP hydrolysis was determined by measuring phosphate release 
using a molybdate-based colorimetric ATPase activity assay (Chifflet et al., 1988). The basal ATPase 
activity, measured in the absence of glutathione derivatives, was significantly higher in detergent than 
in nanodiscs (104 vs. 7.7 nmol/min/mg, respectively; Figure 1ab), while the apparent Kms for MgATP 
were within a factor of two (~0.16 and 0.08 mM, respectively). The ATPase activity of AtAtm3 is stim-
ulated by both 2.5 mM GSSG and 10 mM GSH, but the extent of stimulation depends strongly on 
the solubilization conditions. In nanodiscs, the ATPase rates increase to 32 and 39 nmol/min/mg with 
2.5 mM GSSG and 10 mM GSH, respectively, for an overall increase of 4–5× above the basal rate. The 
ATPase rates for AtAtm3 in DDM also increase with GSSG and GSH, to 117 and 154 nmol/min/mg, 
respectively. Because of the higher basal ATPase rate in detergent, however, the stimulation effect 
is significantly less pronounced, corresponding to only an ~50% increase for GSSG stimulation. Little 
change is observed for the Kms of MgATP between the presence and absence of glutathione deriva-
tives for either detergent solubilized or nanodisc reconstituted AtAtm3 (Figure 1).

Inward-facing, nucleotide-free conformational states
To map out the transport cycle, we attempted to capture AtAtm3 in distinct liganded conformational 
states using single-particle cryoEM. We first determined the structure of AtAtm3 reconstituted in 
nanodiscs at 3.4 Å resolution in the absence of either nucleotide or transport substrate (Figure 2a 
and Figure  2—figure supplement 1). This structure revealed an inward-facing conformation for 
AtAtm3 similar to those observed for the inward-facing conformations for ScAtm1 (PDB ID: 4myc) and 
NaAtm1 (PDB ID: 6vqu) with overall alignment root mean square deviations (rmsds) for the dimer of 
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Figure 1. ATPase activities of AtAtm3. ATPase activities measured in (a) the detergent n-dodecyl-β-D-maltoside (DDM) and (b) nanodiscs formed by 
membrane scaffolding proteins (MSP) and the lipid 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). The ATPase activities were measured in the 
absence of substrate (●), at 2.5 mM GSSG (■) and 10 mM GSH (▲). The corresponding values of Vmax and Km in different substrate conditions derived 
from fitting to the Michaelis-Menten equations are indicated. Each condition was measured three times with the individual data points displayed.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Numerical data for the graphs depicted in Figure 1a and b.

Figure supplement 1. AtAtm3 constructs.

https://doi.org/10.7554/eLife.76140
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Figure 2. Structures of AtAtm3. (a) Inward-facing conformation in the apo state. (b) Inward-facing conformation with oxidized glutathione (GSSG) 
bound. (c) TM6s (residues 416–460) in the inward-facing conformation. (d) TM6s in the GSSG-bound inward-facing conformation. The location of GSSG 
is indicated. (e) Residues important in stabilizing GSSG binding site, identified by PDBePISA (Krissinel and Henrick, 2007). (f) Closed conformation 
with MgADP-VO4 bound. (g) Outward-facing conformation with MgADP-VO4 bound. (h) TM6s in the closed conformation. (i) TM6s in the outward-facing 
conformation.

Figure 2 continued on next page
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2.6 Å (Figure 2—figure supplement 2a, b) and 2.1 Å (Figure 2), respectively, and half-transporter 
alignment rmsds of 2.3 and 2.0 Å (Figure 2—figure supplement 2c), respectively. The primary distinc-
tion between these structures is the presence of an approximately 20 amino acid loop between TM1 
and TM2 of AtAtm3 that would be positioned in the intermembrane space and is absent from the 
structures of ABCB7 (Jumper et al., 2021; Varadi et al., 2022), ABCB6 (Song et al., 2021), ScAtm1 
(Srinivasan et al., 2014), and NaAtm1 (Lee et al., 2014; Figure 2—figure supplement 3). While the 
functional relevance of this loop in AtAtm3 is not known, structural characterization of PglK, a lipid-
linked oligosaccharide flippase, revealed a comparably positioned external helix between TM1 and 
TM2 that was implicated in substrate flipping (Perez et al., 2015), suggestive that the corresponding 
loop could also have a functional or structural role in AtAtm3.

To further look at substrate binding, we determined a 3.6 Å resolution single-particle cryoEM structure 
of AtAtm3 purified in DDM with bound GSSG (Figure 2b and Figure 2—figure supplement 4). Although 
the overall resolution of the reconstruction was moderate (Figure 2—figure supplement 4d), we were 
able to model the GSSG molecule into the density map. In this structure, AtAtm3 adopts an inward-facing 
conformation, with an overall alignment rmsd to the ligand-free inward-facing structure of 2.9 Å (Figure 2—
figure supplement 5a) and a corresponding half-transporter alignment rmsd of 1.6 Å (Figure 2—figure 
supplement 5b). The main difference between the two structures is the extent of NBD dimer separation 
(Figure 2—figure supplement 5a), where the GSSG-bound structure presents a more closed NBD dimer 
relative to the substrate-free structure. As previously noted with NaAtm1 (Fan et al., 2020), the TM6s in these 
inward-facing structures of AtAtm3 adopt a kinked conformation including residues 429–438 (Figure 2cd). 
This opens the backbone hydrogen bonding interactions to create the binding site for GSSG (Figure 2e) 
with binding pocket residues identified by PDBePISA (Krissinel and Henrick, 2007). The binding mode of 
GSSG in this AtAtm3 inward-facing conformation is similar to that observed in the inward-facing structure of 
the GSSG-bound NaAtm1 (Lee et al., 2014).

MgADP-VO4 stabilized closed and outward-facing conformational 
states
MgADP-VO4 has been found to be a potent inhibitor of multiple ATPases through formation of a 
stable species resembling an intermediate state during ATP hydrolysis (Crans et al., 2004; Davies and 
Hol, 2004). We determined two structures of AtAtm3 stabilized with MgADP-VO4, one in the closed 
conformation with AtAtm3 reconstituted in nanodiscs at 3.9 Å resolution (Figure 2f and Figure 2—
figure supplement 6) and the other in the outward-facing conformation with AtAtm3 in DDM at 
3.8  Å resolution (Figure  2g and Figure  2—figure supplement 7). These two structures share an 
overall alignment rmsd of 1.7 Å with the primary difference being a change in separation of the TMs 
surrounding the translocation pathway on the side of the transporter facing the intermembrane space 
(Figure  2—figure supplement 8). As a result of these changes in the TMDs, access to the inter-
membrane space is either blocked in the closed conformation (Figure 2f) or is open in the outward-
facing conformation (Figure 2g). The changes in the TMDs are reflected in the conformations of TM6, 
which in the closed structure presents a kinked conformation (Figure 2h), in contrast to the straight 
conformation in the outward-facing structure that has the backbone hydrogen bonding interaction 
restored in the helices (Figure 2i). Further, the loops between TM1 and TM2 that are characteristics 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Single-particle cryo-electron microscopy (cryoEM) structure of AtAtm3 in the inward-facing conformation.

Figure supplement 2. Structural alignment of AtAtm3 to other ATM transporters.

Figure supplement 3. Half-transporter comparison of transporters in the ATM family.

Figure supplement 4. Single-particle cryo-electron microscopy (cryoEM) structure of AtAtm3 in the inward-facing conformation with oxidized 
glutathione (GSSG) bound.

Figure supplement 5. Structural alignment of AtAtm3 in the inward-facing conformation.

Figure supplement 6. Single-particle cryo-electron microscopy (cryoEM) structure of AtAtm3 in the closed conformation.

Figure supplement 7. Single-particle cryo-electron microscopy (cryoEM) structures of AtAtm3 in the outward-facing conformation.

Figure supplement 8. Structural alignment of AtAtm3 in the closed and outward-facing conformation.

Figure 2 continued

https://doi.org/10.7554/eLife.76140
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of the AtAtm3 transporter are better ordered in the closed conformation than in the outward-facing 
conformation (Figure 2fg and Figure 2—figure supplements 6 and 7). In contrast to the variation in 
the TMDs, the dimerized NBDs are virtually identical in these two structures with an overall alignment 
rmsd of 0.8 Å (Figure 2fg and Figure 2—figure supplement 8).

Discussion
The plant mitochondrial Atm3 transporter has been implicated in a diverse set of functions associated 
with transition metal homeostasis that are reflective of the roles that have been described for the 
broader Atm1 transporter family. To provide a general framework for addressing the detailed function 
of this transporter in plants, we have structurally and functionally characterized Atm3 from Arabi-
dopsis thaliana. We first identified a construct of AtAtm3 with the mitochondrial targeting sequence 
deleted that expressed well in E. coli (Figure 1—figure supplement 1). Following purification, the 
ATPase activities of AtAtm3 were measured in both detergent and MSP nanodiscs as a function of 
MgATP concentrations (Figure 1). Overall, the ATPase rate measured in detergent is about fivefold 
greater than that measured in nanodiscs, perhaps indicative of a more tightly coupled ATPase activity 
in a membrane-like environment. Both GSH and GSSG stimulate the ATPase activity by increasing 
Vmax, with little change observed in the Km for MgATP. The ability of GSSG to stimulate the ATPase 
activity of AtAtm3 agrees with previous reports (Schaedler et al., 2014), while the stimulation we 
observe with 10 mM GSH differs from the lack of stimulation noted in that work with 1.7 and 3.3 mM 
GSH. This discrepancy may reflect the higher GSH concentration utilized in the present studies, as well 
as differences in other experimental conditions including the use of a Lactococcus lactis expression 
system and ∆60 N-terminal truncation by Schaedler et al., 2014, compared to the E. coli expression 
system and the ∆80 N-terminal truncation employed in the present work.

ABC transporters are typically envisioned as utilizing an ‘alternating access’ mechanism, in which the 
substrate binding site transitions between inward- and outward-facing conformations coupled to the 
binding and hydrolysis of ATP. In an idealized two-state model, ABC transporters only adopt these two 
limiting conformations, but structural characterizations of ABC transporters in the presence of nucleotides 
and substrate analogs have identified a variety of intermediates, including occluded (with a ligand binding 
cavity exhibiting little or no access to either side of the membrane) and closed (no ligand binding cavity) 
conformations. The most extensive analysis of the conformational states of an Atm1-type exporter has been 
detailed for NaAtm1 and assigned to various states in the transport cycle (Fan et al., 2020; Lee et al., 
2014). In the present work, we have determined four structures of AtAtm3 in three different conforma-
tional states by single-particle cryoEM: two inward-facing conformations (with and without bound GSSG) 
(Figure 2ab), together with closed and outward-facing states stabilized by MgADP-VO4 (Figure 2fg). The 
parallels between the structurally characterized conformations of AtAtm3 and NaAtm1 support the idea 
that these conformational states are relevant to the transport cycle, and not simply an artifact of the specific 
conditions used to prepare each sample. The conformations observed for AtAtm3 and NaAtm1 do not 
completely correspond, however; most notably, the outward-facing conformation observed for AtAtm3 had 
not been previously observed with NaAtm1 (Fan et al., 2020; Lee et al., 2014), while the occluded confor-
mations found with NaAtm1 were not observed for AtAtm3.

The closed conformation stabilized by MgADP-VO4 has been observed for both NaAtm1 (Fan et al., 
2020) and AtAtm3. In comparing the closed and the outward-facing conformations of AtAtm3, the 
arrangements of the NBDs are superimposable, with the major differences between the two confor-
mational states involving the local conformation of TM6s. In the closed conformation, the TM6s adopt 
a kinked conformation at residues 438–441 that eliminates the substrate binding cavity, whereas the 
TM6s in the outward-facing conformation present straight TM6s (Figure 2hi). The TM6 helical kink in 
the closed conformation is adjacent to, but distinct from, the helical kink present at residues 429–438 
in the inward-facing conformation. By eliminating the substrate binding cavity, the presence of the 
closed conformation in a post-ATP hydrolysis state enforces unidirectionality of the transport process 
by precluding the uptake of substrate from the outside. We note that MgADP-VO4 was observed 
to stabilize two different conformational states for AtAtm3, the closed state in nanodiscs and the 
outward-facing conformation in detergent (Figure 2fg). The stabilization of multiple conformations 
of AtAtm3 with MgADP-VO4 contrasts with our previous observations on NaAtm1, where only the 
closed conformation was observed (Fan et al., 2020). The underlying basis for these differences is 
not known but may reflect differences in the conformational stabilization of the membrane spanning 

https://doi.org/10.7554/eLife.76140
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regions between detergents and nanodiscs. Structural differences between detergents and nanodiscs 
have been previously reported for MsbA under MgADP-VO4 stabilizing conditions (Mi et al., 2017; 
Ward et al., 2007), and in the functional analysis of other membrane proteins (Hänelt et al., 2013).

In contrast to differences in the structures of the TMDs between the closed and outward-facing 
conformations, the TMDs in the inward-facing conformation structures of AtAtm3 are similar. The 
primary differences between the two structures of inward-facing conformations of AtAtm3 are in the 
relative positioning of the NBDs which are more widely separated in the apo structure relative to the 
GSSG-bound structure. Similar substrate-induced NBD movements have been previously observed in 
MRP1 (Johnson and Chen, 2017) and ABCB1 (Barbieri et al., 2021).

The conformational changes in the TMDs underlying the transport cycle are associated with 
changes in the extent of kinking of TM6 and the positioning of TM4-TM5 relative to the core formed 
by the remaining four TMs. As noted for NaAtm1, we observed kinked TM6s in the inward-facing 
and closed state of AtAtm3 (Figure  2cdh), but not the outward-facing conformation (Figure  2i). 
These conformational changes lead to changes in the volume of the central cavity forming the gluta-
thione binding site. Using the program CastP (Tian et al., 2018) with a probe radius of 2.5 Å, the 
cavity volumes of the inward-facing apo and GSSG-bound structures were measured to be ~6500 Å3 
(Figure 3a) and ~4300 Å3 (Figure 3b), respectively, while the closed conformation exhibits a cavity 
volume of ~300 Å3 (Figure 3c), and the outward-facing conformation has a cavity volume of ~5700 
Å3 (Figure 3d). We also measured the accessible solvent areas (ASA) of the key residues forming the 
binding site for GSSG in the different conformational states using Areaimol in CCP4 (Winn et al., 
2011); the ASA of the inward-facing, inward-facing with GSSG bound, closed, and outward-facing 
structures are ~1500, ~1100, ~900, and ~1300 Å2, which are also highly correlated with the cavity 
volume calculations. Most of the binding pocket residues remain exposed in all conformations with 
a few having large relative changes than others (Figure 3—figure supplement 1). Further, the cavity 
volume measurements are comparable to those calculated for NaAtm1 (Fan et al., 2020). The simi-
larities in conformational states between NaAtm1 and AtAtm3 indicate these transporters follow 
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Figure 3. Binding cavity analysis. (a) Central cavity of the apo inward-facing conformation. (b) Central cavity of the inward-facing conformation with 
oxidized glutathione (GSSG) bound. (c) Closed conformation with a restricted cavity observed. (d) Central cavity of the outward-facing conformation. 
Cavity volumes were measured by CastP (Tian et al., 2018) using a probe radius of 2.5 Å. AtAtm3 is shown as a gray cartoon representation, while 
cavities are depicted as color surfaces. The accessible solvent areas (ASA) of the key residues in the GSSG binding pockets of different structures were 
calculated by Areaimol in CCP4 (Winn et al., 2011).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Accessible surface area of binding site residues.

https://doi.org/10.7554/eLife.76140
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the same basic mechanism, in which straightening of TM6s in the transition from inward to outward 
conformation leads to the release of substrate to the opposite side of the membrane. Following 
substrate release, the transporter resets to the inward-facing conformation through the closed confor-
mation adopted after ATP hydrolysis; the decreased size of the substrate binding cavity helps enforce 
substrate release and unidirectionality of substrate transport.

The binding pocket for GSSG identified in this work primarily consists of residues from TM5 and 
TM6, with additional contributions from residues in TM3 and TM4 (Figure 4—figure supplement 1). 
The GSSG binding site for AtAtm3 largely overlaps with that identified previously for NaAtm1 (Lee 
et al., 2014) and for the binding of reduced GSH to ScAtm1 (Srinivasan et al., 2014). Inspection of a 
sequence alignment of Atm1 homologs (Figure 4—figure supplement 1) reveals that those residues 
forming the glutathione binding site are largely conserved, particularly if they are involved in polar 
interactions. A striking feature is the stretch of residues from P432 to R441 in the middle of TM6 
(AtAtm3 sequence numbering) with sequence PLNFLGSVYR with a high degree of sequence conser-
vation. P432 is associated with the TM6 kink in inward-facing conformations that permits formation of 
hydrogen bonds between exposed peptide groups with GSSG (Lee et al., 2014); as TM6 straightens 
in the occluded and outward-facing conformations, these peptide groups are no longer available to 
bind the transport substrate (Fan et al., 2020). A sequence alignment of the structurally characterized 
AtAtm3, NaAtm1, ScAtm1, and human ABCB7 and ABCB6 transporters establishes that residues in 
the binding pockets are conserved, including T317, R324, R328, N387, Q390, L433, G437, and R441 
(Figure 4—figure supplement 1). The conservation of binding pocket residues as calculated by the 
program ConSurf (Landau et al., 2005) is illustrated in Figure 4 suggests that the substrates for these 
transporters may share common features, such as the glutathione backbone. Positions such where 
sequence variability is evident, such as residue 435 (Figure 4b and Figure 4—figure supplement 1), 
may reflect the binding of distinct GSSG derivatives by different eukaryotic and prokaryotic homologs.

An important property of disulfide containing compounds such as GSSG is that they can undergo disul-
fide – thiol exchange with free -SH groups (Creighton, 1984; Nagy, 2013). This reactivity creates potential 
challenges for proteins such as AtAtm3 since reaction of a disulfide containing ligand such as GSSG with 
the thiol-containing side chain of cysteine could lead to formation of the mixed disulfide, thereby covalently 
connecting glutathione to the protein and releasing reduced GSH. Formation of the covalently linked mixed 
disulfide would be expected to restrict the access of exogenous ligands to the substrate binding cavity 
and hence would inhibit transport. For membrane proteins, cysteine residues are present in TMs with a 
frequency of about 1% (Baeza-Delgado et al., 2013). Although no cysteines residues are present in the 
AtAtm3 binding pocket, we analyzed additional Atm3 homologs from plants. For this analysis, we used the 
NCBI blastp server (Altschul et al., 1997) and selected 410 sequences with a sequence identity of 50–100% 
and query coverage of 80–100% with AtAtm3. Within the six TMs, the overall presence of cysteines was 
found to be ~0.4%. In this alignment, no cysteines were found in residues forming the glutathione binding 
cavity (Figure 5); more strikingly, no cysteine residues were found at any position of TM6 for these homologs 
(Figure 5f). Cysteines that are present in the TMs are either distant from the binding site, such as position 
405 in TM5 of AtAtm3 (Figure 5eg) or if they are closer to the binding site, are positioned on the opposite 
side of the TMs, such as positions 149, 215, 290, and 307 (Figure 5abcd). The observed exclusion of cyste-
ines from the glutathione binding site (Figure 5g) could consequently be the result of a selection against this 
residue to prevent the formation of inhibitory mixed disulfides during the transport cycle.

As a general strategy to stabilize ABC transporters in distinct conformational states, different nucleotides 
or transport substrates are mixed with the transporter. The expectation is that a particular set of ligands 
will stabilize a specific conformational state, and so we were surprised to have captured with MgADP-VO4 
both a closed conformation in MSP nanodiscs and an outward-facing conformation in detergent. Given the 
similarities in the NBDs between these two structures, the distinctive arrangements of the TMDs between 
the closed and outward-facing conformations presumably arise from differences in the TMD environment 
provided by MSP nanodiscs and DDM, respectively. Furthermore, this phenomenon of obtaining different 
conformational states with MgADP-VO4 is not unprecedented, however, since previously determined struc-
tures of MgADP-VO4 stabilized ABC exporters include NaAtm1 in the closed conformation (Fan et al., 
2020), Thermus thermophilus TmrAB in the occluded and outward-facing conformations (Hofmann et al., 
2019), and E. coli MsbA in the closed conformation (Mi et al., 2017).

Despite extensive efforts, we were unable to prepare the ternary complex of AtAmt3 with both bound 
GSSG and MgATP. To assess more generally the relationship between the conformational states of ABC 

https://doi.org/10.7554/eLife.76140
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exporters and the presence or absence of nucleotide and transport substrate, we systematically compared 
the conformations of 80 half-transporters from the available structures of type IV ABC transporters (Supple-
mentary file 2). To guide this analysis, the structures were mapped onto a one-dimensional conformational 
axis using principal component analysis (PCA; see Materials and methods). The PCA has the advantage for 
this purpose of separating all structures along a single axis such that transporters with similar structures will 
generally be positioned more closely together. Since only the dominant component is used, however, this 
analysis simplifies the conformational richness of ABC transporters. We note that the PCA does not provide 
a unique measure of the conformational state, and in particular, alternative metrics could be employed such 
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Figure 4. Substrate binding site conservation. (a) Sequence conservation of AtAtm3, NaAtm1, ScAtm1, human ABCB7, and human ABCB6 calculated 
by ConSurf (Landau et al., 2005) plotted on a cartoon and surface representations of a half-transporter of AtAtm3 in the GSSG-bound inward-facing 
conformation. Oxidized glutathione (GSSG) is shown in spheres. (b) Conservation of key residues in the GSSG binding pocket. Residues in one chain 
colored based on the conservation and residues in the second chain are colored in gray. All residues and GSSG are shown in ball and sticks.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sequence `alignment of selected Atm family transporters.
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Figure 5. Cysteine residues found in transmembrane helices in an alignment of 410 AtAtm3 homologs. (a–f) Residues are numbered based on the 
AtAtm3 sequence. Small colored dots represent different residue positions, while the larger black dots indicate residues observed to interact with 
glutathione in the NaAtm1 and AtAtm3 structures. The numbers above a given residue indicate the number of sequences in the alignment with a 
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as measuring distances between particular pairs of residues. A comparison is presented in Figure 6—figure 
supplement 1 comparing the dominant PCA component to alternative distance measures; these are gener-
ally anti-correlated, with the interesting exception of the distance between a pair of residues positioned 
in the outer facing (intermembrane space) that, not surprisingly, does a much better job of discriminating 
between outward conformations than the PCA, while less sensitive to differences between inward confor-
mations. As the quantitative value of the principal component was utilized in this analysis only to separate 
structures along a single conformational analysis (Figure 6), we utilized the PCA for that purpose in this 
analysis.

The principal component is dominated by the conformational state of the TMDs, which represents ~62% 
of total conformational change from the inward-facing to the outward-facing conformation. The distribution 
of component 1 of the PCA is shown in Figure 6 with the most extreme inward-facing conformations to 
the left and the outward-facing conformations to the right. To validate this approach, we color coded each 
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Figure 6. Principal component analysis (PCA) of type IV ATP binding cassette (ABC) exporters. (a) One-dimensional plot of component 1, colored 
according to the conformational states assigned in the original publications. The plot is oriented with the most inward and most outward conformations 
to the left and right, respectively. (b) One-dimensional plot of component 1 with inward-facing to outward-facing structures, colored by their nucleotide 
states. (c) One-dimensional plot of component 1 with inward-facing to outward-facing structures, colored by their substrate states. Each marker (square 
(■), triangle (▲), circle (●)) represents a unique half-transporter structure. Squares (■) represent structures of AtAtm3, triangles (▲) represent structures 
of NaAtm1, and circles (●) represent structures for other ABC transporters.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of principal component analysis (PCA) and distance measurements of ATP binding cassette (ABC) exporters.

https://doi.org/10.7554/eLife.76140
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structure according to their published conformational state (Figure 6a). It is evident that outward-facing 
conformations occur on the right-handed side of the figure with component 1 values between –25 and 0 Å2, 
while occluded, closed, and inward-facing conformations cluster around −25,–25, and –100 Å2, respectively. 
Hence, the magnitude of the principal component does capture the expected trends in conformational 
state, with increasing values corresponding to a progression from inward-facing to outward-facing confor-
mations. The correspondence is not exact, however, since assigned conformational states overlap, which 
could reflect either limitations of the PCA and/or inconsistent assignments of conformational states between 
different structures. We further note that some conformational states have a very wide distribution, partic-
ularly the inward-facing conformations, with several structures exhibiting widely separated subunits (with 
values for component 1 below –150 Å2).

Using the PCA, we could relate protein conformation to binding of nucleotides (Figure  6b) and 
substrates/inhibitors (Figure 6c). This analysis establishes that occluded and outward-facing conformations 
are largely nucleotide bound with either ATP or an ATP analog, but there are exceptions, most notably the 
original ADP-bound structure of Sav1866 in the outward facing conformation (Dawson and Locher, 2006; 
a similar Sav1866 structure was subsequently solved with bound AMPPNP; Dawson and Locher, 2007). 
Inward-facing conformations are observed in both nucleotide-free and nucleotide-bound forms (Figure 6b). 
Only the MgADP-VO4-bound structures are exclusively found to occupy a small conformational space in 
the closed/outward-facing region. In contrast to the binding of nucleotides to all conformational states of 
these transporters, a distinct pattern is observed for the binding of transport substrates where the trans-
porter invariably adopts the inward-facing conformation (Figure 6c). Intriguingly, no structures with associ-
ated (dimerized) NBDs to date have been published that contain both nucleotide and transport substrate, 
suggesting that this ternary complex exists only transiently during the transport cycle. As this is a key inter-
mediate for understanding how the binding of transport substrate stimulates the ATPase activity, charac-
terization of the ternary complex represents an outstanding gap in the mechanistic characterization of ABC 
exporters.

Materials and methods
Cloning, expression, and purification
A pET-21a (+) plasmid containing the full-length A. thaliana Atm3 (AtAtm3) gene with a C-terminal 
6x-His tag was purchased from Genscript (Genscript, Piscataway, NJ). Mutagenesis reactions gener-
ating the N-terminal 60, 70, and 80 amino acids deletion mutants were carried out with the Q5 muta-
genesis kit (New England Biolabs, Ipswich, MA). All AtAtm3 constructs were overexpressed in E. coli 
BL21-gold (DE3) cells (Agilent Technologies, Santa Clara, CA) using ZYM-5052 autoinduction media as 
described previously (Fan et al., 2020). Cells were harvested by centrifugation and stored at –80°C.

For purification, frozen cell pellets were resuspended in lysis buffer containing 100  mM NaCl, 
20 mM Tris, pH 7.5, 40 mM imidazole, pH 7.5, 10 mM MgCl2, and 5 mM β-mercaptoethanol (BME) in 
the presence of lysozyme, DNase, and cOmplete protease inhibitor tablet (Roche, Basel, Switzerland). 
The resuspended cells were lysed with an M-110L pneumatic microfluidizer (Microfluidics, Cambridge, 
MA). Unlysed cells and cell debris were removed by centrifugation at ~20,000 × g for 30 min at 4°C. 
The membrane fraction containing AtAtm3 was collected by ultracentrifugation at ~113,000 × g for 
an hour at 4°C. The membrane fraction was then resuspended in buffer containing 100 mM NaCl, 
20 mM Tris, pH 7.5, 40 mM imidazole, pH 7.5, and 5 mM BME and further solubilized by stirring with 
the addition of 1% DDM (Anatrace, Holland, OH) for an hour at 4°C. The DDM solubilized membrane 
was ultracentrifuged at ~113,000 × g for 45 min at 4°C to remove any unsolubilized material. The 
supernatant was loaded onto a prewashed NiNTA column. NiNTA wash buffer contained 100 mM 
NaCl, 20 mM Tris, pH 7.5, 50 mM imidazole, pH 7.5, 5 mM BME, and 0.02% DDM, while the elution 
buffer contained the same components, but with 380 mM imidazole. The eluent was subjected to 
size exclusion chromatography using HiLoad 16/60 Superdex 200 (GE Healthcare, Chicago, IL) with 
buffer containing 100 mM NaCl, 20 mM Tris, pH 7.5, 5 mM BME, and 0.02% DDM. Peak fractions 
were collected and concentrated to ~10 mg/ml using Amicon concentrators (Millipore, Danvers, MA).

https://doi.org/10.7554/eLife.76140
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ATPase activity assay
ATPase assays were carried out as described previously for both the detergent purified and the reconsti-
tuted nanodisc samples at 25°C (Fan et al., 2020) using a molybdate-based colorimetric assay (Chifflet 
et al., 1988).

Nanodisc reconstitution
For the AtAtm3 structures in nanodiscs, the reconstitution was performed following the previously 
described protocol (Fan et  al., 2020). The reconstitution was done with a 1:4:130 molar ratio of 
AtAtm3: MSP1D1: POPC (Avanti Polar Lipids, Alabaster, AL). After overnight incubation at 4 °C, 
the samples were subjected to size exclusion chromatography with a Superdex 200 Increase 10/300 
column (GE Healthcare, Chicago, IL). The peak fractions were directly used for grid preparation with 
the reconstituted samples at ~0.5 mg/ml. For the structure of AtAtm3 with GSSG bound in the inward-
facing conformation, the detergent purified protein was incubated with 10 mM GSSG, pH 7.5 at 4 °C 
for an hour with AtAtm3 at 4 mg/ml before freezing grids.

Grid preparation
For the AtAtm3 structure with MgADP-VO4 bound in the outward-facing conformation, the deter-
gent purified protein was incubated with 4  mM ATP, pH 7.5, 4  mM MgCl2, and 4  mM VO4

3- with 
protein at 5 mg/ml at 4 °C overnight before freezing grids. For all grids, 3 μL of protein solution was 
applied to freshly glow-discharged UltrAuFoil 2/2 200 mesh grids (apo inward-facing conformation 
and closed conformation, both in nanodiscs) and UltrAuFoil 1.2/1.3 300 mesh grids (Electron Micros-
copy Sciences, Hatfield, PA) (GSSG-bound inward-facing conformation and outward-facing confor-
mation, both in detergent) and blotted for 4–5 s with a blot force of 0% and 100% humidity at room 
temperature using the VitroBot Mark IV (Thermo Fisher, Waltham, MA).

Single-particle cryoEM data collection, processing, and refinement
Datasets for the inward-facing conformations in apo and GSSG-bound states, and the outward-facing 
conformation with MgADP-VO4 bound were collected with a Gatan K3 direct electron detector (Gatan, 
Pleasanton, CA) on a 300 keV Titan Krios (Thermo Fisher, Waltham, MA) in the super-resolution mode 
using SerialEM at the Caltech CryoEM facility. These datasets were collected using a defocus range 
between –1.5 and –3.0 μm and a total dosage of 60 e-/Å2. The dataset for the closed conformation 
with MgADP-VO4 bound was collected with a Falcon 4 direction electron detector (Thermo Fisher, 
Waltham, MA) on a 300 keV Titan Krios (Thermo Fisher, Waltham, MA) in the super-resolution mode 
using EPU (Thermo Fisher, Waltham, MA) at the Stanford-SLAC Cryo-EM Center (S2C2) with a defocus 
range between –1.5 and –2.1 μm and a total dosage of ~48 e-/Å2.

Detailed processing workflows of all single-particle cryoEM datasets are included in Figure 1—
figure supplement 1, Figure 2—figure supplement 4 , Figure 2—figure supplements 6 and 7. with 
data collection, refinement, and validation statistics presented in Supplementary file 1. Datasets for 
the inward-facing conformation in apo and GSSG-bound states, and the outward-facing conformation 
with MgADP-VO4 bound were motion corrected with the patch motion correction in cryoSPARC 2 
(Punjani et al., 2017), while the dataset for the closed conformation with MgADP-VO4 bound was 
motion corrected with motioncor2 (Zheng et al., 2017). The subsequent processing of all datasets 
was performed in a similar fashion. The contrast transfer function (CTF) parameters were estimated 
with patch CTF estimation in cryoSPARC 2 (Punjani et al., 2017). Particles were picked with blob 
picker using a particle diameter of 80–160 Å and then extracted. Rounds of two-dimensional and 
three-dimensional classifications were performed, leaving 157,762, 259,020, 140,569, and 103,161 
particles for the inward-facing apo, inward-facing GSSG bound, closed, and outward-facing confor-
mations, respectively. The final reconstructions were refined with homogeneous, non-uniform, and 
local refinements in cryoSPARC 2 with C2 symmetry (Punjani et al., 2017). The masks used in local 
refinements were generated in Chimera (Pettersen et al., 2004).

The initial model of the AtAtm3 inward-facing conformation in apo state was obtained using the 
inward-facing occluded structure of NaAtm1 (PDB ID: 6pam) as a starting model (Fan et al., 2020). The 
model fitting was carried out with phenix.dock_in_map (Liebschner et al., 2019). That apo inward-
facing conformation model of AtAtm3 was subsequently used as the starting model for the inward-
facing GSSG-bound structure. The previous NaAtm1 closed conformation structure (PDB: 6par) was 

https://doi.org/10.7554/eLife.76140
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used as the starting model for both the closed and the outward-facing conformations. Model building 
and ligand fitting were carried out manually in Coot (Emsley et al., 2010) and the structures were 
refined with phenix.real_space_refine (Liebschner et al., 2019).

Structure superposition
Structure superpositions for calculating the rmsds between different structures were performed with 
the SSM option in Coot (Emsley et al., 2010).

Principal component analysis
The objective of our PCA was to distribute structures along a single conformational axis to correlate 
the binding of nucleotides and transported ligands to the conformational state of type IV ABC trans-
porters that include AtAtm3 and related Atm1 transporters (Thomas et al., 2020). For this purpose, 
we first identified 10 polypeptide stretches containing 7–21 residues at equivalent positions in 80 
structurally characterized type IV half-transporters (Supplementary file 2), including residues from 
the TMD and from the NBD. In this sequence selection process, a single half-transporter was used 
for homodimeric transporters, and both half-transporters were used for heterodimeric transporters, 
whether encoded by two different half-transporter peptides or on a single peptide. The coordinates 
of Cα positions for the selected residues were extracted and aligned to that of the outward-facing 
conformation of Sav1866 (PDB ID: 2hyd) based on the Cα coordinates in TM3 and TM6, which were 
previously found to provide a useful reference frame for studying conformational changes (Lee et al., 
2014). AtAtm3 residues used in alignment: 140–160, 225–245, 255–275, 322–342, 362–382, 423–443, 
504–513, 517–524, 618–632, and 681–688. NaAtm1 residues used in alignment: 36–56, 107–127, 
137–157, 204–224, 244–264, 305–325, 386–395, 399–406, 500–514, and 563–570.

The PCA was performed using the ‘essential dynamics’ algorithm (Amadei et al., 1993). The full trans-
porter was used in these calculations with the outward-facing state of Sav1866 (PDB ID: 2hyd) serving as 
the reference state. The first component captured 62% of the overall conformational variation among these 
structures, and so the eigenvalues corresponding to this component were used to order the different struc-
tures along a single axis (Figure 6). In general, the conformational states assigned to each structure parallel 
those obtained from the PCA; differences likely reflect the absence of standardized definitions for assigning 
the conformational states of ABC transporters as well as the limitations of this PCA, particularly the use of 
only the dominant eigenvector. A comparison of the PCA to alternative metrics based on the conformation-
ally sensitive distances between specific pairs of residues is illustrated in Figure 6—figure supplement 1, 
with corresponding distances tabulated in Supplementary file 2.
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