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ABSTRACT This paper proposes a robust method for the Alzheimer’s disease (AD), mild cognitive
impairment (MCI), and normal control subject classification under size limited fMRI data samples by
exploiting the brain network connectivity pattern analysis. First, we select the regions of interest (ROIs)
within the default mode network and calculate the correlation coefficients between all possible ROI pairs to
form a feature vector for each subject. Second, we propose a regularized linear discriminant analysis (LDA)
approach to reduce the noise effect due to the limited sample size. The feature vectors are then projected onto
a one-dimensional axis using the proposed regularized LDA. Finally, an AdaBoost classifier is applied to
carry out the classification task. The numerical analysis demonstrates that the purposed approach can increase
the classification accuracy significantly. Our analysis confirms the previous findings that the hippocampus
and the isthmus of the cingulate cortex are closely involved in the development of AD and MCI.

INDEX TERMS fMRI, Alzheimer’s disease, brain connectivity analysis.

I. INTRODUCTION
Alzheimer’s disease (AD) is the most common form of
dementia, and causes problems with memory, thinking and
behavior. It is a degenerative brain disorder, characterized by
progressive deterioration of nerve cells, eventually leading to
cell death. Mild Cognitive Impairment (MCI) is a condition
in which people show a slight, but noticeable and measurable
decline in cognitive capabilities, beyond what is considered
normal for their age. MCI is a transitional stage of dementia
between NC and AD [1]. Older people with MCI may or may
not progress to AD, though they have a higher risk of doing
so. Accurate distinction of AD and MCI from normal con-
trol (NC) subjects is critical for early diagnosis and treatment
of brain disorders.

Traditional AD and MCI diagnosis methods are generally
based on positron emission tomography (PET) and cere-
brospinal fluid (CSF) [2]. In recent years, there has also been
an increasing interest in noninvasive diagnosis methods based
on electroencephalography (EEG) [3], structural magnetic

resonance imaging (sMRI) [4], and functional magnetic res-
onance imaging (fMRI) [5], [6].

In literature, the majority of existing noninvasive clas-
sification approaches rely on MRI and EEG [7]–[10].
Pritchard et al. [7] analyzed spectral-band measures of EEG
data acquired from AD patients and NC subjects. They
found that classifiers based on multivariate discriminant
analysis [8] and the nearest neighbor approach could typ-
ically achieve a two-category (AD and NC) classification
accuracy of 80%when applied to EEG data. Magnin et al. [9]
applied the support vector machine (SVM) classifier to
the whole-brain anatomical MRI data acquired from AD
patients and NC subjects. They formulated feature vectors
for classification using gray matter information extracted
from T1-weighted MR images of AD and NC subjects, and
achieved a two-category classification accuracy of 94.5%.
Korolev et al. [10] combined data from clinical biomark-
ers, MRI signals, and plasma biomarkers and developed
a classifier to predict whether an MCI patient would
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develop Alzheimer’s disease over a three-year period. Their
prediction accuracy was 80%.

More recently, fMRI, which maps brain activities to
metabolic changes (such as the blood-oxygen-level depen-
dent (BOLD) contrast) in cerebral blood flow, has also been
used to classify AD, MCI and NC subjects [5], [6]. The
underlying mechanism of fMRI is that cerebral blood flow
and neuronal activation are coupled. That is, when a particular
brain region becomes active, blood flow to that region also
increases.

Compared with EEG, fMRI data can display active brain
areas more directly, and has much better spatial resolution
throughout the brain. Unlike structural MRI which mainly
reflects the anatomical information of brain tissues and struc-
ture, fMRI focuses on functional brain activities, and can pro-
vide more direct measurement on how different brain regions
are involved in particular brain activities, hence provides
more insight on the changes of functional brain connectivity
during the evolution of MCI and AD.

Wang et al. [5] extracted two intrinsically anti-correlated
networks using resting state fMRI data from 14 AD patients
and 14 NC subjects, and applied a Pseudo-Fisher Linear
Discriminative Analysis (pFLDA) on the high dimensional
feature vectors. Their two-category classification accuracy
was 83%. Chen et al. [6] applied the same technique to larger
datasets. Similarly, the accuracy of two-category classifica-
tion of AD patients and NC subjects was 82%. In addi-
tion, Challis et al. developed a logistic regression (LR)
basedAD andMCI classificationmethod. Their two-category
classification accuracies for MCI/NC and AD/MCI were
75% and 97%, respectively [11]. Using a set of graph the-
ory based network connectivity measurements as the feature
vectors, Jie et al. [12] successfully distinguished MCI from
NC with an accuracy of 92%. Similar techniques were also
used by Khazaee et al. [13] to classify AD patients and NC
subjects. More recently, classification methods that combine
multi-modality data have been proposed for AD, MCI and
NC classification [14]–[19]. In all these methods, two or
moremeasurements, including functionalMRI (fMRI), struc-
tural magnetic resonance imaging (sMRI), fluorodeoxyglu-
cose (FDG), positron emission tomography (PET) and
florbetapir-PET, are utilized. A comprehensive comparison of
existing classification methods on AD, MCI and NC subjects
can be found in [20].

While structural MRI has been widely applied to clinical
diagnosis of brain disorders, fMRI has mainly been used
for research purposes. As a result, the size of fMRI data
samples is generally quite limited, which has become a major
bottleneck in fMRI based AD, MCI and NC classification.
This is because that, when the sample size is small, most
existing classifiers suffer from severe noise effects, due to
both biological variability and measurement noise [21].

Motivated by this observation, in this paper, we develop
a reliable method for AD, MCI and NC classification that
is robust with respect to size limited fMRI data samples,
by exploiting brain network connectivity pattern analysis.

The underlying argument is that: due to variability in the brain
connectivity of each individual, the connectivity between
two brain regions alone may not be sufficient to distin-
guish NC subjects from patients with cognitive impairments;
brain network connectivity pattern analysis, which looks for
subtle changes in the pattern of connectivity among mul-
tiple or all regions in the sub-network, has shown to be
able to provide more accurate information in neuroimage
classification [5], [6], [11]–[13].

The proposed classification scheme can be described as
follows. First, we select an ROI sub-network and formu-
late the feature vectors by calculating the Pearson correla-
tion coefficients between all pairs of ROIs. In this paper,
we formulate the ROI sub-network by selecting regions
within the default mode network (DMN), which denotes
the network of brain regions that are active when the
brain is at the resting state [22]. Previous resting-state fMRI
studies have demonstrated that the DMN is affected by
AD [23]–[26]. More specifically, in this paper, we select
the right and left hippocampi and isthmus of the cingulate
cortices (ICCs) (4 regions) as our ROI sub-network. This is
because that both hippocampus and ICC are part of the DMN,
and can be well defined anatomically through the FreeSurfer
software [26], even in brains with abnormal anatomy [25].
It has also been demonstrated in [25] that the functional con-
nection between hippocampus and ICC was reduced in AD.
Second, we propose a regularized linear discriminant analy-
sis (LDA) approach, where we take shrinkage based regular-
ization procedures to reduce the noise effect (including both
biological variability and measurement errors) due to limited
sample size. The feature vectors are then projected onto a
one-dimensional axis using the proposed regularized LDA,
where the differences between AD, MCI and NC subjects are
maximized. Based on the Central Limit Theorem, we show
that when used for fMRI based brain functioning classifica-
tion, LDA is equivalent to the optimal maximum likelihood
based classification method. Finally, a decision tree based
multi-class AdaBoost classifier, which is robust to noise
effect, is applied to the projected one-dimensional vectors to
carry out the classification task.

The major results of this paper can be summarized as:
1) We propose a regularized LDA approach, which aims

to reduce the noise effect by using two shrinkage meth-
ods. The first shrinkage method moves the estimated
mean of each class towards the overall mean, and
the second one shifts the estimated covariance matrix
for each class towards the identity matrix. Numerical
analysis shows that: in comparison with the original
LDA approach [27], the regularized LDA can reduce
the noise effect and increase the classification accuracy
significantly.

2) We investigate the relationship between LDA-based
and Maximum Likelihood (ML) based classification or
decision making methods. Recall that LDA aims to sep-
arate two or more classes by projecting them into a sub-
space or direction where different classes show most
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significant differences [27]. In this paper, we prove that
when the original data are normally distributed, LDA is
equivalent tomaximizing the log-likelihood function of
the projected data. Note that there are millions of neu-
rons within one fMRI voxel, according to the Central
Limit Theorem, the overall fMRI signal corresponding
to each voxel follows the normal distribution approx-
imately. This implies that when used for fMRI based
brain functioning classification, LDA is equivalent to
the optimal ML based classification method.

3) We conduct the connectivity pattern classification of
AD, MCI and NC subjects by applying the regular-
ized LDA and AdaBoost classifier based approach.
First, we calculate the Pearson correlation coefficients
between all possible pairs of the ROIs within the group
to formulate the feature vectors. Second, the feature
vectors are then projected onto a one-dimensional axis
using the proposed regularized LDA, where the differ-
ences between AD, MCI and NC subjects are maxi-
mized. Finally, we construct the decision tree based on
the projected feature vectors and carry out the classifi-
cation using the multi-class AdaBoost classifier.
In this paper, we choose to utilize the AdaBoost
classifier instead of the naive Bayesian classifier,
since it has been observed consistently in literature
that: the AdaBoost classifier could achieve signifi-
cantly higher classification accuracy than the naive
Bayesian classifier when the sample size is very
limited [28]. Our numerical results demonstrate that:
(i) LDA-Bayesian classifier can achieve a three-
category (AD, MCI and NC) classification accuracy
of 42%; (ii) LDA-AdaBoost classifier can increase the
accuracy to 69%; (iii) when AdaBoost is combined
with the regularized LDA, the accuracy can be further
increased to 75%.
As expected, it is also observed that compared with AD
and NC subjects, it is more difficult for the classifier to
identify MCI subjects. The classification accuracy for
AD and NC are as high as 80% and 83%, respectively,
while the accuracy for MCI is only 63%. Our analysis
also confirms the previous findings that the hippocam-
pus and the isthmus of the cingulate cortex are closely
involved in the development of AD and MCI [25].

The rest of this paper is organized as follows. In Section II,
we present the proposed regularized LDA approach, and
explore the relationship between LDA based and the Maxi-
mum Likelihood based classification methods. In Section III,
we describe the ROI sub-network formulation, and elaborate
how to perform AD, MCI and NC classification through
connectivity pattern analysis. In Section IV we present the
numerical results, and we conclude in Section V.

II. REGULARIZED LINEAR DISCRIMINANT ANALYSIS
In this section, first, we revisit the Linear Discriminant Anal-
ysis method. Second, we integrate two shrinkage methods
with the original LDA to formulate the regularized LDA.

Finally, we investigate the relationship between LDA and the
ML estimation method.

A. LINEAR DISCRIMINANT ANALYSIS
Linear Discriminant Analysis aims to separate two or more
classes by projecting them into a subspace or direction where
different classes show most significant differences [27].
LDA is a general framework that can be applied to classifica-
tion problems with two or more classes. Here, we are consid-
ering the classification of three different groups: AD, MCI
and normal subjects. Without loss of generality, we illus-
trate the basic idea of LDA using the three-class case. Sup-
pose we have a set of d−dimensional vector samples X =
{x1, x2, . . . , xn}, where n1 of them are from the first class,
denoted as C1, and n2 of them are from the second class,
denoted asC2, and the remaining n3 = n−n1−n2 of them are
from the third class, denoted as C3. For i = 1, 2, 3, the mean
and scatter matrix (i.e., the scaled covariance matrix) of each
of the three classes are defined as:

µi =
1
ni

∑
x∈Ci

x, (1)

Si =
∑
x∈Ci

(x− µi)(x− µi)
t . (2)

Consider the projection of vectors in X to a new
d−dimensional space:

y = Wx, x ∈ X , (3)

where W is a d × d matrix to be determined by the LDA
algorithm. In this paper, we only utilize the first dimension
y of projected vector y where the differences among three
classes are maximized. As a result, Equation (3) can be
rewritten as:

y = wtx, (4)

where wt is the first row of the matrix W . For i = 1, 2, 3, let

C̃i = {y = wtx | x ∈ Ci}. (5)

Define µ = 1
n

n∑
i=1

xi as the overall mean, SW =
3∑
i=1

Si as

the within-class scatter matrix, and the between-class scatter
matrix SB as:

SB =
3∑
i=1

ni(µi − µ)(µi − µ)t . (6)

LDA seeks a transform vectorw that maximizes the following
objective function:

J (w) =
wtSBw
wtSWw

. (7)

It can be proved [8] that Equation (7) can be maximized when
w is the eigenvector corresponding to the largest eigenvalue of
the matrix S−1W SB asw. As will be shown in Section 3, various
classifiers, such as the Bayesian classifier and the AdaBoost
classifier can then be applied to the projected vectors {yi =
wtxi}ni=1 for further classification.
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B. REGULARIZED LDA
The original LDA algorithm has been widely applied in
supervised learning problems [8]. However, as mentioned
earlier, when the total number of subjects is small, the esti-
mated statistics suffer considerably from the noise effect
caused by both biological variability and measurement error,
leading to low classification accuracy. For our fMRI based
AD, MCI and NC classification, due to the very limited
sample size, LDA together with the Bayesian classifier could
only achieve an accuracy that is under 50%. To reduce the
noise effect, we propose to regulate the original LDA using
two shrinkage methods.

1) SHRINKAGE OF THE MEAN
The first shrinkage method, originally proposed by
Tibshirani et al. [29] for gene expression profiling, adjusts

the estimated mean vectors. In our case, let C =
3⋃
i=1

Ci

be the whole sample set. Recall that for any x ∈ C, x =
[x(1), · · · , x(k), · · · , x(d)]t . For i = 1, 2, 3, k = 1, · · · , d,
define µi,k , 1

ni

∑
x∈Ci

x(k), and µk , 1
n

∑
x∈C

x(k), where ni =

|Ci| and n = n1 + n2 + n3. Let µi = [µi,1, µi,2, . . . , µi,d ]t ,
and µ = [µ1, µ2, . . . , µd ]t . The algorithm first calculates
the following variances:

ξ2k =
1

n− 3

3∑
i=1

∑
x∈Ci

[x(k)− µi,k ]2, k = 1, · · · , d . (8)

Then for i = 1, 2, 3, and k = 1, · · · , d , the scaled distance
of µi,k to the centroid µk is calculated as:

di,k =
µi,k − µk

miξk
, (9)

wheremi =
√
1/ni + 1/n. After that, the distance is shrunken

as follows:

di,k ← sign(di,k )max(0, |di,k | − δ), (10)

where δ is a positive step size determined through cross-
validation [8]. Now based on Equation (9), the shrinkage is
achieved as follows:

µi,k ← µk + miξkdi,k . (11)

As can be seen from (10) and (11), each dimension of µi
has been shrunken towards the overall mean. This shrinkage
method is essentially based on the t test between the mean of
each class and the overall mean at every dimension. Recall
that the t score of two sets of random variables {z1} and {z2},
which have the same standard deviation Sz, is defined as:

t =
µz1 − µz2

sz
√

1
nz1
+

1
nz2

, (12)

where µz1 = E{z1} , µz2 = E{z2}, and nZ1 and nZ2 are the
sample sizes [30]. In this shrinkage method, for i = 1, 2, 3,
k = 1, · · · , d , the t score between each µi,k and µk pair
is defined as a distance in (9). If the distance di,k is small,

i.e., if di,k < δ, then most likely it is caused by the noise
effect. In this case, the shrinkage method forces di,k to be
zero, and therefore reduces the noise effect.

2) SHRINKAGE OF THE COVARIANCE MATRIX
The second shrinkage method, proposed by
Friedman et al. [31], regulates the estimation of covariance
matrix Si for each class as:

Si← (1− ε)Si + εI , i = 1, 2, 3, (13)

where I is the identity matrix, and ε a positive number
determined through cross-validation. The basic idea of this
shrinkage method is that: when the sample size is small,
the estimated covariance matrix Si, i = 1, 2, 3, generally
becomes non-invertible. By adding a small perturbation to the
slightly scaled covariance matrix, the adjusted or shrunken Si
will generally become invertible as expected.

After the regularized LDA transform, the feature vectors
are projected into a set of real valued numbers. After that,
a selected classifier can be applied to the transformed data
for further classification.

C. LDA AND THE ML ESTIMATION
In this subsection, we demonstrate that when the original
data from all classes are normally distributed, then LDA is
equivalent to the ML method. For i = 1, 2, 3, assume
each vector x in class Ci has the same probability density
function (pdf):

fX (x;µi, 6i) =
1√

2πd |6i|
e{−

1
2 (x−µi)

t6i
−1(x−µi)}. (14)

Consider a general linear transform defined by:

y = Wx. (15)

where W is a d × d matrix. For the transformed data, the
probability density function becomes:

fY (y; µ̃i, 6̃i) =
1√

2πd |6̃i|

e{−
1
2 (y−µ̃i)

t 6̃−1i (y−µ̃i)}, (16)

where i = 1, 2, 3, µ̃i = Wµi, and 6̃i = W6iW t .
Recall that in LDA, we try to find W such that the dif-

ference among different classes is maximized in the trans-
formed space. Without loss of generality, we assume that the
major difference lies in the first dimension of the transformed
vector y only, and the remaining d − 1 dimensions make
little contributions. Under this assumption, µ̃i and 6̃i can be
decomposed as:

µ̃i =

[
µ̃1
i

µ̃d−1

]
, 6̃i =

[
6̃1
i 0
0 6̃d−1

]
, (17)

since for each i, µ̃d−1
i ≈ µ̃d−1, 6̃d−1

i ≈ 6̃d−1. Accordingly,
the matrix W can also be decomposed as

W =
[
W 1

W d−1

]
. (18)
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In this case, we have µ̃1
i = W 1µi, µ̃

d−1
i = W d−1µ̃i, 6̃

1
i =

W 16iW 1t and 6̃d−1
i = W d−16iW d−1t .

For fairness, in LDA based classification, the sample size
of the three classes is assumed to be the same, i.e., n1 =
n2 = n3 = n/3. With the probability density function given
in (16), the log-likelihood function of the original data can be
written as:

L(W ) =
3∑
i=1

∑
y∈C̃i

log |W |fY (y; µ̃i, 6̃i)

= nlog|W | −
n
2
log(2π )d −

3∑
i=1

ni
2
log|6̃1

i |

−
1
2

3∑
i=1

∑
x∈Ci

(W 1x− µ̃1
i )
t (6̃1

i )
−1(W 1x− µ̃1

i )

−
n
2
log|6̃d−1

|

−
1
2

∑
x∈C

[(W d−1x− µ̃d−1)t (6̃d−1)−1

× (W d−1x− µ̃d−1)]. (19)

To find the optimal W that maximizes L(W ), set ∂L(W )
∂6̃1

i
= 0

and ∂L(W )
∂6̃d−1 = 0, we get:

6̃1
i = W 1SWW 1t , (20)

6̃d−1
= W d−1SBW d−1t . (21)

Substitute (20) and (21) into (19) and remove the constant
items, the optimization of L(W ) is equivalent to optimizing
the following function:

Leq(W ) = nlog|W | −
n
2
log|W 1SWW 1t

|

−
n
2
log|W d−1SBW d−1t

|. (22)

The optimal choice ofW will satisfy the differential equation:

dLeq(W )
dW

= 0. (23)

It was shown in [8] that the partial differential equations
are satisfied when W is composed of eigenvectors of the
matrix S−1W SB.
If we only keep the eigenvector corresponding to the largest

eigenvalue of S−1W SB, then we obtain the LDA algorithm
presented in Section II-A. As can be seen, LDA is equivalent
to the ML method.

III. CLASSIFICATION OF AD, MCI AND NC SUBJECTS
BASED ON CONNECTIVITY PATTERN ANALYSIS
In this section, we formulate the ROI sub-network, and
perform AD, MCI and NC Subjects classification through
connectivity pattern analysis, by exploiting the proposed
Regularized LDA.

A. ROI SUB-NETWORK FORMULATION AND
CONNECTIVITY PATTERN ANALYSIS
The default mode network (DMN) is one of the well stud-
ied networks at the resting state [22]. Previous resting-state
fMRI studies have demonstrated that the DMN is affected
by AD [23]–[26]. Both hippocampus and ICC are part of
the DMN, and can be well defined anatomically through
the FreeSurfer software [26], even in brains with abnor-
mal anatomy [25]. The paper by Zhu et al. [25] specifi-
cally demonstrated that the functional connection between
hippocampus and ICC was reduced in AD.

Motivated by the observations above, in this paper,
we select the right and left hippocampi and ICCs (4 regions)
as our ROI sub-network. Our connectivity pattern analysis is
carried out following the procedure below.
First, we calculate the Pearson correlation coefficients

between all possible pairs of the ROIs within the group to
formulate the feature vectors. As we now have 4 regions in
the ROI sub-network, for each subject j, we can obtain a
d−dimensional (d = 6) vector xj, consisting of the Pearson
correlation coefficients for each pair of ROIs. When we have
n subjects, we get the feature vector set {x1, · · · , xn}.
Second, using the proposed regularized LDA, we map
{x1, · · · , xn} to a one-dimensional subspace or axis, where
the differences between AD, MCI and NC subjects are max-
imized, and denote the projected vectors as {y1, · · · , yn}.
Finally, we construct the decision trees based on
{y1, · · · , yn} and carry out the classification using the multi-
class AdaBoost classifier.

In the following subsections, we will provide more details
on decision tree construction, and multi-class classification
using AdaBoost.

B. BASIC DECISION TREE CONSTRUCTION
In the classification procedure, we will construct T = 50
basic decision trees. Each decision tree divides the LDA
projected data set yj, j = 1, · · · , n, into K regions, and
each region is called a leaf node. Here, the number of
regions, K , and the boundaries for all the regions are chosen
by the decision tree algorithm to minimize the Gini impu-
rity coefficient IG [32]. More specifically, assume yj ∈ cj,
where cj ∈ {C̃1, C̃2, C̃3}. Here C̃1, C̃2, C̃3 denote the pro-
jected data set corresponding to AD, MCI and NC subjects,
respectively. For k = 1, 2, . . . ,K , without loss of gener-
ality, suppose mk data samples {(yk,1, ck,1), (yk,2, ck,2), . . . ,
(yk,l, ck,l), . . . , (yk,mk , ck,mk )} are assigned to node k , where
yk,l ∈ {yj}, ck,l ∈ {C̃1, C̃2, C̃3}, l = 1, · · · ,mk . The Gini
impurity coefficient of node k is calculated as:

IG(k) =
3∑
i=1

fk,i(1− fk,i), (24)

where fk,i =
number of occurrence of C̃i within node k

mk
and i =

1, 2, 3.
For any given input y to be classified, if y falls within the

boundaries of node k , then it will be assigned to node k ,
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and paired with the majority class inside this node. Note that
in our case, yj, j = 1, · · · , n, are all real-valued numbers.
That is, {yj} ∈ R. In this case, the boundary between two
neighboring regions is reduced to a point, and hence each
region corresponds to an interval on the R axis.
The decision tree is a weak classifier. In most applica-

tions, it needs to be incorporated with an ensemble classifier
to achieve higher accuracy. Some representative ensemble
algorithms include Bagging and Boosting [32]. In the fol-
lowing, we will apply the AdaBoost algorithm to construct
the ensemble classifier, due to its robustness under noise
effect [8], [28].

C. THE MULTI-CLASS ADABOOST CLASSIFIER
The multi-class AdaBoost classifier is built upon an ensem-
ble of weak decision tree classifiers [28]. Given a set of
labeled data {(y1, c1), (y2, c2), . . . , (yn, cn)}, where ci ∈
{C̃1, C̃2, C̃3}, the algorithm first starts with an empty ensem-
ble and T decision trees, as constructed above. Each sample
yj in the data set is given an initial weight wj = 1/n, where
j = 1, 2, · · · , n. Then for t = 1, 2, · · · ,T , the algorithm will
iteratively implement the following procedures:

1) WEIGHTED CLASSIFICATION ERROR CALCULATION
Apply a weak decision tree classifier t to the samples and
calculate the weighted classification error. More specifically,
let

I(cj, c̃j) =

{
1 if cj 6= c̃j,
0 if cj = c̃j,

(25)

where c̃j is the assigned class for sample yj, and cj is the true
class yj belongs to. Then the weighted classification error et
would be

et =
n∑
j=1

wj I(cj, c̃j). (26)

2) VOTING WEIGHT ASSIGNMENT
Based on the weighted classification error et , the algorithm
will assign a voting weight αt for the weak decision tree
classifier t as follows:

αt = ln
1− et
et
+ ln2, (27)

and then add classifier t into the ensemble.

3) WEIGHT UPDATE
Before the next iteration, the weight of each data sample yj is
updated as follows:

wj ← wjeαt I(cj,c̃j), (28)

wj ←
wj
n∑
j=1

wj

. (29)

The procedure in (29) ensures that the weights {wj}, j =

1, 2, · · · , n, form a probability distribution with
n∑
j=1

wj = 1.

As can be seen, after the update, those samples which have
been incorrectly classified in current iteration will have
higher weights in the next iteration.

4) FINAL CLASSIFICATION
After T iterations, there will be T decision trees in the ensem-
ble. The final classification is a weighted majority votes of
each of those classifiers.

As will be shown in the next Section, the combination
of regularized LDA and AdaBoost can achieve much higher
accuracy in AD, MCI and NC classification than the conven-
tional approach based on the original LDA and the Bayesian
classifier.

IV. NUMERICAL ANALYSIS
A. FMRI DATA ACQUISITION AND PRE-PROCESSING
1) SUBJECTS
Ten patients with mild-to-moderate probable AD, 11 MCI
patients, and 12 age- and education- matched healthy NC
subjects were recruited to participate in this study. The study
was approved by the Michigan State University Institutional
Review Board. All subjects or their legal representatives
provided written informed consent. All subjects were care-
fully screened to exclude those with a history of stroke,
brain tumors, aneurysms, brain surgery, serious head injury,
or other significant neurological disease, as well as those with
uncontrolled diabetes, hypertension, and hypothyroidism. All
subjects were also screened for MR-incompatible metallic
implants. NC subjects were community-dwelling older adults
recruited from the Greater Lansing area in Michigan. The
AD and MCI patients were recruited through the Memory
Disorders Clinic in the Department of Neurology atMichigan
State University and were diagnosed using standard criteria
by a practicing neurologist (NINCDS-ADRDA criteria for
clinically probable AD and Petersen criteria for MCI).

2) fMRI DATA ACQUISITION
The MRI experiment was conducted on a GE 3T Signar
HDx MR scanner (GE Healthcare, Waukesha, WI) with
an 8-channel head coil. During each session, first and
higher-order shimming procedures were carried out to
improve magnetic field homogeneity. To study resting-state
brain function, echo-planar images, starting from the most
inferior regions of the brain, were acquired for 7 minutes with
the follow- ing parameters: 38 contiguous 3-mm axial slices
in an interleaved order, time of echo (TE) = 27.7ms, time of
repetition (TR) = 2500 ms, flip angle = 80◦, field of view
(FOV) = 22 cm, matrix size = 64 × 64, ramp sampling,
and with the first four data points discarded. Each volume
of slices was acquired 164 times while a subject was asked
to relax and keep his/her eyes open in a dim-light condi-
tion. After the functional data acquisition, diffusion-weighted
images were acquired with a dual spin-echo echo-planar
imaging (EPI) sequence for 12 minutes and 6 seconds with
the following parameters: 48 contiguous 2.4-mm axial slices
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in an interleaved order, FOV = 22 cm×22 cm, matrix size =
128×128, number of excitations (NEX) = 2, TE = 77.5 ms,
TR = 13.7 s, 25 diffusion-weighted volumes (one per gradi-
ent direction) with b = 1000 s/mm2, one volume with b = 0
and parallel imaging acceleration factor = 2. Finally, 180 T1-
weighted 1-mm3 isotropic volumetric inversion recovery fast
spoiled gradient-recalled images (10 minute scan time), with
cerebrospinal fluid (CSF) suppressed, were obtained to cover
the whole brain with the following parameters: TE = 3.8ms,
TR of acquisition = 8.6ms, time of inversion (TI) = 831ms,
TR of inversion = 2332 ms, flip angle = 8◦, FOV =
25.6 cm×25.6 cm,matrix size = 256×256, slice thickness =
1 mm, and receiver bandwidth = ±20.8 kHz.

3) RESTING-STATE fMRI INDIVIDUAL-SUBJECT
DATA PRE-PROCESSING
For each subject, the acquisition timing difference was first
corrected for different slice locations. With the last functional
volume as the reference, rigid-body motion correction was
done in three translational and three rotational directions.
The amount of motion was estimated and then modeled in
data analysis. For each subject, spatial blurring with a full
width half maximum (FWHM) of 4mm was used to reduce
random noise and inter-subject anatomical variation during
group analysis. At each voxel, motion-estimation parameters,
baseline, linear and quadratic system-induced signal trends
were removed from the time courses using the ‘‘3dDecon-
volve’’ routine in AFNI. Brain global and CSF mean signals
were modeled as nuisance variables and removed from the
time courses as well. In order to create the time course
from pure CSF regions, the lateral and 3rd ventricles on
the high-resolution T1-weighted volumetric images were seg-
mented using FreeSurfer software followed by 1 mm3 ero-
sion. The cleaned time courses were then band-pass filtered
in the range of 0.009 Hz - 0.08 Hz and used for connectivity
analyses.

B. GENERATION OF ROIs FOR CONNECTIVITY ANALYSES
We selected relatively small-size, anatomically-defined
regions based on the FreeSurfer [26] segmentation as seeds
for connectivity analyses in this work, including right and
left isthmi of the cingulate cortex (ICCs), and right and
left hippocampi. Each of these regions is well-defined by
FreeSurfer, with reasonable volumes for connectivity anal-
yses (means of 2089/2381 mm3 for the right/left ICCs
and 3494/3400 mm3 for the right/left hippocampi for the
NC group). The ICCs defined in FreeSurfer overlaps with
the boundaries of the PCC/RSC (L1, P50, S26), defined
by Buckner et al. [33] for their connectivity analyses of
the DMN. The right and left hippocampi are also part of the
DMN [33] and are known to be affected by AD.

C. PERFORMANCE COMPARISON OF DIFFERENT
CLASSIFICATION ALGORITHMS
In this subsection, we present the classification performance
of the proposed method and compare it to existing methods.

The performance of the classifier is evaluated using the
Leave-One-Out (LOO) cross-validation. As was pointed out
in [21], comparing with other method, LOO might have a
higher estimate error. However, in our study, as the size of
data sample is small, splitting the data into two sets based on a
threshold would generate a biased testing set which contains
only a few subjects for each category. That is why LOO is
chosen to evaluate the performance of the classifiers in this
case. As described earlier, the ROIs used are the hippocampus
and ICC from both hemispheres of the brain.

TABLE 1. Comparison of 3-category (AD, MCI, NC) classification results.

TABLE 2. LDA with Bayesian.

Table 1 shows the performance of five classifiers. In the
first one, a naive Bayesian classifier is employed after the
original LDA transform. As can be seen, its final accuracy
is only 42.4%. As explained in Section 2, the main reason
of such an unsatisfying performance is that: when the num-
ber of data samples is small, the estimation of class means
and covariance matrices in LDA suffers from severe noise
effect, leading to overfitting. In the second one, the origi-
nal LDA is combined with the AdaBoost classifier. As can
be seen, the accuracy is increased to 69.7% by AdaBoost.
The accuracies corresponding to Logistic Regression (LR)
and Support Vector Machine (SVM) are 36.4% and 57.6%,
respectively. The last one is the regularized LDA combined
with the AdaBoost classifier that we proposed. The shrink-
age operations in the regularized LDA can reduce the noise
effect in the estimation, and further improve the accuracy
to 75.8%. As can be seen, Clearly, the purposed method is
shown to be more robust in distinguishing AD, MCI and
NC subjects. Compared to existing fMRI based classifica-
tion algorithms [5], [6], i.e., LDA with Bayesian classifier,
the proposed method has improved the classification accu-
racy by 33.4% with a p-value of 0.007 using the McNemar
test [34].

Table 2 to 6 show the confusion matrices of the five classi-
fiers. It can be seen that the purposed method shows better
performance in terms of precision and recall rates. Also,
as expected, compared with NC subjects and AD patients,
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TABLE 3. LDA with AdaBoost.

TABLE 4. LR with L2 penalty.

TABLE 5. SVM with RBF kernel.

TABLE 6. Regularized LDA with AdaBoost.

it is generally more difficult for the classifier to identify MCI
patients, and the classification accuracy for MCI patients is
much lower than that for AD and NC subjects. MCI is a tran-
sitional stage of dementia between NC and AD. Therefore,
MCI patients generally share some similar characteristics
in functional brain connectivities with AD patients or NC
subjects. As a result, the classification algorithm is prone to
mis-recognize MCI patients as AD or NC subjects.

V. CONCLUSIONS
This paper proposes a reliable method for AD, MCI and
NC subject classification that is highly robust under size
limited fMRI data samples, by exploiting brain network
connectivity pattern analysis. To do it, first, we selected the
right and left hippocampi regions and isthmus of the cingulate
cortices (ICCs) as our ROI sub-network, and calculated the
Pearson correlation coefficients between all possible ROI
pairs and used them to form a feature vector for each subject.
Second, the vectors were projected into a one-dimensional
axis using the proposed regularized LDA approach, where
the differences between AD, MCI and NC subjects

were maximized. Shrinkage based regularization procedures
were taken to reduce the noise effect due to the limited sample
size. Finally, a decision tree based multi-class AdaBoost
classifier, which is robust to noise effect, was applied
to the projected one-dimensional vectors to perform the
classification.

Both the theoretical and numerical analysis demonstrated
that: (i) the regularization methods and the AdaBoost clas-
sifier can increase the classification accuracy significantly;
(ii) brain network connectivity analysis, which evaluates the
changes in the pattern of connectivity among multiple or all
regions in the sub-network, can reveal in-depth information
about brain connectivity and result in relatively accurate clas-
sification of AD, MCI and NC, especially when the sample
size is very limited; (iii) our analysis confirms the previous
findings that the hippocampus and the isthmus of the cingu-
late cortex are closely involved in the development of AD
and MCI.

Potentially, the proposed framework can be applied to
other classification problems as well, especially under limited
sample size.
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