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The wrapping of myelin around axons is crucial for the development and function of
the central nervous system (CNS) of vertebrates, greatly regulating the conduction of
action potentials. Oligodendrocytes, the myelinating glia of the CNS, have an intrinsic
tendency to wrap myelin around any permissive structure in vitro, but in vivo, myelin
is targeted with remarkable specificity only to certain axons. Despite the importance
of myelination, the mechanisms by which oligodendrocytes navigate a complex milieu
that includes many types of cells and their cellular projections and select only certain
axons for myelination remains incompletely understood. In this Mini-review, I highlight
recent studies that shed light on the molecular and cellular rules governing CNS myelin
targeting.
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INTRODUCTION

Vertebrates require myelin, specialized membrane wrapped by oligodendrocytes around axons,
for their nervous systems to function. Myelination drastically changes an axon’s physiology:
by insulating it and clustering sodium channels in the short unmyelinated nodes of Ranvier,
myelin accelerates action potential propagation in a space-efficient manner (Waxman, 1997;
Hartline and Colman, 2007), and facilitates high-frequency firing (Fields, 2008; Perge et al.,
2012; Sinclair et al., 2017). Oligodendrocytes are now also thought to transfer glycolytic
substrates to the underlying axon (Saab et al., 2016; Saab and Nave, 2017). The importance
of myelinating oligodendrocytes is underscored by the severe consequences of their disruption
in several neurodegenerative conditions (Philips and Rothstein, 2014; Pouwels et al., 2014;
Franklin and Ffrench-Constant, 2017). Furthermore, dynamic regulation of myelin is increasingly
implicated in cognitive processes including learning, memory, and social interaction (Fields,
2008, 2015; Zeidán-Chuliá et al., 2014; Filley and Fields, 2016). Given how myelin drastically
affects neuronal function, it must be targeted precisely to those axons that need it and
excluded from incorrect targets. Indeed, not every axon in the central nervous system (CNS)
becomes myelinated: for instance, small axons (< 0.2 µm diameter) remain unmyelinated, as
do many large axons even in myelin-rich white matter tracts (Olivares et al., 2001; Saliani
et al., 2017). Furthermore, neuronal somas and dendrites remain unmyelinated, as do non-
neuronal cells. How is this selectivity achieved in vivo, in the complex milieu of the CNS?
The precision of myelin targeting is especially remarkable given that oligodendrocytes cultured
in the complete absence of axons readily deposit myelin on inert surfaces (Rosenberg et al., 2008;
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Aggarwal et al., 2011; Lee et al., 2012; Bechler et al., 2015).
Thus, in vivo, the tendency of oligodendrocytes to myelinate
promiscuously appears tightly regulated by the attraction or
repulsion of prospective targets, which we are only now
beginning to understand. In this Mini-Review, I will highlight
recent studies that shed light on some of the molecular and
cellular mechanisms of CNS myelin targeting.

WHEN DOES AN OLIGODENDROCYTE
SELECT ITS TARGETS?

Recent studies have now shown that oligodendrogenesis and
myelination are life-long processes (Miller et al., 2012; Hill
et al., 2018; Hughes et al., 2018), and that myelination in
adults can be responsive, for instance, to neuronal activity
(Almeida and Lyons, 2017; Mount and Monje, 2017; Sampaio-
Baptista and Johansen-Berg, 2017). Thus, myelin targeting
mechanisms must operate not just during development, but
throughout life. But when does targeting occur during the
life-course of an oligodendrocyte-lineage cell? Oligodendrocytes
are generated from proliferative oligodendrocyte precursor
cells (OPCs), which arise from ventricular germinal zones
of the brain and spinal cord and migrate to populate the
entire CNS (Richardson et al., 2006). Extrinsic signals and an
intrinsic developmental program cooperate to induce OPCs
to differentiate into oligodendrocytes, ensheathe axons, and
synthesize myelin (Zuchero and Barres, 2013). During and
after migration, OPCs and newly differentiated oligodendrocytes
extend and retract numerous dynamic filopodia-like processes
(Kirby et al., 2006; Hughes et al., 2013) that contact the
surrounding milieu, including structures such as axonal and
dendritic surfaces, neuronal and glial somas, and blood vessels.
Time-lapse imaging studies have provided the remarkable insight
that each newly differentiated oligodendrocyte forms all its
myelin sheaths in a short hours-long period (Watkins et al.,
2008; Czopka et al., 2013). Following this period, stabilized
sheaths elongate, but no new sheaths are formed, and only a
minority are retracted over the next few days. Importantly, even
during the short period of sheath initiation, only a minority
of nascent sheaths are retracted (Czopka et al., 2013; Liu
et al., 2013), suggesting that most axonal targets are successfully
selected beforehand. Thus, the dynamic behavior of filopodia-
like processes of newly differentiated oligodendrocytes may well
serve to ‘interview’ prospective targets in its vicinity, and local
interactions (e.g., between axonal and oligodendrocyte cell-
adhesion molecules) may be transduced into the process to
stabilize some contacts and retract others. The observation that
some newly formed myelin sheaths are subsequently retracted
suggests that some correction of mistargeted sheaths that
escaped initial selection occurs later. Following differentiation,
oligodendrocytes and their myelin are remarkably stable for
many months (Tripathi et al., 2017; Hill et al., 2018; Hughes
et al., 2018). Thus, myelin targeting occurs in a short period in
the life of an oligodendrocyte, and appears to include two stages:
first, target selection takes place as an oligodendrocyte-lineage cell
settles, differentiates, and forms nascent sheaths; followed by a

target refinement stage in the following days, when some sheaths
are retracted (Figure 1A).

WHICH SIGNALS TARGET MYELIN TO
AXONS?

The contact and recognition of target surfaces by oligodendrocyte
processes constitute the first step in CNS myelin targeting.
Remarkably, the biophysical properties of a surface as well as the
molecules it bears can determine its myelination fate.

Biophysical Factors
In vitro, oligodendrocytes avoid small-diameter fibers under a
threshold diameter of 0.4 µm, and myelinate only larger fibers
(Lee et al., 2012; Bechler et al., 2015), which is reminiscent
of the distribution of myelinated CNS axons in vivo (Remahl
and Hildebrand, 1982; Hildebrand et al., 1993). Thus, small-
diameter cylindrical structures, which present a high-curvature
surface to the oligodendrocyte process, appear non-permissive
for myelination, in contrast to larger-diameter cylinders with a
lower curvature. Oligodendrocytes are also able to target their
myelin to non-cylindrical structures in vitro such as spherical
polystyrene beads around 20 µm in diameter (Redmond et al.,
2016), flat surfaces such as glass coverslips (Aggarwal et al.,
2011), and conical micropillars (Mei et al., 2014), with an even
lower curvature, suggesting that this is an important biophysical
constraint for myelination (Figure 1B). Do oligodendrocyte
processes actively sense curvature? Bechler et al. (2015, 2018)
propose that as they myelinate their targets, oligodendrocytes
must sense axonal curvature, since they adjust sheath lengths
to the axonal diameter. This could rely, for instance, on the
curvature-dependent activity of certain membrane-anchored
proteins (Chang-Ileto et al., 2011; McMahon and Boucrot, 2015;
Figure 1C), or on a mechanism analogous to the curvature-
sensitive septin cytoskeleton (Bridges et al., 2016; Osso and Chan,
2017). Alternatively, oligodendrocytes could detect the length of
the first complete wrap around the axonal perimeter and induce
process retraction if under a threshold length (Osso and Chan,
2017; Figure 1C).

These in vitro observations suggest that biophysical properties
of prospective targets, such as their size, could dictate their
permissiveness for myelination. In fact, driving an increase
in the diameter of cerebellar granule cell axons, which are
typically small and unmyelinated, is sufficient to target them
for myelination (Goebbels et al., 2017). It remains possible,
however, that axonal signals that tightly correlate with axonal
diameter could underlie such an effect in vivo. Indeed, in
the peripheral nervous system (PNS), only axons strictly
above 1 µm in diameter become myelinated by Schwann
cells, and only these large axons expressed a high level of
membrane-anchored Neuregulin 1 (Nrg1) type III (Taveggia
et al., 2005). This signal turned out to mediate the correlation
of axonal caliber with PNS myelination: genetic ablation
of Nrg1-III greatly reduces myelination including in large,
supra-threshold axons; while its overexpression in small-
diameter, typically unmyelinated axons is capable of converting
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FIGURE 1 | Regulation of CNS myelin targeting. (A) myelin is targeted in a short period in the life of an oligodendrocyte (OL): a selection stage during differentiation
and a refinement stage after differentiation. (B) Biophysical properties of diameter and/or curvature determine the permissiveness of a target for myelination.
(C) Curvature or length-sensing proteins in oligodendrocyte processes may sense appropriately sized targets. (D) Attractive and repulsive cell-adhesion molecules
on prospective targets regulating CNS myelination. (E) Similar to synapse formation, the temporal dynamics of key signaling pathways (e.g., Eph) may determine the
fate of OPC processes during myelin target selection.

them to a myelinated fate (Michailov et al., 2004; Taveggia
et al., 2005). Thus, similar membrane-anchored axonal signals
might mediate the preference of oligodendrocytes for larger
targets in the CNS. Indeed, the geometric permissivity of a
prospective target cannot fully explain CNS myelin targeting:
axons between 0.4 and 1 µm in diameter can be either
unmyelinated or myelinated (Hildebrand et al., 1993), and
many somas and dendrites of permissive geometries and
accessible to oligodendrocytes remain essentially unmyelinated.
This indicates that an additional layer of regulation of myelin
targeting must exist in vivo. In fact, both attractive and
repulsive molecular cues can directly regulate myelin targeting
(Figure 1D).

Attractive Signals
In the PNS, axonal expression of Nrg1-III is sufficient to
instruct Schwann cells to myelinate axons (Michailov et al.,
2004; Taveggia et al., 2005). To date, no such molecule has

been identified whose disruption completely prevents CNS
myelination, suggesting that multiple redundant signals might
exist. Indeed, several axonal molecules have been found to
promote CNS myelination: although not strictly required for
CNS myelination, pan-neuronal overexpression of Nrg1 type III
increases the number of axons targeted for myelination in
the optic nerve and cortex, including typically unmyelinated
small-diameter axons (Brinkmann et al., 2008). Axons and
oligodendrocytes also express multiple Eph tyrosine kinase
receptors and their ephrin membrane-bound ligands, whose
trans-interactions induce bidirectional signaling to regulate
adhesion in adjacent cells. Primary rat OPCs cultured on
EphA4/B1 substrates have increased myelination, suggesting that
binding of axonal EphA4/B1 receptors to the oligodendrocyte
ligand ephrin-B induces reverse signaling in oligodendrocytes
that promotes myelin sheath formation (Linneberg et al.,
2015), and could thus target myelin to specific axons. Axonal
L1-CAM can bind to contactin and integrin complexes in
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oligodendrocytes and increase myelination in vitro (Laursen
et al., 2009). N-cadherin, a calcium-dependent cell-adhesion
molecule expressed in both axons and oligodendrocytes, is
necessary during the initial axon-OPC interactions, as blocking
its function greatly reduced the duration of these contacts,
leading to reduced myelination (Schnädelbach et al., 2001;
Chen et al., 2017). Genetic ablation of Nectin-like 1, a
neuronal member of the synaptic cell adhesion molecule family,
reduced the number of spinal cord and optic nerve axons
targeted for myelination, albeit only transiently (Park et al.,
2008).

An exciting finding is the recent observation that neuronal
activity can also regulate the targeting of myelin to specific
axons, in addition to long-standing observations that activity
also influences OPC proliferation (Barres and Raff, 1993; Li
et al., 2010; Gibson et al., 2014), oligodendrocyte differentiation
and survival (Hill et al., 2014; McKenzie et al., 2014; Hughes
et al., 2018) and myelin formation itself (Demerens et al.,
1996; Makinodan et al., 2012; Liu et al., 2012). Recent studies
in the zebrafish spinal cord have shown that blocking action
potentials or activity-dependent vesicle release disrupted the
targeting of myelin to a stereotyped subset of spinal cord
axons and the degree of their myelination (Hines et al., 2015;
Mensch et al., 2015). Indeed, Hines et al. (2015) observed that
synaptophysin-containing vesicles accumulated in the axon at
sites of oligodendrocyte ensheathment, suggesting that vesicle
cargos such as neurotransmitters or cell-adhesion molecules
could attract or stabilize nascent sheaths. In line with these
studies, chemogenetic activation of individual somatosensory
neurons in mice increased their targeting for myelination (Mitew
et al., 2018). In vitro studies have suggested that glutamate
release, which can locally stimulate oligodendrocyte Fyn kinase
signaling and myelin protein synthesis (Wake et al., 2011,
2015), is the key vesicle cargo mediating these effects (Spitzer
et al., 2016). However, the precise glutamate receptors in
oligodendrocytes that specifically mediate a myelination effect
in vivo remain unclear (De Biase et al., 2011; Guo et al., 2012),
and other signals may play a role, including neurotrophins
and cell-adhesion molecules such as Nrg1 (Liu et al., 2011;
Lundgaard et al., 2013) and N-cadherin (Tan et al., 2010)
whose expression or surface localization are sensitive to activity.
Furthermore, Koudelka et al. (2016) found that such activity-
regulated myelin targeting is a property of some neuronal
subtypes but not others, suggesting that activity-dependent and
independent mechanisms cooperate to appropriate myelinate the
CNS.

Repulsive Signals
Given the promiscuity of oligodendrocyte myelination,
vertebrates might employ repulsive signals not only to decide
which axons remain unmyelinated, but also to temporally control
the onset of myelination along axons fated for myelination, and
to prevent ectopic myelination of inappropriate compartments
within a neuron such as its soma or dendrites. Negative signals
may also be employed within individual axons to target myelin
to specific domains: recent imaging studies have shown that
many CNS axons are only partially myelinated in vivo, with long

segments remaining persistently unmyelinated, which may be
important to modulate their conduction and functional output
(Tomassy et al., 2014; Auer et al., 2018; Hill et al., 2018; Hughes
et al., 2018).

Negative regulators include some of the Eph-ephrin molecules
expressed in axons and oligodendrocyte-lineage cells. Axonal
ephrin-A1/B2 forward signaling through EphA/B receptors on
oligodendrocytes can induce process retraction and reduce
myelination in vitro and in vivo (Linneberg et al., 2015;
Harboe et al., 2018). Indeed, ephrin-A1 expression in neurons
reduced their myelination in the zebrafish spinal cord, by
interacting with the EphA4 receptor on oligodendrocytes,
whose knockdown increased the number of axons myelinated
by individual oligodendrocytes (Harboe et al., 2018). Ephrin-
Eph binding induces both forward signaling in the receptor-
expressing cell and reverse signaling in the ephrin-expressing
cell which can be regulated independently (Pasquale, 2008).
This may explain why an EphA4 substrate can also promote
myelination of rat OPCs in vitro (Linneberg et al., 2015):
due to oligodendroglial ephrin (not Eph)-induced signaling.
Both neurons and oligodendrocytes express multiple ephrin
ligands and Eph receptors, and the cellular context in
which specific ephrin-Eph binding occurs may influence
the resulting cell behavior. Thus, a precise combinatorial
code of axonal Eph and ephrin molecules could determine
myelin targeting in the CNS. Importantly, dysregulation of
Eph-ephrin did not affect oligodendrocyte differentiation,
suggesting a specific role in regulating cell adhesion and
targeting.

Other repulsive signals include polysialylated neural cell-
adhesion molecule (PSA-NCAM), which is downregulated at
the onset of myelination in vivo (Nait Oumesmar et al., 1995;
Charles et al., 2000). Blocking PSA-NCAM increased the number
of myelinated axons, while overexpressing it reduced myelination
in vivo (Meyer-Franke et al., 1999; Charles et al., 2000; Fewou
et al., 2007), potentially by preventing adhesive interactions.
LINGO-1 is a transmembrane protein expressed in both axons
and oligodendrocytes (Jepson et al., 2012) whose knock-out
(Mi et al., 2005) or transgenic overexpression in neurons (Lee
et al., 2007), respectively, increase and decrease the number
of axons targeted for myelination in the spinal cord. Jagged1,
the transmembrane ligand for the Notch1 receptor expressed
in oligodendrocytes, is expressed by retinal ganglion cells in
the optic nerve, where it signals to prevent OPC differentiation
and myelination (Wang et al., 1998). In Notch1 heterozygotes,
more axons become myelinated in the optic nerve, and axons
in the molecular layer of the cerebellum, which never become
myelinated, are also selected for myelination (Givogri et al.,
2002).
Redmond et al. (2016) recently identified a negative regulator
of neuronal somatodendritic myelination, the cell-adhesion
molecule Jam2. Having determined that oligodendrocytes could
myelinate soma-sized polystyrene beads in vitro, Redmond
et al. (2016) searched for repulsive signals that prevent
somatodendritic myelination in vivo using an elegant strategy
of differential RNAseq profiling. By comparing spinal cord
neuron cultures, which should employ such repulsive signals
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to prevent myelination of their many dendrites and soma, to
dendrite-less dorsal root ganglion neuron cultures, Redmond
et al. (2016) identified Jam2 as an inhibitory signal. This
transmembrane protein with extracellular immunoglobulin
domains was able to repel oligodendrocyte processes and
reduce myelination in vitro, without affecting oligodendrocyte
differentiation. Oligodendrocytes were able to myelinate the
soma and dendrites of cocultured Jam2-knockout neurons,
and Redmond et al. (2016) also find ectopically myelinated
neurons in the dorsal spinal cord of the Jam2 knockout
mouse. Interestingly, all are Pax2+ inhibitory interneurons,
suggesting that other neuron subtypes use other signals
to prevent somatodendritic myelination (Redmond et al.,
2016).

More recently, expression of Galectin-4, a lectin
transmembrane receptor for glycoproteins, was observed to
be inversely correlated with myelination in the rat brain,
and to repel myelin formation in vitro (Stancic et al., 2012;
Díez-Revuelta et al., 2017). Interestingly, Galectin-4 was
observed to localize only to unmyelinated segments in
hippocampal and cortical neurons (Velasco et al., 2013;
Díez-Revuelta et al., 2017), suggesting that it may be one
of the signals responsible for maintaining a ‘patchy’ pattern
of myelination along individual axons, patterns which
are robustly maintained even upon remyelination (Auer
et al., 2018). It will be important to disentangle a ‘direct’
effect of these molecules in regulating myelin targeting
and adhesion from a secondary effect on oligodendrocyte
differentiation.

HOW ARE TARGETING SIGNALS
TRANSDUCED INTO MYELINATING
BEHAVIOR?

The answer is likely to depend on whether they act during
target selection, which requires stabilizing or retracting a small,
dynamic OPC process; or during refinement, requiring the
growth or breakdown of a nascent sheath. It seems plausible that
surfaces with a non-permissive geometry, or bearing repulsive
signals (e.g., Jam2 or Ephrins) destabilize even the earliest
interactions with OPC processes during target selection. How
might these signals cause an OPC process to retract? Binding
of ephrin-A1 to EphA4 in oligodendrocytes, for instance,
induces its phosphorylation and activates an ephexyn1-RhoA-
Rock signaling cascade necessary for process retraction (Harboe
et al., 2018). Thus, regulation of actin cytoskeleton dynamics,
which have independently been shown to underlie the wrapping
process (Nawaz et al., 2015; Zuchero et al., 2015), is a likely
mediator. Remarkably, this sequence of signaling events is
similar to EphA4-dependent signaling underlying dendritic
spine retraction (Fu et al., 2007) and axonal growth cone
collapse/repulsion (Sahin et al., 2005) in mammalian neurons.
This suggests that lessons about myelin targeting may be learned
from dendritic and axonal interactions during synaptogenesis, a
resemblance we had noted before (Almeida and Lyons, 2014). For
instance, a recent study showed that dendritic filopodia of cortical

neurons select or reject axonal contacts for synaptogenesis based
simply on the kinetics of EphB2 signaling, whereby transient
activation leads to filopodia retraction while sustained activation
predicts stabilization and synaptogenesis (Mao et al., 2018).
It will be interesting to determine if Eph signaling kinetics
in OPC processes also predict target selection or rejection
(Figure 1E).

Other signals are more likely to act during target refinement.
For instance, activity-dependent vesicle release may stabilize,
rather than attract, nascent sheaths. Neurotransmitter or
neurotrophin vesicle cargoes are shared by broad classes of
neurons and seem unlikely to regulate target selection on an
axon-by-axon basis. Instead, differences in the distribution,
timing or frequency of vesicle release in different axons could
bias the stabilization and growth of nascent sheaths. How might
this be translated to the oligodendrocyte? Two recent elegant
in vivo studies implicated the second messenger calcium. By
imaging the genetically encoded calcium indicator GCaMP6
in oligodendrocytes, Baraban et al. (2018) identified high-
amplitude, long-duration calcium elevations within sheaths that
eventually retracted, and implicated calpain in the retraction.
Similar calcium signatures and calpain involvement regulate
dendrite retraction in Drosophila sensory neurons (Kanamori
et al., 2013), in another instance of similarity with CNS
synaptogenesis. Baraban et al. (2018) also found that among
the stabilized sheaths, a higher frequency of low-amplitude,
short-duration intracellular calcium elevations predicted faster
growth. This was supported by an independent study by
Krasnow et al. (2018) who further found that blocking these
calcium transients prevented sheath growth, proving that calcium
activity is causally linked to myelin elongation. It will be
important to determine which effectors lie downstream of
calcium for sheath growth. One possibility is that it regulates
coordinated cycles of actin assembly and disassembly, implicated
in myelin sheath growth (Nawaz et al., 2015; Zuchero et al.,
2015). Additionally, targeting signals (transduced by calcium-
dependent or independent mechanisms) may converge in well-
characterized signaling cascades known to regulate myelination.
It will be interesting to assess the activation state of the
Akt/mTOR and Erk1/2 pathways within oligodendrocytes during
targeting, since they have been implicated in the regulation
of wrapping (Goebbels et al., 2010; Domènech-Estévez et al.,
2016; Mathews and Appel, 2016) and myelin sheath growth
(Ishii et al., 2012, 2013; Fyffe-Maricich et al., 2013; Jeffries
et al., 2016). Indeed, hyperactivation of Akt signaling induces
hypermyelination in the CNS and PNS, including of typically
unmyelinated targets (Flores et al., 2008; Goebbels et al., 2010;
Almeida et al., 2018).

IS THERE A HIERARCHY OF MYELIN
TARGETING?

We recently tested whether in vivo targeting mechanisms
were efficient even in conditions with an excess of myelin,
such as in the context of potential remyelinating therapies
(Almeida et al., 2018). We analyzed zebrafish mutants with
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fewer axonal targets for myelination, but normal oligodendrocyte
number (Almeida and Lyons, 2016), zebrafish treated with small-
molecule epigenetic regulators with increased oligodendrocyte
number (Early et al., 2018), and zebrafish and mice with
increased myelin production due to stimulation of the Akt1
pathway in oligodendrocytes. Remarkably, despite there being
no disruption to any specific molecular targeting mechanism,
we observed that myelin was ectopically targeted to neuron
somas in the developing spinal cord in all three scenarios.
This suggests that some neuron somas may lack strong
inhibitory signals and are not normally myelinated due to the
finely regulated balance of axonal demand to myelin supply.
Interestingly, even in wildtype animals, we found a small degree
of myelin targeted to neuron somas. Longitudinal imaging
revealed that ectopic myelin is made during the same short
period of sheath formation by individual oligodendrocytes,
and is corrected over the course of a few days – although not
sufficiently in animals with excess oligodendrocytes (Almeida
et al., 2018). This suggests that slightly overproducing myelin
during development may help ensure robust myelination
of appropriate targets, and lends support to the existence
of a refinement stage during targeting. Furthermore, in
animals with excessive oligodendrocytes, axons that are not
normally target for myelination (both of small and large,
permissive diameters) remained unmyelinated, despite being
accessible to oligodendrocytes. Our observations suggest that
myelin may be targeted in a hierarchical manner: first to
attractive axons; then to less attractive (but not refractory)
targets including some axons and some neuronal somas,
and finally excluded from refractory small-diameter or
repellent axons. Our study suggests that the long-standing
observation that axons can regulate the development of the
oligodendrocyte population serves not only to guarantee
sufficient myelination of the appropriate targets (Barres and
Raff, 1999; Klingseisen and Lyons, 2018), but also to minimize
ectopic myelination of permissive structures. Such an additional
regulatory layer of myelin targeting, influencing myelination
fate by indirect regulation of oligodendrocyte number in
a given region, cooperates with the more direct, target-
specific regulation of adhesion to ensure the fidelity of CNS
myelination.

CONCLUSION

The complete repertoire of biophysical, attractive and repulsive
factors that regulate CNS myelin targeting is likely larger
than the current picture, and the rules by which they govern
myelin attraction in the CNS complex. For instance, which
molecules prevent ectopic myelination of neuron somas, glial
cells, and the vasculature? How do complex geometries, such as
those of somas bearing numerous dendrites, influence myelin
targeting? How is myelin targeting affected by mechanical
forces, or by an oligodendrocyte’s myelinating capacity? How
do biophysical factors interact with molecular signals? Some
axons smaller than 0.2 µm in diameter actually become
myelinated in the mammalian CNS (Bishop and Smith,
1964; Adinolfi and Pappas, 1968; Matthews, 1968) – these
axons may need to employ additional attractive signals to
improve adhesion to OPC processes (Simons and Lyons, 2013).
Are the same targeting mechanisms employed during early
developmental myelination, activity-responsive myelination,
and remyelination? Future studies may be informed by
the coincident disruption or overexpression of multiple
signals in individual cells to investigate how targeting
mechanisms cooperate to culminate in the precisely myelinated
vertebrate CNS.

AUTHOR CONTRIBUTIONS

RA conceived and wrote the manuscript.

FUNDING

RA is supported by an MRC project grant (MR/P006272/1).

ACKNOWLEDGMENTS

I am indebted to Prof. David Lyons, Dr. Tim Czopka, and Dr.
Anna Klingseisen for critical reading of the manuscript and
helpful title suggestions.

REFERENCES
Adinolfi, A. M., and Pappas, G. D. (1968). The fine structure of the caudate nucleus

of the cat. J. Comp. Neurol. 133, 167–184. doi: 10.1002/cne.901330203
Aggarwal, S., Yurlova, L., Snaidero, N., Reetz, C., Frey, S., Zimmermann, J., et al.

(2011). A size barrier limits protein diffusion at the cell surface to generate lipid-
rich myelin-membrane sheets. Dev. Cell 21, 445–456. doi: 10.1016/j.devcel.2011.
08.001

Almeida, R., and Lyons, D. (2016). Oligodendrocyte development in the absence
of their target axons in vivo. PLoS One 11:e0164432. doi: 10.1371/journal.pone.
0164432

Almeida, R. G., and Lyons, D. A. (2014). On the resemblance of synapse formation
and CNS myelination. Neuroscience 276, 98–108. doi: 10.1016/j.neuroscience.
2013.08.062

Almeida, R. G., and Lyons, D. A. (2017). On myelinated axon plasticity and
neuronal circuit formation and function. J. Neurosci. 37, 10023–10034. doi:
10.1523/JNEUROSCI.3185-16.2017

Almeida, R. G., Pan, S., Cole, K. L. H., Williamson, J. M., Early, J. J., Czopka, T.,
et al. (2018). Myelination of neuronal cell bodies when myelin supply exceeds
axonal demand. Curr. Biol. 28, 1296.e–1305.e. doi: 10.1016/j.cub.2018.02.068

Auer, F., Vagionitis, S., and Czopka, T. (2018). Evidence for myelin sheath
remodeling in the CNS revealed by in vivo imaging. Curr. Biol. 28, 549.e3–
559.e3. doi: 10.1016/j.cub.2018.01.017

Baraban, M., Koudelka, S., and Lyons, D. A. (2018). Ca 2 + activity signatures
of myelin sheath formation and growth in vivo. Nat. Neurosci. 21, 19–23.
doi: 10.1038/s41593-017-0040-x

Barres, B. A., and Raff, M. C. (1993). Proliferation of oligodendrocyte precursor
cells depends on electrical activity in axons. Nature 361, 258–260. doi: 10.1038/
361258a0

Barres, B. A., and Raff, M. C. (1999). Axonal control of oligodendrocyte
development. J. Cell Biol. 147, 1123–1128. doi: 10.1083/jcb.147.6.1123

Bechler, M. E., Byrne, L., and Ffrench-Constant, C. (2015). CNS myelin sheath
lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416.
doi: 10.1016/j.cub.2015.07.056

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 367

https://doi.org/10.1002/cne.901330203
https://doi.org/10.1016/j.devcel.2011.08.001
https://doi.org/10.1016/j.devcel.2011.08.001
https://doi.org/10.1371/journal.pone.0164432
https://doi.org/10.1371/journal.pone.0164432
https://doi.org/10.1016/j.neuroscience.2013.08.062
https://doi.org/10.1016/j.neuroscience.2013.08.062
https://doi.org/10.1523/JNEUROSCI.3185-16.2017
https://doi.org/10.1523/JNEUROSCI.3185-16.2017
https://doi.org/10.1016/j.cub.2018.02.068
https://doi.org/10.1016/j.cub.2018.01.017
https://doi.org/10.1038/s41593-017-0040-x
https://doi.org/10.1038/361258a0
https://doi.org/10.1038/361258a0
https://doi.org/10.1083/jcb.147.6.1123
https://doi.org/10.1016/j.cub.2015.07.056
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00367 October 12, 2018 Time: 16:27 # 7

Almeida Rules of Attraction in CNS Myelination

Bechler, M. E., Swire, M., and Ffrench-Constant, C. (2018). Intrinsic and adaptive
myelination-A sequential mechanism for smart wiring in the brain. Dev.
Neurobiol. 78, 68–79. doi: 10.1002/dneu.22518

Bishop, G. H., and Smith, J. M. (1964). The sizes of nerve fibers supplying cerebral
cortex. Exp. Neurol. 9, 483–501. doi: 10.1016/0014-4886(64)90056-1

Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P., and Gladfelter, A. S.
(2016). Micron-scale plasma membrane curvature is recognized by the septin
cytoskeleton. J. Cell Biol. 213, 23–32. doi: 10.1083/jcb.201512029

Brinkmann, B. G., Agarwal, A., Sereda, M. W., Garratt, A. N., Müller, T.,
Wende, H., et al. (2008). Neuregulin-1/ErbB signaling serves distinct functions
in myelination of the peripheral and central nervous system. Neuron 59,
581–595. doi: 10.1016/j.neuron.2008.06.028

Chang-Ileto, B., Frere, S. G., Chan, R. B., Voronov, S. V., Roux, A., and Di
Paolo, G. (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated
by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218.
doi: 10.1016/j.devcel.2010.12.008

Charles, P., Hernandez, M. P., Stankoff, B., Aigrot, M. S., Colin, C., Rougon, G.,
et al. (2000). Negative regulation of central nervous system myelination by
polysialylated-neural cell adhesion molecule. Proc. Natl. Acad. Sci. U.S.A. 97,
7585–7590. doi: 10.1073/pnas.100076197

Chen, M., Xu, Y., Huang, R., Huang, Y., Ge, S., and Hu, B. (2017). N-Cadherin is
involved in neuronal activity-dependent regulation of myelinating capacity of
Zebrafish individual oligodendrocytes In Vivo. Mol. Neurobiol. 54, 6917–6930.
doi: 10.1007/s12035-016-0233-4

Czopka, T., Ffrench-Constant, C., and Lyons, D. A. (2013). Individual
oligodendrocytes have only a few hours in which to generate new myelin sheaths
in vivo. Dev. Cell 25, 599–609. doi: 10.1016/j.devcel.2013.05.013

De Biase, L. M., Kang, S. H., Baxi, E. G., Fukaya, M., Pucak, M. L., Mishina, M.,
et al. (2011). NMDA receptor signaling in oligodendrocyte progenitors is not
required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662.
doi: 10.1523/JNEUROSCI.2455-11.2011

Demerens, C., Stankoff, B., Logak, M., Anglade, P., Allinquant, B., Couraud, F.,
et al. (1996). Induction of myelination in the central nervous system by electrical
activity. Proc. Natl. Acad. Sci. U.S.A. 93, 9887–9892. doi: 10.1073/pnas.93.18.
9887

Díez-Revuelta, N., Higuero, A. M., Velasco, S., Peñas-de-la-Iglesia, M., Gabius,
H.-J., and Abad-Rodríguez, J. (2017). Neurons define non-myelinated axon
segments by the regulation of galectin-4-containing axon membrane domains.
Sci. Rep. 7:12246. doi: 10.1038/s41598-017-12295-6

Domènech-Estévez, E., Baloui, H., Meng, X., Zhang, Y., Deinhardt, K., Dupree,
J. L., et al. (2016). Akt regulates axon wrapping and myelin sheath thickness in
the PNS. J. Neurosci. 36, 4506–4521. doi: 10.1523/JNEUROSCI.3521-15.2016

Early, J. J., Cole, K. L., Williamson, J. M., Swire, M., Kamadurai, H., Muskavitch, M.,
et al. (2018). An automated high-resolution in vivo screen in zebrafish to
identify chemical regulators of myelination. eLife 7:e35136. doi: 10.7554/eLife.
35136

Fewou, S. N., Ramakrishnan, H., Büssow, H., Gieselmann, V., and Eckhardt, M.
(2007). Down-regulation of polysialic acid is required for efficient myelin
formation. J. Biol. Chem. 282, 16700–16711. doi: 10.1074/jbc.M610797200

Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders.
Trends Neurosci. 31, 361–370. doi: 10.1016/j.tins.2008.04.001

Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-
dependent myelination. Nat. Rev. Neurosci. 16, 756–767. doi: 10.1038/nrn4023

Filley, C. M., and Fields, R. D. (2016). White matter and cognition: making the
connection. J. Neurophysiol. 116, 2093–2104. doi: 10.1152/jn.00221.2016

Flores, A. I., Narayanan, S. P., Morse, E. N., Shick, H. E., Yin, X., Kidd, G., et al.
(2008). Constitutively active Akt induces enhanced myelination in the CNS.
J. Neurosci. 28, 7174–7183. doi: 10.1523/JNEUROSCI.0150-08.2008

Franklin, R. J. M., and Ffrench-Constant, C. (2017). Regenerating CNS myelin -
from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769.
doi: 10.1038/nrn.2017.136

Fu, W.-Y., Chen, Y., Sahin, M., Zhao, X.-S., Shi, L., Bikoff, J. B., et al. (2007). Cdk5
regulates EphA4-mediated dendritic spine retraction through an ephexin1-
dependent mechanism. Nat. Neurosci. 10, 67–76. doi: 10.1038/nn1811

Fyffe-Maricich, S. L., Schott, A., Karl, M., Krasno, J., and Miller, R. H. (2013).
Signaling through ERK1/2 controls myelin thickness during myelin repair in
the adult central nervous system. J. Neurosci. 33, 18402–18408. doi: 10.1523/
JNEUROSCI.2381-13.2013

Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood,
L. S., et al. (2014). Neuronal activity promotes oligodendrogenesis and adaptive
myelination in the mammalian brain. Science 344:1252304. doi: 10.1126/
science.1252304

Givogri, M. I., Costa, R. M., Schonmann, V., Silva, A. J., Campagnoni, A. T.,
and Bongarzone, E. R. (2002). Central nervous system myelination in mice
with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320.
doi: 10.1002/jnr.10128

Goebbels, S., Oltrogge, J. H., Kemper, R., Heilmann, I., Bormuth, I., Wolfer, S., et al.
(2010). Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-
autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964.
doi: 10.1523/JNEUROSCI.0219-10.2010

Goebbels, S., Wieser, G. L., Pieper, A., Spitzer, S., Weege, B., Yan, K., et al. (2017).
A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor
recruitment and myelination. Nat. Neurosci. 20, 10–15. doi: 10.1038/nn.4425

Guo, F., Maeda, Y., Ko, E. M., Delgado, M., Horiuchi, M., Soulika, A., et al.
(2012). Disruption of NMDA receptors in oligodendroglial lineage cells does
not alter their susceptibility to experimental autoimmune encephalomyelitis or
their normal development. J. Neurosci. 32, 639–645. doi: 10.1523/JNEUROSCI.
4073-11.2012

Harboe, M., Torvund-Jensen, J., Kjaer-Sorensen, K., and Laursen, L. S. (2018).
Ephrin-A1-EphA4 signaling negatively regulates myelination in the central
nervous system. Glia 66, 934–950. doi: 10.1002/glia.23293

Hartline, D. K., and Colman, D. R. (2007). Rapid conduction and the evolution of
giant axons and myelinated fibers. Curr. Biol. 17, R29–R35. doi: 10.1016/j.cub.
2006.11.042

Hildebrand, C., Remahl, S., Persson, H., and Bjartmar, C. (1993). Myelinated nerve
fibres in the CNS. Prog. Neurobiol. 40, 319–384. doi: 10.1016/0301-0082(93)
90015-K

Hill, R. A., Li, A. M., and Grutzendler, J. (2018). Lifelong cortical myelin plasticity
and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21,
683–695. doi: 10.1038/s41593-018-0120-6

Hill, R. A., Patel, K. D., Goncalves, C. M., Grutzendler, J., and Nishiyama, A.
(2014). Modulation of oligodendrocyte generation during a critical temporal
window after NG2 cell division. Nat. Neurosci. 17, 1518–1527. doi: 10.1038/
nn.3815

Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K., and Appel, B. (2015).
Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci.
18, 683–689. doi: 10.1038/nn.3992

Hughes, E. G., Kang, S. H., Fukaya, M., and Bergles, D. E. (2013). Oligodendrocyte
progenitors balance growth with self-repulsion to achieve homeostasis in the
adult brain. Nat. Neurosci. 16, 668–676. doi: 10.1038/nn.3390

Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J., and Bergles, D. E. (2018).
Myelin remodeling through experience-dependent oligodendrogenesis in the
adult somatosensory cortex. Nat. Neurosci. 21, 696–706. doi: 10.1038/s41593-
018-0121-5

Ishii, A., Furusho, M., and Bansal, R. (2013). Sustained activation of ERK1/2 MAPK
in oligodendrocytes and schwann cells enhances myelin growth and stimulates
oligodendrocyte progenitor expansion. J. Neurosci. 33, 175–186. doi: 10.1523/
JNEUROSCI.4403-12.2013

Ishii, A., Fyffe-Maricich, S. L., Furusho, M., Miller, R. H., and Bansal, R.
(2012). ERK1/ERK2 MAPK signaling is required to increase myelin thickness
independent of oligodendrocyte differentiation and initiation of myelination.
J. Neurosci. 32, 8855–8864. doi: 10.1523/JNEUROSCI.0137-12.2012

Jeffries, M. A., Urbanek, K., Torres, L., Wendell, S. G., Rubio, M. E., and Fyffe-
Maricich, S. L. (2016). ERK1/2 activation in preexisting oligodendrocytes of
adult mice drives new myelin synthesis and enhanced CNS function. J. Neurosci.
36, 9186–9200. doi: 10.1523/JNEUROSCI.1444-16.2016

Jepson, S., Vought, B., Gross, C. H., Gan, L., Austen, D., Frantz, J. D., et al.
(2012). LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte
differentiation and myelination through intercellular self-interactions. J. Biol.
Chem. 287, 22184–22195. doi: 10.1074/jbc.M112.366179

Kanamori, T., Kanai, M. I., Dairyo, Y., Yasunaga, K., Morikawa, R. K., and
Emoto, K. (2013). Compartmentalized calcium transients trigger dendrite
pruning in Drosophila sensory neurons. Science 340, 1475–1478. doi: 10.1126/
science.1234879

Kirby, B. B., Takada, N., Latimer, A. J., Shin, J., Carney, T. J., Kelsh, R. N., et al.
(2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 367

https://doi.org/10.1002/dneu.22518
https://doi.org/10.1016/0014-4886(64)90056-1
https://doi.org/10.1083/jcb.201512029
https://doi.org/10.1016/j.neuron.2008.06.028
https://doi.org/10.1016/j.devcel.2010.12.008
https://doi.org/10.1073/pnas.100076197
https://doi.org/10.1007/s12035-016-0233-4
https://doi.org/10.1016/j.devcel.2013.05.013
https://doi.org/10.1523/JNEUROSCI.2455-11.2011
https://doi.org/10.1073/pnas.93.18.9887
https://doi.org/10.1073/pnas.93.18.9887
https://doi.org/10.1038/s41598-017-12295-6
https://doi.org/10.1523/JNEUROSCI.3521-15.2016
https://doi.org/10.7554/eLife.35136
https://doi.org/10.7554/eLife.35136
https://doi.org/10.1074/jbc.M610797200
https://doi.org/10.1016/j.tins.2008.04.001
https://doi.org/10.1038/nrn4023
https://doi.org/10.1152/jn.00221.2016
https://doi.org/10.1523/JNEUROSCI.0150-08.2008
https://doi.org/10.1038/nrn.2017.136
https://doi.org/10.1038/nn1811
https://doi.org/10.1523/JNEUROSCI.2381-13.2013
https://doi.org/10.1523/JNEUROSCI.2381-13.2013
https://doi.org/10.1126/science.1252304
https://doi.org/10.1126/science.1252304
https://doi.org/10.1002/jnr.10128
https://doi.org/10.1523/JNEUROSCI.0219-10.2010
https://doi.org/10.1038/nn.4425
https://doi.org/10.1523/JNEUROSCI.4073-11.2012
https://doi.org/10.1523/JNEUROSCI.4073-11.2012
https://doi.org/10.1002/glia.23293
https://doi.org/10.1016/j.cub.2006.11.042
https://doi.org/10.1016/j.cub.2006.11.042
https://doi.org/10.1016/0301-0082(93)90015-K
https://doi.org/10.1016/0301-0082(93)90015-K
https://doi.org/10.1038/s41593-018-0120-6
doi: 10.1038/nn.3815
doi: 10.1038/nn.3815
https://doi.org/10.1038/nn.3992
https://doi.org/10.1038/nn.3390
https://doi.org/10.1038/s41593-018-0121-5
https://doi.org/10.1038/s41593-018-0121-5
https://doi.org/10.1523/JNEUROSCI.4403-12.2013
https://doi.org/10.1523/JNEUROSCI.4403-12.2013
https://doi.org/10.1523/JNEUROSCI.0137-12.2012
https://doi.org/10.1523/JNEUROSCI.1444-16.2016
https://doi.org/10.1074/jbc.M112.366179
https://doi.org/10.1126/science.1234879
https://doi.org/10.1126/science.1234879
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00367 October 12, 2018 Time: 16:27 # 8

Almeida Rules of Attraction in CNS Myelination

behavior during zebrafish development. Nat. Neurosci. 9, 1506–1511. doi: 10.
1038/nn1803

Klingseisen, A., and Lyons, D. A. (2018). Axonal regulation of central nervous
system myelination: structure and function. Neuroscientist 24, 7–21. doi: 10.
1177/1073858417703030

Koudelka, S., Voas, M. G., Almeida, R. G., Baraban, M., Soetaert, J., Meyer, M. P.,
et al. (2016). Individual neuronal subtypes exhibit diversity in CNS myelination
mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455. doi: 10.1016/j.
cub.2016.03.070

Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W., and Attwell, D.
(2018). Regulation of developing myelin sheath elongation by oligodendrocyte
calcium transients in vivo. Nat. Neurosci. 21, 24–28. doi: 10.1038/s41593-017-0
031-y

Laursen, L. S., Chan, C. W., and ffrench-Constant, C. (2009). An integrin-contactin
complex regulates CNS myelination by differential Fyn phosphorylation.
J. Neurosci. 29, 9174–9185. doi: 10.1523/JNEUROSCI.5942-08.2009

Lee, S., Leach, M. K., Redmond, S. A., Chong, S. Y. C., Mellon, S. H., Tuck, S. J., et al.
(2012). A culture system to study oligodendrocyte myelination processes using
engineered nanofibers. Nat. Methods 9, 917–922. doi: 10.1038/nmeth.2105

Lee, X., Yang, Z., Shao, Z., Rosenberg, S. S., Levesque, M., Pepinsky, R. B.,
et al. (2007). NGF regulates the expression of axonal LINGO-1 to inhibit
oligodendrocyte differentiation and myelination. J. Neurosci. 27, 220–225. doi:
10.1523/JNEUROSCI.4175-06.2007

Li, Q., Brus-Ramer, M., Martin, J. H., and McDonald, J. W. (2010).
Electrical stimulation of the medullary pyramid promotes proliferation and
differentiation of oligodendrocyte progenitor cells in the corticospinal tract of
the adult rat. Neurosci. Lett. 479, 128–133. doi: 10.1016/j.neulet.2010.05.043

Linneberg, C., Harboe, M., and Laursen, L. S. (2015). Axo-Glia interaction
preceding CNS myelination is regulated by bidirectional eph-ephrin signaling.
ASN Neuro 7:1759091415602859. doi: 10.1177/1759091415602859

Liu, J., Dietz, K., DeLoyht, J. M., Pedre, X., Kelkar, D., Kaur, J., et al. (2012).
Impaired adult myelination in the prefrontal cortex of socially isolated mice.
Nat. Neurosci. 15, 1621–1623. doi: 10.1038/nn.3263

Liu, P., Du, J.-L., and He, C. (2013). Developmental pruning of early-stage myelin
segments during CNS myelination in vivo. Cell Res. 23, 962–964. doi: 10.1038/
cr.2013.62

Liu, X., Bates, R., Yin, D.-M., Shen, C., Wang, F., Su, N., et al. (2011). Specific
regulation of NRG1 isoform expression by neuronal activity. J. Neurosci. 31,
8491–8501. doi: 10.1523/JNEUROSCI.5317-10.2011

Lundgaard, I., Luzhynskaya, A., Stockley, J. H., Wang, Z., Evans, K. A., Swire, M.,
et al. (2013). Neuregulin and BDNF induce a switch to NMDA receptor-
dependent myelination by oligodendrocytes. PLoS Biol. 11:e1001743. doi: 10.
1371/journal.pbio.1001743

Makinodan, M., Rosen, K. M., Ito, S., and Corfas, G. (2012). A critical period
for social experience-dependent oligodendrocyte maturation and myelination.
Science 337, 1357–1360. doi: 10.1126/science.1220845

Mao, Y. T., Zhu, J. X., Hanamura, K., Iurilli, G., Datta, S. R., and Dalva, M. B.
(2018). Filopodia conduct target selection in cortical neurons using differences
in signal kinetics of a single kinase. Neuron 98, 767.e8–782.e8. doi: 10.1016/j.
neuron.2018.04.011

Mathews, E. S., and Appel, B. (2016). Cholesterol biosynthesis supports
myelin gene expression and axon ensheathment through modulation
of P13K/Akt/mTor signaling. J. Neurosci. 36, 7628–7639. doi: 10.1523/
JNEUROSCI.0726-16.2016

Matthews, M. A. (1968). An electron microscopic study of the relationship between
axon diameter and the initiation of myelin production in the peripheral nervous
system. Anat. Rec. 161, 337–351. doi: 10.1002/ar.1091610306

McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., et al.
(2014). Motor skill learning requires active central myelination. Science 346,
318–322. doi: 10.1126/science.1254960

McMahon, H. T., and Boucrot, E. (2015). Membrane curvature at a glance. J. Cell
Sci. 128, 1065–1070. doi: 10.1242/jcs.114454

Mei, F., Fancy, S. P. J., Shen, Y.-A. A., Niu, J., Zhao, C., Presley, B., et al. (2014).
Micropillar arrays as a high-throughput screening platform for therapeutics in
multiple sclerosis. Nat. Med. 20, 954–960. doi: 10.1038/nm.3618

Mensch, S., Baraban, M., Almeida, R., Czopka, T., Ausborn, J., El Manira, A., et al.
(2015). Synaptic vesicle release regulates myelin sheath number of individual

oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630. doi: 10.1038/nn.
3991

Meyer-Franke, A., Shen, S., and Barres, B. A. (1999). Astrocytes induce
oligodendrocyte processes to align with and adhere to axons. Mol. Cell.
Neurosci. 14, 385–397. doi: 10.1006/mcne.1999.0788

Mi, S., Miller, R. H., Lee, X., Scott, M. L., Shulag-Morskaya, S., Shao, Z., et al. (2005).
LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci.
8, 745–751. doi: 10.1038/nn1460

Michailov, G. V., Sereda, M. W., Brinkmann, B. G., Fischer, T. M., Haug, B.,
Birchmeier, C., et al. (2004). Axonal neuregulin-1 regulates myelin sheath
thickness. Science 304, 700–703. doi: 10.1126/science.1095862

Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J.,
et al. (2012). Prolonged myelination in human neocortical evolution. Proc. Natl.
Acad. Sci. U.S.A. 109, 16480–16485. doi: 10.1073/pnas.1117943109

Mitew, S., Gobius, I., Fenlon, L. R., McDougall, S. J., Hawkes, D., Xing, Y. L., et al.
(2018). Pharmacogenetic stimulation of neuronal activity increases myelination
in an axon-specific manner. Nat. Commun. 9:306. doi: 10.1038/s41467-017-
02719-2

Mount, C. W., and Monje, M. (2017). Wrapped to adapt: experience-dependent
myelination. Neuron 95, 743–756. doi: 10.1016/j.neuron.2017.07.009

Nait Oumesmar, B., Vignais, L., Duhamel-Clérin, E., Avellana-Adalid, V.,
Rougon, G., and Baron-Van Evercooren, A. (1995). Expression of the highly
polysialylated neural cell adhesion molecule during postnatal myelination and
following chemically induced demyelination of the adult mouse spinal cord.
Eur. J. Neurosci. 7, 480–491. doi: 10.1111/j.1460-9568.1995.tb00344.x

Nawaz, S., Sánchez, P., Schmitt, S., Snaidero, N., Mitkovski, M., Velte, C., et al.
(2015). Actin filament turnover drives leading edge growth during myelin
sheath formation in the central nervous system. Dev. Cell 34, 139–151. doi:
10.1016/j.devcel.2015.05.013

Olivares, R., Montiel, J., and Aboitiz, F. (2001). Species differences and similarities
in the fine structure of the mammalian corpus callosum. Brain Behav. Evol. 57,
98–105. doi: 10.1159/000047229

Osso, L. A., and Chan, J. R. (2017). Architecting the myelin landscape. Curr. Opin.
Neurobiol. 47, 1–7. doi: 10.1016/j.conb.2017.06.005

Park, J., Liu, B., Chen, T., Li, H., Hu, X., Gao, J., et al. (2008). Disruption of Nectin-
like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS.
J. Neurosci. 28, 12815–12819. doi: 10.1523/JNEUROSCI.2665-08.2008

Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and
disease. Cell 133, 38–52. doi: 10.1016/j.cell.2008.03.011

Perge, J. A., Niven, J. E., Mugnaini, E., Balasubramanian, V., and Sterling, P.
(2012). Why do axons differ in caliber? J. Neurosci. 32, 626–638. doi: 10.1523/
JNEUROSCI.4254-11.2012

Philips, T., and Rothstein, J. D. (2014). Glial cells in amyotrophic lateral
sclerosis. Exp. Neurol. 262(Pt B), 111–120. doi: 10.1016/j.expneurol.2014.
05.015

Pouwels, P. J. W., Vanderver, A., Bernard, G., Wolf, N. I., Dreha-Kulczewksi, S. F.,
Deoni, S. C. L., et al. (2014). Hypomyelinating leukodystrophies: translational
research progress and prospects. Ann. Neurol. 76, 5–19. doi: 10.1002/ana.24194

Redmond, S. A., Mei, F., Eshed-Eisenbach, Y., Osso, L. A., Leshkowitz, D.,
Shen, Y.-A. A., et al. (2016). Somatodendritic expression of JAM2 inhibits
oligodendrocyte myelination. Neuron 91, 824–836. doi: 10.1016/j.neuron.2016.
07.021

Remahl, S., and Hildebrand, C. (1982). Changing relation between onset of
myelination and axon diameter range in developing feline white matter.
J. Neurol. Sci. 54, 33–45. doi: 10.1016/0022-510X(82)90216-7

Richardson, W. D., Kessaris, N., and Pringle, N. (2006). Oligodendrocyte wars. Nat.
Rev. Neurosci. 7, 11–18. doi: 10.1038/nrn1826

Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., and Chan, J. R.
(2008). The geometric and spatial constraints of the microenvironment induce
oligodendrocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 105, 14662–14667.
doi: 10.1073/pnas.0805640105

Saab, A. S., and Nave, K.-A. (2017). Myelin dynamics: protecting and shaping
neuronal functions. Curr. Opin. Neurobiol. 47, 104–112. doi: 10.1016/j.conb.
2017.09.013

Saab, A. S., Tzvetavona, I. D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., et al.
(2016). Oligodendroglial NMDA receptors regulate glucose import and axonal
energy metabolism. Neuron 91, 119–132. doi: 10.1016/j.neuron.2016.05.016

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 367

https://doi.org/10.1038/nn1803
https://doi.org/10.1038/nn1803
https://doi.org/10.1177/1073858417703030
https://doi.org/10.1177/1073858417703030
https://doi.org/10.1016/j.cub.2016.03.070
https://doi.org/10.1016/j.cub.2016.03.070
https://doi.org/10.1038/s41593-017-0031-y
https://doi.org/10.1038/s41593-017-0031-y
https://doi.org/10.1523/JNEUROSCI.5942-08.2009
https://doi.org/10.1038/nmeth.2105
https://doi.org/10.1523/JNEUROSCI.4175-06.2007
https://doi.org/10.1523/JNEUROSCI.4175-06.2007
https://doi.org/10.1016/j.neulet.2010.05.043
https://doi.org/10.1177/1759091415602859
https://doi.org/10.1038/nn.3263
https://doi.org/10.1038/cr.2013.62
https://doi.org/10.1038/cr.2013.62
https://doi.org/10.1523/JNEUROSCI.5317-10.2011
https://doi.org/10.1371/journal.pbio.1001743
https://doi.org/10.1371/journal.pbio.1001743
https://doi.org/10.1126/science.1220845
https://doi.org/10.1016/j.neuron.2018.04.011
https://doi.org/10.1016/j.neuron.2018.04.011
https://doi.org/10.1523/JNEUROSCI.0726-16.2016
https://doi.org/10.1523/JNEUROSCI.0726-16.2016
https://doi.org/10.1002/ar.1091610306
https://doi.org/10.1126/science.1254960
https://doi.org/10.1242/jcs.114454
https://doi.org/10.1038/nm.3618
https://doi.org/10.1038/nn.3991
https://doi.org/10.1038/nn.3991
https://doi.org/10.1006/mcne.1999.0788
https://doi.org/10.1038/nn1460
https://doi.org/10.1126/science.1095862
https://doi.org/10.1073/pnas.1117943109
https://doi.org/10.1038/s41467-017-02719-2
https://doi.org/10.1038/s41467-017-02719-2
https://doi.org/10.1016/j.neuron.2017.07.009
https://doi.org/10.1111/j.1460-9568.1995.tb00344.x
https://doi.org/10.1016/j.devcel.2015.05.013
https://doi.org/10.1016/j.devcel.2015.05.013
https://doi.org/10.1159/000047229
https://doi.org/10.1016/j.conb.2017.06.005
https://doi.org/10.1523/JNEUROSCI.2665-08.2008
https://doi.org/10.1016/j.cell.2008.03.011
https://doi.org/10.1523/JNEUROSCI.4254-11.2012
https://doi.org/10.1523/JNEUROSCI.4254-11.2012
doi: 10.1016/j.expneurol.2014.05.015
doi: 10.1016/j.expneurol.2014.05.015
https://doi.org/10.1002/ana.24194
https://doi.org/10.1016/j.neuron.2016.07.021
https://doi.org/10.1016/j.neuron.2016.07.021
https://doi.org/10.1016/0022-510X(82)90216-7
https://doi.org/10.1038/nrn1826
https://doi.org/10.1073/pnas.0805640105
https://doi.org/10.1016/j.conb.2017.09.013
https://doi.org/10.1016/j.conb.2017.09.013
https://doi.org/10.1016/j.neuron.2016.05.016
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00367 October 12, 2018 Time: 16:27 # 9

Almeida Rules of Attraction in CNS Myelination

Sahin, M., Greer, P. L., Lin, M. Z., Poucher, H., Eberhart, J., Schmidt, S., et al. (2005).
Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone
collapse. Neuron 46, 191–204. doi: 10.1016/j.neuron.2005.01.030

Saliani, A., Perraud, B., Duval, T., Stikov, N., Rossignol, S., and Cohen-Adad, J.
(2017). Axon and myelin morphology in animal and human spinal cord. Front.
Neuroanat. 11:129. doi: 10.3389/fnana.2017.00129

Sampaio-Baptista, C., and Johansen-Berg, H. (2017). White matter plasticity in the
adult brain. Neuron 96, 1239–1251. doi: 10.1016/j.neuron.2017.11.026

Schnädelbach, O., Ozen, I., Blaschuk, O. W., Meyer, R. L., and Fawcett, J. W. (2001).
N-cadherin is involved in axon-oligodendrocyte contact and myelination. Mol.
Cell. Neurosci. 17, 1084–1093. doi: 10.1006/mcne.2001.0961

Simons, M., and Lyons, D. A. (2013). Axonal selection and myelin sheath
generation in the central nervous system. Curr. Opin. Cell Biol. 25, 512–519.
doi: 10.1016/j.ceb.2013.04.007

Sinclair, J. L., Fischl, M. J., Alexandrova, O., Heβ, M., Grothe, B., Leibold, C., et al.
(2017). Sound-evoked activity influences myelination of brainstem axons in the
trapezoid body. J. Neurosci. 37, 8239–8255. doi: 10.1523/JNEUROSCI.3728-16.
2017

Spitzer, S., Volbracht, K., Lundgaard, I., and Káradóttir, R. T. (2016). Glutamate
signalling: a multifaceted modulator of oligodendrocyte lineage cells in health
and disease. Neuropharmacology 110, 574–585. doi: 10.1016/j.neuropharm.
2016.06.014

Stancic, M., Slijepcevic, D., Nomden, A., Vos, M. J., de Jonge, J. C., Sikkema, A. H.,
et al. (2012). Galectin-4, a novel neuronal regulator of myelination. Glia 60,
919–935. doi: 10.1002/glia.22324

Tan, Z.-J., Peng, Y., Song, H.-L., Zheng, J.-J., and Yu, X. (2010). N-cadherin-
dependent neuron-neuron interaction is required for the maintenance of
activity-induced dendrite growth. Proc. Natl. Acad. Sci. U.S.A. 107, 9873–9878.
doi: 10.1073/pnas.1003480107

Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S.,
et al. (2005). Neuregulin-1 type III determines the ensheathment fate of axons.
Neuron 47, 681–694. doi: 10.1016/j.neuron.2005.08.017

Tomassy, G. S., Berger, D. R., Chen, H.-H., Kasthuri, N., Hayworth, K. J.,
Vercelli, A., et al. (2014). Distinct profiles of myelin distribution along single
axons of pyramidal neurons in the neocortex. Science 344, 319–324. doi: 10.
1126/science.1249766

Tripathi, R. B., Jackiewicz, M., McKenzie, I. A., Kougioumtzidou, E.,
Grist, M., and Richardson, W. D. (2017). Remarkable stability
of myelinating oligodendrocytes in mice. Cell Rep. 21, 316–323.
doi: 10.1016/j.celrep.2017.09.050

Velasco, S., Díez-Revuelta, N., Hernández-Iglesias, T., Kaltner, H., André, S.,
Gabius, H.-J., et al. (2013). Neuronal Galectin-4 is required for axon growth
and for the organization of axonal membrane L1 delivery and clustering.
J. Neurochem. 125, 49–62. doi: 10.1111/jnc.12148

Wake, H., Lee, P. R., and Fields, R. D. (2011). Control of local protein synthesis
and initial events in myelination by action potentials. Science 333, 1647–1651.
doi: 10.1126/science.1206998

Wake, H., Ortiz, F. C., Woo, D. H., Lee, P. R., Angulo, M. C., and Fields,
R. D. (2015). Nonsynaptic junctions on myelinating glia promote preferential
myelination of electrically active axons. Nat. Commun. 6:7844. doi: 10.1038/
ncomms8844

Wang, S., Sdrulla, A. D., diSibio, G., Bush, G., Nofziger, D., Hicks, C., et al. (1998).
Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21,
63–75. doi: 10.1016/S0896-6273(00)80515-2

Watkins, T. A., Emery, B., Mulinyawe, S., and Barres, B. A. (2008). Distinct
stages of myelination regulated by gamma-secretase and astrocytes in a rapidly
myelinating CNS coculture system. Neuron 60, 555–569. doi: 10.1016/j.neuron.
2008.09.011

Waxman, S. G. (1997). Axon-glia interactions: building a smart nerve fiber. Curr.
Biol. 7, R406–R410. doi: 10.1016/S0960-9822(06)00203-X

Zeidán-Chuliá, F., Salmina, A. B., Malinovskaya, N. A., Noda, M., Verkhratsky, A.,
and Moreira, J. C. F. (2014). The glial perspective of autism spectrum disorders.
Neurosci. Biobehav. Rev. 38, 160–172. doi: 10.1016/j.neubiorev.2013.11.008

Zuchero, J. B., and Barres, B. A. (2013). Intrinsic and extrinsic control of
oligodendrocyte development. Curr. Opin. Neurobiol. 23, 914–920. doi: 10.
1016/j.conb.2013.06.005

Zuchero, J. B., Fu, M.-M., Sloan, S. A., Ibrahim, A., Olson, A., Zaremba, A., et al.
(2015). CNS myelin wrapping is driven by actin disassembly. Dev. Cell 34,
152–167. doi: 10.1016/j.devcel.2015.06.011

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Almeida. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 367

https://doi.org/10.1016/j.neuron.2005.01.030
https://doi.org/10.3389/fnana.2017.00129
https://doi.org/10.1016/j.neuron.2017.11.026
https://doi.org/10.1006/mcne.2001.0961
https://doi.org/10.1016/j.ceb.2013.04.007
https://doi.org/10.1523/JNEUROSCI.3728-16.2017
https://doi.org/10.1523/JNEUROSCI.3728-16.2017
https://doi.org/10.1016/j.neuropharm.2016.06.014
https://doi.org/10.1016/j.neuropharm.2016.06.014
https://doi.org/10.1002/glia.22324
https://doi.org/10.1073/pnas.1003480107
https://doi.org/10.1016/j.neuron.2005.08.017
https://doi.org/10.1126/science.1249766
https://doi.org/10.1126/science.1249766
https://doi.org/10.1016/j.celrep.2017.09.050
https://doi.org/10.1111/jnc.12148
https://doi.org/10.1126/science.1206998
https://doi.org/10.1038/ncomms8844
https://doi.org/10.1038/ncomms8844
doi: 10.1016/S0896-6273(00)80515-2
https://doi.org/10.1016/j.neuron.2008.09.011
https://doi.org/10.1016/j.neuron.2008.09.011
doi: 10.1016/S0960-9822(06)00203-X
doi: 10.1016/j.neubiorev.2013.11.008
https://doi.org/10.1016/j.conb.2013.06.005
https://doi.org/10.1016/j.conb.2013.06.005
https://doi.org/10.1016/j.devcel.2015.06.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	The Rules of Attraction in Central Nervous System Myelination
	Introduction
	When Does an Oligodendrocyte Select Its Targets?
	Which Signals Target Myelin to Axons?
	Biophysical Factors
	Attractive Signals
	Repulsive Signals

	How Are Targeting Signals Transduced Into Myelinating Behavior?
	Is There a Hierarchy of Myelin Targeting?
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


