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Abstract
Herein, we demonstrate that a homogeneous catalyst can be prepared continuously via reaction with a packed-bed of a catalyst

precursor. Specifically, we perform continuous proline catalyzed α-aminoxylations using a packed-bed of L-proline. The system

relies on a multistep sequence in which an aldehyde and thiourea additive are passed through a column of solid proline, presumably

forming a soluble oxazolidinone intermediate. This transports a catalytic amount of proline from the packed-bed into the reactor

coil for subsequent combination with a solution of nitrosobenzene, affording the desired optically active α-aminooxy alcohol after

reduction. To our knowledge, this is the first example in which a homogeneous catalyst is produced continuously using a packed-

bed. We predict that the method will not only be useful for other L-proline catalyzed reactions, but we also foresee that it could be

used to produce other catalytic species in flow.
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Introduction
Continuous flow chemistry [1-3], performed in small dimen-

sion tubing or channels, differs from batch chemistry in that

mixing and heat transfer are significantly faster and can be

precisely controlled. In addition, continuous technology enables

the generation and immediate use of unstable or hazardous

intermediates [4-9] as well as the combination of many reac-

tions in series to achieve multistep synthesis [9-13]. Despite the

many favorable attributes of micro- and mesoflow reactors, the

continuous use of solids remains challenging. The introduction

of solids to a flow reactor is particularly difficult as most pumps

function poorly with even small particulates, which in turn can

result in channel clogging. Although the use of solids in flow

has been the topic of a number of recent papers, they have

focused on overcoming the challenges associated with the

introduction and suspension of solid reagents and starting

materials [14-18]. An area that has received less attention is the

continuous use of solid catalysts (and catalyst precursors) that

only partially or slowly dissolve into or react with the solution.

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Figure 1: Methods for catalyst use in flow.

(See Figure 1 for a comparison of solid catalysts that are

used in flow.) Proline is an example of such a catalyst [19]

(others include zero-valent transition metals, many solid acid

catalysts, and other secondary amine catalysts). Proline is often

added to a reaction mixture as a solid, and only a few mole

percent dissolves into solution at any given time. Since proline

is fairly inexpensive, it is an attractive test catalyst for the

design of new methods to utilize solid catalysts or catalyst

precursors in flow.

Current strategies involving the use of catalysts with limited

solubility in flow rely on them being supported on resins or

polymers (Figure 1A and B). This can be an attractive method

as the catalysts are often easily recycled [20-24]. Finding a suit-

able solid support for a reaction, however, can prove time-

consuming and expensive. In addition, care must be taken to

identify a support that provides both high activity for the cata-

lyst and appropriate swelling properties to enable adequate mass

transport (often the best solvent for the resin will not be the best

for the reaction) [25-29]. With researchers becoming increas-

ingly interested in developing continuous-flow processes, the

rapid assessment of catalyst conditions necessary for potential

synthetic routes requires a simple approach to deal with limited-

solubility catalysts.

We have both a long-standing interest in the production, use

and management of solids [30-33] and reactions [34,35] in flow

as well as in proline catalysis [36,37]. This prompted us to

consider new strategies for the implementation of proline

in a continuous-flow system without resorting to proline

analogues or tethered catalysts [38-40]. Achieving this goal

would enable us and others to perform proline-catalyzed

reactions, aldol [41-43] and Mannich [42] reactions as well

as α-functionalizations (α-aminoxylation, α-amination or

α-halogenations), continuously [44].

We hypothesized that the proline-catalyzed α-aminoxylation

could be implemented in flow with reasonably short residence

times using a urea additive. Many researchers, including us

[36,37], have found that urea [45] additives increase the rate of

various proline-catalyzed reactions [46-50]. The role that ureas

play remains unclear, and a number of hypotheses have been

suggested. Initially, researchers gathered 1H NMR, UV, and

fluorescence data to show that ureas enhance the solubility of

proline through a host–guest interaction between the urea and

proline carboxylate: A substrate-independent model [49,50].

However, it has been proposed that substrate–urea–proline

interactions may also contribute to the rate enhancement [50].

Our group observed that a urea tethered to a tertiary amine

increases the rate of a number of batch reactions, including the

α-aminoxylation reaction [36,37]. For the α-aminoxylation reac-

tion, we proposed that the urea promotes formation of the active

enamine intermediate through breakdown of the putative oxazo-

lidinone intermediate: A substrate-dependent model. Here, we



Beilstein J. Org. Chem. 2011, 7, 1671–1679.

1673

Scheme 1: Prior results for batch α-aminoxylation reaction.

Figure 2: General reactor setup. A) A glass Omnifit column is packed with 1 g of proline. B) The column is then placed in-line with a 10 mL PFA coil-
tube reactor. C) The components are connected to HPLC pumps for solvent and reagent inputs. The reactor is controlled by a computer in order to
program the timing of the reagent and solvent inputs and fraction collection.

report that a packed-bed of solid proline can be used to create a

homogeneous catalyst, and we use this system to perform

continuous α-aminoxylations. Not only do we illustrate a unique

use of catalysts in flow, but we provide additional insight into

the role of additives in proline-catalyzed reactions.

Results and Discussion
In our previously published batch work, we found that the

combination of L-proline and bifunctional urea 3a greatly accel-

erated the rate of α-aminoxylation (Scheme 1). It was shown

that a longer linker between the urea and amine functionality

enhanced the rate of reaction (see Supporting Information of

[37]). The rate enhancement enabled the reaction to be

performed in greener solvents such as ethyl acetate instead of

the more commonly used chloroform. We have a long standing

interest in the conversion of the reaction into a continuous

process, but recognized that the solubility of proline would

hinder its use in flow. To circumvent this problem, we envi-

sioned using a cartridge of solid proline as a precatalyst source,

whereby the flow of a combination of solvents, reactants and

cocatalysts through the packed-bed would produce the active,

homogeneous, oxazolidinone catalyst.

To test our hypothesis, we used a Vapourtec R series reactor

system [51] consisting of HPLC pumps for solvent and reagent

inputs, a low-temperature tube reactor containing a glass

column packed with 1 g of proline, and a low-temperature

10 mL PFA coil-tube reactor in which each reagent stream

could be precooled prior to mixing (Figure 2). As we demon-

strate below, the success of our experiments depended on the

ability of the system to heat, or cool, the packed-bed and the

reaction coil independently of one another.

Using this device configuration, experiments were performed to

identify the conditions that favor the reaction between the alde-

hyde and the proline packed-bed in order to yield enough

soluble oxazolidinone catalyst to support rapid α-aminoxyla-

tions. We were particularly interested to determine which sub-

strate and additive components were necessary to dissolve the

solid proline. Since the inherent solubility of proline in ethyl

acetate is very low, we extrapolated that this solvent alone

would be insufficient to dissolve enough catalytic proline

[37,52]. Furthermore, we knew from our previous batch work

that a urea additive would be beneficial to provide reaction rates

suitable for use in flow [37].
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Table 1: Screening of the reactor setup.

entry reagent bottle A reagent bottle Ba yield (%) ee (%)b

1 hexanal nitrosobenzene nrc na
2 thiourea 3b nitrosobenzene + hexanal nrc na
3 hexanal nitrosobenzene + thiourea 3b 27d 99
4 hexanal + thiourea 3b nitrosobenzene 43d 98

aEntry 4 also contained dodecane as an internal standard. bDetermined by chiral HPLC. cnr = no reaction as determined by 1H NMR analysis of the
crude reaction mixture after reduction. dIsolated yield (due to instability of the aldehyde, products were reduced to their corresponding 2-aminooxy
alcohols in batch, prior to isolation). na = not applicable. See Supporting Information File 1 for detailed reaction conditions.

Therefore, various combinations of reagents and catalysts

entering the packed proline column were investigated. For our

initial experiments we selected a 15 min coil residence time and

temperature of 0 °C for both the column and the coil, based on

our prior knowledge of the reaction in batch. We began by

determining the necessity of a urea cocatalyst. We were

surprised to find that when hexanal alone was passed through

the column and combined with nitrosobenzene in the coil, the

desired product was not detected by crude 1H NMR analysis

(Table 1, entry 1). This indicates that, with this reactor setup,

the reaction is too slow without a urea additive to be a viable

method. Additionally, flowing thiourea 3b (0.047 M in EtOAc)

through the proline packed-bed prior to combination with the

other reaction partners resulted in no detectable reaction

(Table 1, entry 2). This shows that thiourea 3b alone cannot

solubilize enough proline to support the reaction. When hexanal

alone, however, was passed through the column and combined

with the remaining reagents in the coil (including thiourea 3b)

the reaction produced 27% yield and 99% ee (Table 1, entry 3).

This indicates that the aldehyde alone can react with solid

proline to produce a reactive homogeneous catalyst. However,

when both thiourea 3b and hexanal were used in the same stock

solution and passed through the column the reaction attained

43% yield with 98% ee (Table 1, entry 4). This increase in

yield, relative to when hexanal alone was passed through the

column, suggests that the rate of proline leaching is enhanced

by the addition of thiourea 3b. Consequently, it appears that our

observed rate enhancements with thiourea 3b cannot be attrib-

uted to a model involving only urea–proline interactions

resulting in enhanced solubility, and that substrate–urea–proline

interactions are responsible for the observed reactivity when

using this combination of thiourea, substrate and proline.

We were delighted to find that further increasing the residence

time of the coil to 20 min with the same reagent configuration

resulted in 69% yield (Table 2, entry 2). For further experi-

ments, we therefore used a setup in which a thiourea/aldehyde

stock solution was passed through the proline packed-bed

before entering the coil and reacting with nitrosobenzene.

As all of the reactions performed in Table 1 had the same resi-

dence time and temperature, the yield can be used as a rough

proxy for reaction rate. We conjecture, based on our prior work

in this area, that the aldehyde slowly reacts with solid L-proline

in the cartridge to form the soluble oxazolidinone intermediate

(Figure 3, part C), leaching proline out of the column and into

the coil for reaction with nitrosobenzene. The increased yield

observed when both hexanal and thiourea 3b were passed

through the proline-bed suggests that more catalyst was drawn

into the solution, resulting in a faster reaction rate. In our prior

batch experiments, we proposed that the urea aided the break-

down of the oxazolidinone intermediate (Figure 3, part C) for
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Table 2: Screening of temperature and residence time.

entry column temperature (°C) coil temperature (°C) residence time (min) yield (%)a ee (%)b

1 0 0 15 43 98
2 0 0 20 69 98
3 0 15 15 82 98
4 0 15 20 85 98
5 0 15 10 61 98
6 0 10 20 84 98
7 0 5 20 86 98
8 0 5 25 81 98
9 −5 5 20 84 98
10 5 5 20 75 98
11 10 5 20 66 98
12 20 5 20 68 98

aIsolated yield (due to instability of the aldehyde, products were reduced to their corresponding 2-aminooxy alcohols in batch, prior to isolation).
bDetermined by chiral HPLC. See Supporting Information File 1 for detailed reaction conditions.

Figure 3: Schematic of the reactor setup. As the starting aldehyde and thiourea 3b (A) enter the proline packed-bed (B) an oxazolidinone intermedi-
ate is formed, drawing the proline into the solution (C). Upon precooling in a reactor coil (E) the intermediate is mixed with nitrosobenzene (D). Prior to
exiting, ethyl acetate is added to dilute the reaction (F) and product is collected into vials (G) for further reduction, work-up, and isolation.
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Figure 4: The long-term stability of a proline packed bed in the α-aminoxylation reaction of hexanal. A solution of hexanal (3 M in EtOAc) and thiourea
3b (0.047 M in EtOAc) was passed through a packed-bed of proline (entering at the bottom of the column and exiting at the top) at 0 °C combined
with a solution of nitrosobenzene (1 M in EtOAc) in a coil at 5 °C with a 20 min residence time in the coil, for over 4 h. A) 20 mL of product was period-
ically collected into vials, reduced in batch, and purified. The resulting yields and enantioselectivities were plotted as a function of time. B) Close up
images of the proline column (see Figure 2A) showing the amount of proline consumed during the course of the reaction.

rapid reaction with nitrosobenzene, and this thesis is supported

by our observations reported herein.

With evidence for adequate proline transport into the coil, opti-

mization experiments were performed. Based on previously

published studies on the α-aminoxylation, we believed that

careful control of the temperature would be necessary to avoid

the formation of byproducts and to realize high enantio-

selectivity. The forced convection cooling system facilitated

easy and precise temperature control of both the column and

coil independently. Reported byproducts include the self-aldol

product, the formation of azoxybenzene from the reaction of the

desired product with nitrosobenzene, and finally azobenzene by

product disproportionation [53-55]. Byproduct suppression is

both solvent and temperature dependent. Hayashi reported that

when the reaction is performed at room temperature in acetoni-

trile with 30 mol % proline, the reaction is complete in 10 min,

but achieves only 29% yield [55]. MacMillan, however, found

the reaction to be rapid in chloroform at room temperature with

78% yield, using 10 mol % proline [56]. In addition, our prior

batch work with urea 3a in ethyl acetate found that the

α-aminoxylation of hexanal worked well at 0 °C with 5 mol %

proline in 2 h. Therefore, we studied the impact of both the

packed-bed and reaction-coil temperature on the enantio-

selectivity and product yield.

To begin with, we kept the column temperature at 0 °C and

increased the coil temperature to 15 °C. Under these conditions

a 15 min residence time provided 82% yield (Table 2, entry 3).

Increasing the residence time to 20 min provided little gain in

yield, while reducing the residence time to 10 min afforded only

61% yield (Table 2, entries 4 and 5). We found that as the coil

temperature was decreased from 15 to 10 and then to 5 °C the

yield corresponding to a 20 min residence time remained steady

(Table 2, entries 4, 6, and 7). A further reduction to 0 °C,

however, showed a decrease to 69% (Table 2, entry 2). At each

of these temperatures the enantioselectivity remained high.

Next, the packed-bed temperature was varied to determine how

temperature influenced the formation of the active catalyst

species from hexanal, proline, and thiourea 3b. We found that at

column temperatures less than 0 °C the reaction performed well

(Table 2, entries 7 and 9). As the temperature was increased to

5, 10, and 20 °C the yield dropped and was 68% at 20 °C

(Table 2, entries 10, 11, and 12). Therefore, for further experi-

ments we chose a column temperature of 0 °C and a coil

temperature of 5 °C with a 20 min residence time. It is clear,

however, from the parameters investigated, that when simple

sterically unencumbered aldehydes are used this reaction works

well under a variety of conditions.

To assess the long term stability and activity of the L-proline

packed-bed, the system was run continuously for over 4 h. After

the system reached equilibrium, 20 mL fractions of product

were periodically collected, reduced and purified. The data

shown in Figure 4 indicate that the reaction is stable over this

period of use. During the ~5 h collection period, assuming an

average yield of 78%, approximately 9.8 g was produced. Over

the entire run 80 mL of hexanal/thiourea 3b stock solution was

passed through the column. Upon completion of this study it

was determined that 82% of the proline was consumed

(823.1 mg out of 1 g) (Figure 4).
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Scheme 2: Reaction with 3-phenylpropionaldehyde through reactor setup.
aIsolated yield, due to the instability of the aldehyde, the product was reduced in batch to the corresponding 2-aminoxy alcohol prior to isolation.
bDetermined by chiral HPLC.

Scheme 3: Reaction with isovaleraldehyde through reactor setup.
aIsolated yield, due to the instability of the aldehyde, the product was reduced in batch to the corresponding 2-aminooxy alcohol prior to isolation.
bDetermined by chiral HPLC.

As further support that the direct use of solid catalysts in flow is

a viable strategy, two additional substrates, 3-phenylpropional-

dehyde and isovaleraldehyde, were selected because they have

different properties compared to hexanal, and thus we predicted

that they would require alterations to the system to maximize

yield. As a starting point, the conditions optimized for hexanal

were investigated. With 3-phenylpropionaldehyde, the use of a

0 °C column temperature, 5 °C coil temperature and a 20 min

coil residence time led to rapid reaction (based upon color

change in the coil) and subsequent reactor clogging. This led us

to conclude that this aldehyde reacts rapidly with proline to

yield an oxazolidinone with lower solubility than hexanal and

that lowering the overall residence time would limit the amount

of aldehyde reacting with proline. We confirmed that our asser-

tion was reasonable by reducing the residence time to 10 min to

provide the product in 76% yield and 99% ee (Scheme 2).

When isovaleraldehyde was investigated under the optimized

hexanal conditions, i.e., 0 °C column temperature, 5 °C coil

temperature and a 20 min coil residence time, there was little

conversion as judged by GC analysis. We were not surprised by

this observation, because increased steric hindrance about the

aldehyde can suppress the rate of oxazolidinone formation.

With limited proline (in the form of oxazolidinone) entering the

system, the rate of α-aminoxylation decreases significantly.

From our hexanal and 3-phenylpropionaldehyde experiments,

we learned that by adjusting one of three parameters (residence

time or the coil or packed-bed temperature) we could improve

the amount of catalyst entering the system. In this particular

case, we predicted that, unlike 3-phenylpropionaldehyde, the

isovaleraldehyde would form the oxazolidinone slowly.

Furthermore, we predicted that raising the packed-bed tempera-

ture would increase the rate of proline/isovaleraldehyde reac-

tion resulting in more rapid formation of the soluble catalyst

species. A quick survey of temperatures revealed that a 40 °C

packed-bed temperature and a 20 °C coil temperature with a 25

min residence time provided 76% yield and 97% ee (Scheme 3).

It is apparent from these results and our initial conditions that

substrate-to-substrate optimization can be rapidly achieved by a

quick survey of the three critical parameters. The data further

highlight the value of running reactions continuously.

Conclusion
We have demonstrated that a packed-bed of proline can be used

to continuously form a soluble catalyst through reaction with an

aldehyde and cocatalytic urea. The formed soluble catalyst can

support a variety of α-aminoxylation reactions with good yields

and high enantioselectivities. The system is designed so that the

first step involves the flow of aldehyde and urea solution

through the proline packed-bed to generate the catalytic inter-

mediate (presumably an oxazolidinone). This catalyst solution

is then combined with a stream of nitrosobenenze, resulting in

the α-aminoxylation. The most critical parameters that control

the yield and selectivity were identified, and these parameters

were varied in order to optimize the system for each substrate.

We predict that this basic setup can be adapted to generate a
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wide range of other catalysts by replacing proline with another

solid catalyst precursor. We are currently investigating the

combination of ligands and solid metal salts to generate tran-

sition-metal catalysts continuously.

Supporting Information
The Experimental Section describes reactor setup and

operational details, screening conditions, synthesis,

purification and characterization data of all catalysts, and

the starting materials and substances given in this article.

Supporting Information File 1
Experimental Section.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-7-197-S1.pdf]
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