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A B S T R A C T   

The coronavirus disease (COVID-19) first appeared at the end of December 2019 and is still spreading in most 
countries. To diagnose COVID-19 using reverse transcription - Polymerase chain reaction (RT-PCR), one has to go 
to a dedicated center, which requires significant cost and human resources. Hence, there is a requirement for a 
remote monitoring tool that can perform the preliminary screening of COVID-19. In this paper, we propose that a 
detailed audio texture analysis of COVID-19 sounds may help in performing the initial screening of COVID-19. 
The texture analysis is done on three different signal modalities of COVID-19, i.e. cough, breath, and speech 
signals. In this work, we have used 1141 samples of cough signals, 392 samples of breath signals, and 893 
samples of speech signals. To analyze the audio textural behavior of COVID-19 sounds, the local binary patterns 
LBP) and Haralick’s features were extracted from the spectrogram of the signals. The textural analysis on cough 
and breath sounds was done on the following 5 classes for the first time: COVID-19 positive with cough, COVID- 
19 positive without cough, healthy person with cough, healthy person without cough, and an asthmatic cough. 
For speech sounds there were only two classes: COVID-19 positive, and COVID-19 negative. During experiments, 
71.7% of the cough samples and 72.2% of breath samples were classified into 5 classes. Also, 79.7% of speech 
samples are classified into 2 classes. The highest accuracy rate of 98.9% was obtained when binary classification 
between COVID-19 cough and non-COVID-19 cough was done.   

1. Introduction 

The novel coronavirus disease (COVID-19) first appeared at the end 
of December 2019 and by December 2, 2021, close to 267 million cases 
have been reported in over 186 countries in the world [1]. The early 
symptoms of COVID-19 are fever, dry cough, loss of taste and smell, and 
fatigue. In severe cases, it might lead to shortness of breath, respiratory 
disorders, pneumonia, heart problems, and may even lead to death 
[2–4]. The spread of COVID-19 is mainly from the aerosols suspended 
through an infected person’s cough or sneeze. 

To date, the RT-PCR test is recommended by the majority of coun-
tries. This test is providing high accuracy but has lots of limitations too 
[5]. Going to a dedicated test center, the need for trained medical 
practitioner, non-reusable testing kits, invasive nature, and time is taken 
to receive results are a few of its limitations. The home-based monitoring 
of COVID-19 is getting popular especially with the emergence of a new 
omicron variant. But because of its low performance, it shows no benefit 
in reducing the use of RT-PCR tests [6]. Hence, there is a strong need for 
additional screening or monitoring tools that could help to reduce the 
burden of the testing centers and could be used from remote locations, 

and is suitable for large-scale testing and monitoring [7–9]. The machine 
learning and artificial intelligence (AI)-based solutions could help 
smartphone data provide these additional tools. 

To date, many AI-based algorithms have been implemented by re-
searchers. But the main focus was on the screening of COVID-19 patients 
by using CT scans [10–13] and X-ray images [13–24]. These methods are 
mainly based on convolutional neural networks (CNNs) and they use 
existing pre-trained networks to screen and classify COVID-19 patients 
from others [25,26]. The main challenge among these methods is the 
unavailability of the large data sets and image acquisition process where 
the person needs to visit a clinic for getting a CT scan or an X-ray image. 

We are living in the era of smartphones and biomedical wearables, 
which may provide an alternative, scalable, agile, and non-invasive way 
of screening COVID-19 patients [27,28]. An AI-based preliminary 
diagnosis is done by using the cough samples that are recorded by a 
smartphone application [29]. This study is based on the recent analysis 
of the pathomorphological changes that are caused by COVID-19, and it 
states that the airway passage in COVID-19 remains dry and consistent 
because there is minimal movement of the phlegm. While for the other 
types of cough e.g. asthmatic or allergic cough, this airway passage is 
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changing because of the movement of phlegm. In this work, the authors 
have used deep learning-based classifiers such as CNN for binary class 
and multi-class classification problems. In the same work, the Mel fre-
quency cepstral coefficient feature is extracted from the cough samples 
and is classified by using a weighted K-NN classifier. They have claimed 
an overall accuracy of 92% [29]. In [30], the COVID-19 cough and 
respiratory sounds are taken for diagnosis of COVID-19, and an accuracy 
of 82% has been reported. In this work, researchers have extracted 
handcrafted features such as tempo, root mean square (RMS) energy, 
MFCCs, centroid, roll-off frequency, and used 256-dimensional VGG 
networks to classify COVID-19 and non-COVID-19 cough samples. For 
all the features that generate time-series such as MFCCs, authors have 
extracted several statistical parameters such as mean, median, skewness, 
kurtosis, and root mean square (RMS) from the original features. In [31], 
authors have proposed that COVID-19 and heart failure have some 
common symptoms and implemented a graph-based local feature 
generator (DNA pattern) method to diagnose these two diseases using 
cough sounds only. A high accuracy rate of up to 100% is reported in this 
work. Another similar work is proposed in [32,33] where authors have 
implemented deep neural networks such as CNN, LSTM, and Resnet50. 
In this work, COVID-19 and non-COVID-19 sounds are classified and the 
highest ROC AUC of 0.98 is obtained for cough sounds, followed by 0.94 
for breath, and 0.92 for speech sounds. In [34], the authors have used a 
deep rank-based average pooling network to diagnose COVID-19, 
pneumonia, pulmonary tuberculosis, and healthy users. Authors have 
reported the F1 score up to 95.94%. 

In this paper, we will use a subset of the dataset recorded by the 
University of Cambridge, U.K which has the collection of COVID-19 
sounds and non-COVID-19 sounds [30]. Also, cough when analyzed 
with other physiological parameters such as heart rate, respiration, and 
temperature can provide an enriched symptom tracker for monitoring 
disease progressions and any needed intervention or emergency medical 
attention. 

The main contribution of the paper is the detailed analysis of audio 
textures present in the COVID-19 sounds. Because COVID-19 changes 
the airway passage in a different way than the other respiratory diseases, 
it is reasonable to hypothesize that COVID-19 sounds must have a 
distinct texture than the non-COVID-19 sounds. To our knowledge, this 
is the first time that the audio textural analysis on COVID-19 cough and 
breath sounds was done on following five different classes: COVID-19 
positive with cough, COVID-19 positive without cough, healthy person 
with cough, healthy person without cough, and an asthmatic cough. The 
proposed work describes that spectrograms of the non-pitch related 
sounds such as cough and breath have some kind of texture present in it. 
The textural information is captured by employing local binary patterns 
and Haralick’s features [35]. These latent features are distinct for 
COVID-19 sounds than for non-COVID-19 sounds. During classification, 
high accuracy has been observed while classifying normal cough, 
breath, and speech samples from COVID-19 samples. 

The rest of the sections are: Section 2 discusses the dataset used. 
Section 3 describes the proposed methodology, the next Section is about 
the experimental setup, and Section 5 describes the results obtained. 
Section 6 is about discussion, conclusion, and future work. 

2. Dataset used 

The COVID-19 sounds dataset has recordings of cough, breath, and 
speech sounds from COVID-19 and non-COVID-19 users. This dataset is 
collected by the University of Cambridge, UK [30]. The android and 
web-based applications were used to collect the samples. The dataset is 
well labeled and also has a list of other symptoms and medical history 
reported by the user. The dataset has samples from 4352 users from web- 
based applications and 2261 users from android-based smartphones. 
But, due to the sensitive nature of the database, the whole dataset is not 
released for research purposes, but only a portion of the dataset has been 
made accessible. Given the wide prevalence of smartphone users, in this 

work, we have used a subset of the dataset which is collected by the 
smartphone application only. The dataset has 1141 cough samples, 893 
speech samples, and 392 breath samples [30]. Table 1 shows the dis-
tribution of audio samples in various classes. For speech signals, every 
user utters the following sentence three times: ”I hope my data can help 
manage the virus pandemic”. The speech utterances are sampled at 16 
kHz. 

3. Proposed methodology 

The proposed methodology to screen COVID-19 sounds from non- 
COVID-19 sounds is shown in Fig. 1. The proposed system has two 
main blocks: First, time–frequency representation of COVID-19 sounds i. 
e. cough, breath, and speech signals. Second, audio texture analysis and 
classification of COVID-19 sounds. Both of the blocks are explained 
below in detail. 

3.1. Time–frequency representation of COVID-19 sounds 

The COVID-19 and non-COVID-19 sounds are converted into their 
respective time-frequency representations (TFR). We have used spec-
trograms as the TFR of COVID-19 sounds. The spectrogram reflects the 
spectro-temporal correlations present in the signal in the form of an 
image. To get the spectrogram, a Hamming window is employed to 
divide the audio signal into the frames of length 128 samples and 
overlap of 120 samples. A 128-point FFT is performed on each frame to 
get the spectrogram. Fig. 2 and Fig. 3 show the spectrograms for cough 
and breath sounds for a COVID-19 positive user, non-COVID-19 (or 
healthy) user, and a user with asthma. 

Fig. 2 shows that the COVID-19 cough is more consistent in nature 
and has a longer duration in comparison to the non-COVID-19 cough. 
The COVID-19 cough lasts for at least 1.2 s and has a noise-like texture 
that is uniform throughout the frequency bands, while the non-COVID- 
19 cough has a smaller stroke and is concentrated within a few fre-
quency bands. The consistency of the COVID-19 cough leads to the 
coarse texture that is more uniform in nature just like in high textural 
sounds [29]. On the other hand, the non-COVID-19 sounds have a low 
texture. These initial observations open the avenues for audio texture 
analysis in COVID-19 and non-COVID-19 cough sounds, more rationale 
for breath and speech signals as well. 

3.2. Audio texture analysis and classification of COVID-19 sounds 

An audio sound could qualify as a texture if it is long-term, non-si-
nusoidal, stochastic but still homogeneous in nature, holds uniform 
energy throughout the signal, has poor harmonic content, and exhibits 
noise-like characteristics [36]. Recently audio textures have shown good 
machine learning results for pathological speech screening and analysis 

Table 1 
Distribution of samples for cough, breath, and speech modality.  

Modality Class No. of samples 

Cough COVID-19  + ve with cough 204 
COVID-19  + ve without cough 64 

COVID-19 -ve with cough 631 
COVID-19 -ve no symptom 138 
Asthma user with cough 104    

Breath COVID-19  + ve with cough 46 
COVID-19  + ve without cough 51 

COVID-19 -ve with cough 64 
COVID-19 -ve no symptom 127 
Asthma user with cough 104    

Speech COVID-19  + ve 308 
COVID-19 -ve 585  
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[35,36]. COVID-19 sounds also exhibit texture-like properties and could 
be analyzed by textural features. 

The spectrograms generated by the previous block are analyzed for 
texture extraction. In this work, we have analyzed the two textural 
features i.e. LBP and Haralick from the spectrogram of the COVID-19 
cough, breath, and speech samples. 

The audio texture could be described by two complementary mea-
sures: one is the local spatial pattern and another one is grayscale 
contrast [37]. The LBPs extract the local spatial patterns present in the 
spectrogram image here. Haralick’s features calculate the basic statis-
tical parameters from the grayscale distribution. 

LBP is one of the most explored image texture features [38]. It is 
primarily used for image processing based applications such as face 
recognition, pattern classification, and object detection. Hence if we are 

considering the spectrograms as an image, these LBPs could capture the 
textural patterns present in the audio. The basic version of LBP is called a 
uniform pattern LBP. In uniform patterns, the binary number is replaced 
by the number of transitions occurring between 0 and 1, and vice versa. 
There are a total of 58 uniform patterns present in the LBP. Rest all other 
patterns are non-uniform in nature and concatenated together to form a 
single pattern. Hence, the uniform LBP is a 59-dimensional feature 
vector. The basic version of LBP does not encode the rotation informa-
tion of the image. In another version of LBP rotational invariant features 
are also encoded to generate a final set of features. The size of this 
rotational invariant LBP is not fixed and is dependent on the cell size of 
the mask taken. We have taken a cell size of [256,256], radius of 3 units, 
and got 120-dimensional LBP. Before using this feature vector for clas-
sification, we have normalized it by L2 norm. The L2 normalization 

Fig. 1. Proposed system architecture and flow diagram for texture analysis and classification of COVID-19 sounds.  

Fig. 2. Spectrograms for COVID-19, non-COVID-19, and asthma cough sound.  

Fig. 3. Spectrograms for COVID-19, non-COVID-19, and asthma breath sound.  
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makes the features vector invariant to the rotation of spectrograms. This 
makes the LBP features invariant to rotations [35,39]. While extracting 
LBP, we have limited our experiments to 8 sampling points and a radius 
of 3 units, because it was observed by Ojala et al. that 94% of the local 
patterns could be captured by using 8 sampling points on the radius of 3 
units [38]. 

Another textural feature that we have used in this work is Haralick’s 
feature. It describes the correlation between intensities of the neigh-
boring pixels. The fourteen Haralick’s features are derived from the co- 
occurrence matrix [35]. It describes the texture present in the spectro-
gram images with the help of statistical parameters. The fourteen fea-
tures are angular second moment, contrast, correlation, variance, 
inverse difference moment, sum average, sum variance, entropy, sum 
entropy, difference variance, difference entropy, information measure of 
correlation 1, information measure of correlation 2, and maximum 
correlation coefficient. In our work, we have considered all 14 Har-
alick’s features for screening of COVID-19 coughs [35]. These features 
are computed from the spectrogram image Pz[n; k], denoted P, with 
dimension Ng × Ng where Ng is the number of gray levels in spectrogram 
image [35,36]. Table 2 describes the 14 Haralaick’s features in detail. 

The experiments are performed for 3 sets of features. First, when only 
120-dimensional LBP feature is fed to the classifier, second, when only 
14-dimensional Haralick’s features are used, and third when we 

combine the LBP and Haralick’s features to make a single feature set of 
134-dimensions. We have performed all our experiments on a weighted 
K-NN classifier with 10-fold cross-validation. 

The weighted K-NN is employed with 10 number of neighbor points. 
For distance metric, euclidean distance is used, and to adjust distance 
weights, a squared inverse distance weighing function is used. 

4. Experimental setup 

In this work, we focus on the following clinically meaningful clas-
sification experiments. During experimentation, the classification 
models are trained for LBP only, and LBP  + Haralick’s features.  

• Experiment 1: Here we do 3-class classifications from cough sounds 
to distinguish between COVID-19 positive users who have a cough as 
a symptom (COVID-19 cough), and COVID-19 negative users who 
have a cough (non-COVID-19 cough), asthma cough.  

• Experiment 2: Expanding our Experiment 1, in this, we perform 5- 
class cough classification with the following 5 classes: COVID-19 
positive users who have a cough as a symptom (COVID-19 cough), 
COVID-19 positive users who don’t have a cough as a symptom 
(COVID-19 no cough), COVID-19 negative users who have a cough 
(non-COVID-19 cough), the COVID-19 negative users who don’t 
have a cough (non-COVID-19 no cough), and asthma cough.  

• Experiment 3: Using breath sounds to distinguish between users 
who have declared that they are COVID-19 positive (COVID-19 
breath), healthy users (non-COVID-19 breath), and users having 
asthma.  

• Experiment 4: Using breath sounds to distinguish between all 5 
classes i.e. breath sounds from COVID-19 positive users who have a 
cough as a symptom (COVID-19 breath), breath sounds from COVID- 
19 positive users who don’t have a cough as a symptom, breath 
sounds from COVID-19 negative users who have a cough, breath 
sounds from COVID-19 negative users who don’t have a cough, and 
breath sounds from users having asthmatic cough.  

• Experiment 5: Combine two modalities i.e. cough and breath to 
distinguish between all 5 classes.  

• Experiment 6: Distinguish between COVID-19 positive and COVID- 
19 negative users from their speech samples only.  

• Experiment 7: Here we do a simple binary classification between 
COVID-19 positive cough sounds and COVID-19 negative cough 
sounds. 

Feature visualization and cross validation As it has been proven 
that COVID-19 causes distinct pathomorphological changes in the res-
piratory system from those other non-COVID-19 respiratory diseases 
[29]. Hence, the latent features of COVID-19 must also be distinct from 
other classes. Fig. 4 shows the visualization of LBP features for the five 
classes using t-distributed stochastic neighborhood embedding (t-SNE) 
for cough, breath, and speech modality. All the experiments are per-
formed with audio textural features fed into a weighted K-NN classifier 
with 10-fold cross-validation for ensuring that the model neither 
underfits nor overfits. To estimate the performance of the classifier, we 
performed several standard evaluation metrics such as Receiver oper-
ating characteristics - Area under the curve (ROC-AUC) and accuracy 
rate. 

5. Results 

Table 1 shows the set of samples and classes used for classifying 
COVID-19 cough, breath, and speech sounds. Table 3 reports the clas-
sification results for all 7 experiments performed. For each experiment, 
we report the best results for each set of texture features i.e. when using 
LBP only, Haralick feature only, and a combination of LBP and Haralick 
features. The first row reports classification for Experiment 1: the three- 
class classification between COVID-19 cough, non-COVID-19 cough, and 

Table 2 
Haralick’s features description [35].  

Haralick’s 
feature 

Equation Description 

Angular 
second 
moment 

F1 =
∑Ng

i=1
∑Ng

j=1P(i, j)2 measures homogeneity of 
local gray scale 
distribution 

Contrast F2 =
∑Ng

i=1
∑Ng

j=1n2P(i, j) |i − j| = n, describes 
quantity of local changes 
happening in an audio 

Correlation 
F3 =

∑Ng
i=1

∑Ng
j=1(ij)P(i, j) − μxμy

σxσy 

μx, μy, σx, and σy are mean 
and standard deviations, 
value lies between − 1 to 
+ 1 

Variance F4 =
∑Ng

i=1
∑Ng

j=1(i − μ)2P(i, j) μ =
∑Ng

i=1
∑Ng

j=1iP(i, j), 
measures spread of the 
signal 

Inverse 
difference 
moment 

F5 =
∑Ng

i=1
∑Ng

j=1
P(i, j)

1 + (i − j)2 
measures local 
homogeneity 

Sum average F6 =
∑2Ng − 2

r=0 rPx+y(r) measures mean of the gray 
level sum distribution 

Sum variance F7 =
∑2Ng − 2

r=0 (r − F6)
2Px+y(r) calculates dispersion of 

the gray level sum 
distribution 

Sum entropy F8 = −
∑2Ng − 2

i=0 Px+y(r)log(Px+y(r)) measures disorder related 
to the gray level sum 
distribution 

Entropy F9 = −
∑Ng

i=1
∑Ng

j=1P(i, j)log(P(i, j)) measure randomness 

Difference 
variance 

F10 =

∑Ng− 1
r=0 (r −

∑Ng− 1
l=0 lP|x− y|(l))

2
P|x− y|(r)

describes heterogeneity 

Difference 
entropy 

F11 = −
∑Ng − 1

r=0 P|x− y|(r)log(P|x− y|(r)) measures disorder related 
to the distribution of gray 
scale difference 

Information 
measure 
correlation 
1 

F12 =
F9 − Hxy1

max{Hx,Hy}

Hx and Hy are the 
entropies of px and py 

respectively, and Hxy1 =

−
∑Ng

i=1
∑Ng

j=1P(i, j)
log(px (i)py(j))

Information 
measure of 
correlation 
2 

F13 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − exp(− 2(Hxy2 − F9))

√
Hxy2 = −

∑Ng
i=1

∑Ng
j=1px (i) 

py(j)log(px (i)py(j))

Maximum 
correlation 
coefficient 

F14 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2nd largest eigenvalue of Q(i, j)

√ Q(i, j) =
∑

r
P(i, r)P(j, r)
px(i)py(k)

G. Sharma et al.                                                                                                                                                                                                                                



Biomedical Signal Processing and Control 76 (2022) 103703

5

asthma cough. The results reflect that almost 80% of the cough signals 
are well discriminated by the classifier when the combination of LBP and 
Haralick feature is used. Similarly, encouraging results are obtained for 
Experiment 2 as well, where the full 5 class classification task is done. 
The classification accuracy reduces a bit, which is expected as we are 
adding more classes to the data. Nevertheless, these results give us 
confidence that cough signals could be modeled by audio textures and 
there is a significant textural difference between various types of cough. 

Experiment 3 and Experiment 4 also reflect good classification re-
sults for breath sounds. For 3-class classification we got an accuracy rate 
up to 87.9% and for 5-class classification, the accuracy rate is 72.2%. 
These experiments have better AUC than the previous Experiment 1 and 
Experiment 2. We performed Experiment 5 just to check if the 

combination of two modalities is giving any meaningful results or not. 
We found that the performance of the classifier dips when we combine 
two modalities. 

It is interesting to see that breath sounds have more discriminatory 
features than cough sounds, which adds value to the current state-of-the- 
art that suggests COVID-19 cough is one of its primary biomarkers. Fig. 5 
shows the confusion matrix for the breath signals when all 5 classes are 
considered for LBP  + Haralick textural features (Experiment 4). 

In Experiment 6, we have distinguished between speech samples 
collected from COVID-19 positive and COVID-19 negative users. We got 
an accuracy rate of 79.7% which means 79.7% of COVID-19 speech 
samples are correctly classified. The results achieved reflect the presence 
of discriminatory features in COVID-19 and non-COVID-19 cough, 
breath, and speech signals. Experiment 7, shows the accuracy rate up to 
98.9% when a simple binary classification between COVID-19 positive 
cough sounds and COVID-19 negative cough sounds is done. To cross- 
validate the performance of our proposed system, we performed leave 
one subject out (LOSO) cross-validation on our dataset. We got 
encouraging results, for 5 class cough sound classification the average 
validation was 85.79%. For 5-class breath sound classification, the 
average validation accuracy is 98.5%. Similarly, for two-class speech 
sound classification, we got an accuracy rate of 68.89%. 

Fig. 4. (a), (b): Visualization of LBP features from cough and breath modality for all 5 classes, 0: COVID-19  + ve with cough, 1: COVID-19  + ve without cough as a 
symptom, 2: COVID-19 -ve with cough, 3: COVID-19 -ve with no symptoms, 4: Asthma users with cough, (c): Visualization of LBP features from speech modality for 2 
classes: COVID-19  + ve speech and COVID-19 -ve speech. 

Table 3 
Classification results for all experiments.  

Experiment Modality Feature ROC- 
AUC 

Accuracy 
rate 

Experiment 1 cough LBP only 0.77 78.1 % 
Haralick only 0.69 72.9% 

LBP  + Haralick 0.80 79.9%      

Experiment 2 cough LBP only 0.77 69.9% 
Haralick only 0.67 62.3% 

LBP  + Haralick 0.79 71.7%      

Experiment 3 breath LBP only 0.92 82.7% 
Haralick only 0.90 80.8% 

LBP  + Haralick 0.96 87.9%      

Experiment 4 breath LBP only 0.85 70.9% 
Haralick only 0.76 63.5% 

LBP  + Haralick 0.86 72.2%      

Experiment 5 cough  + breath LBP only 0.78 66.8 % 
Haralick only 0.69 60.5% 

LBP  + Haralick 0.75 70.1%      

Experiment 6 Speech LBP only 0.83 79.5% 
Haralick only 0.73 73.1% 

LBP  + Haralick 0.83 79.7%      

Experiment 7 cough LBP only 0.97 98.7 % 
Haralick only 0.90 92% 

LBP  + Haralick 0.98 98.9%  

Fig. 5. Confusion matrix for breath modality for all 5 classes using LBP  +
Haralick (Experiment 4). 
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5.1. Comparison with state-of-the-art works 

In the last two years, many AI researchers have worked on the 
classification of COVID-19 pathological samples and non-COVID-19 
pathological samples. A huge amount of work is done by using chest 
X-rays and CT scans. These imaging modalities are fed into some kind of 
deep neural networks such as CNN, LSTM, and RNN for classification 
purposes [10–23]. A lot of work has been done on COVID-19 audio 
analysis also. In [30], binary classification of COVID-19  + ve users and 
non-COVID-19 users is done on cough, breath, and cough + breath 
samples. An accuracy of up to 82% is achieved when only cough samples 
are considered for binary classification. In [40], authors have classified 
cough sounds from non-cough sounds using a threshold of 0.8 and got an 
accuracy rate of almost 82% when acoustic features are fed to the binary 
classifier. Authors in [41] have used deep neural networks such as CNN 
to perform binary classification on COVID-19 cough sounds. They have 
reported an accuracy rate of 72%. In [32], authors have used CNN and 
Resnet50 to classify between COVID-19 cough and healthy cough 
sounds. They have achieved an accuracy of 95%. In [42], authors have 
implemented CNN, RNN, and LSTM to binary classify COVID-19 cough, 
breath, and voice sounds. The accuracy rate of up to 98.2% has been 
reported by using 240 samples only. Interestingly, they have also ach-
ieved higher accuracy with breath signals rather than cough signals. 
Table 4 compares the proposed work with the closest state-of-the-art 
works. The proposed system is performing very well when binary clas-
sification between cough of COVID-19 and healthy users is performed. 
For 5-class classification (refer to Section 4 and Table 3), we got 
encouraging results with an accuracy of 72.2%. 

6. Discussion, conclusion and future work 

In this work, we have presented the scope of using audio textures to 
analyze and classify COVID-19 sounds. Based on the current COVID-19 
knowledge, it has been proved that COVID-19 affects the respiratory 
airways in a different way than the other respiratory diseases. Hence, we 
hypothesize that COVID-19 sounds will also have distinct latent features 
to other respiratory diseases. Fig. 4 shows the distribution of LBP fea-
tures for all 5 classes of cough and breath sounds. Our results in Fig. 4 
and Table 3 support our hypothesis. Our proposed model can classify 5 
types of cough sounds with an accuracy rate of 71.7%, 5 types of breath 
sounds with an accuracy rate of 72.2%, and 79.7% of speech sounds. The 
system offers the highest accuracy rate of 98.9% while performing bi-
nary classification on COVID-19 and non-COVID-19 cough sounds. 

This work is one of its first kinds of work, where audio textural 
features are analyzed to screen COVID-19 using 3 different modalities i. 
e. cough, breath, and speech, and 5 different classes. The proposed 
method has a few advantages over the state-of-the-art works. Foremost, 
the method is computationally simple and explainable to some extent, 
unlike the complex deep neural networks. Unlike the existing AI-based 
work using cough as the only modality, we have extended our 
research to three modalities of COVID-19 sounds including cough, 
breath, and speech. This method builds the foundation that breath and 
speech sounds may be considered bio-markers along with cough sounds 
for COVID-19. Also, the audio texture analysis gives a new perspective to 
solving other audio signal-based problems. The proposed method has a 
few limitations as well, such as it could not be solely used to screen or 
diagnose COVID-19. But it opens new avenues for developing COVID-19 
screening tools for telemedicine and remote monitoring [43]. Because 
cough is a symptom of more than 30 types of respiratory diseases, the 
proposed method could be improved if we have more data samples and 
more classes to analyze. Another limitation is that the manifestation of 
COVID-19 is changing with the emergence of new variants and the 
presence of asymptomatic cases that do not allow us to have a complete 
spectrum of COVID-19 sounds. 

In the future, we would like to analyze and classify more types of 
cough caused by various other respiratory diseases and want to compare 

those with COVID-19 cough. In general, there is a treatment period of 
14 days for COVID-19 positive persons. Hence, it would be interesting to 
investigate how COVID-19 sound’s textural behavior changes when a 
person undergoes treatment. We would also like to experiment further 
on breath and speech modalities for COVID-19 screening. To add more 
depth to the current work, we may introduce more advanced textural 
features to analyze and classify COVID-19 sounds. With the manifesta-
tion of new variants, the dataset is growing and as we start to get more 
samples we may use the current models and transfer learning-based 
models such as AlexNet, GoogleNet, ResNet, or DenseNet to analyze 
COVID-19 sounds. Hence, there is a lot of scope for the expansion of this 
work. 
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