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Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolu-
tion for quantitative trait loci detection. However, increased genetic complexity challenges
detection methods, with discordant results due to low data quality or complex genetic archi-
tecture. We quantified the impact of theses factors across three mouse crosses and two
different detection methods, identifying procedures that greatly improve detection quality.
Importantly, HS populations have complex genetic architectures not fully captured by the
whole genome kinship matrix, calling for incorporating chromosome specific relatedness
information. We analyze three increasingly complex crosses, using gene expression levels
as quantitative traits. The three crosses were an F2 intercross, a HS formed by crossing
four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collab-
orative cross. Brain (striatum) gene expression and genotype data were obtained using the
Illumina platform. We found large disparities between methods, with concordance varying
as genetic complexity increased; this problem was more acute for probes with distant reg-
ulatory elements (trans). A suite of data filtering steps resulted in substantial increases
in reproducibility. Genetic relatedness between samples generated overabundance of
detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates
this problem. However, we find that relatedness between individuals is not evenly distrib-
uted across the genome; information from distinct chromosomes results in relatedness
structure different from the whole genome kinship matrix. Shared polymorphisms from dis-
tinct chromosomes collectively affect expression levels, confounding eQTL detection. We
suggest that considering chromosome specific relatedness can result in improved eQTL
detection.

Keywords: collaborative cross, eQTL detection, gene expression, mouse genetics, population substructure

INTRODUCTION
F2 intercrosses derived from standard inbred laboratory strains
of mice and rats have been widely used to map complex trait
quantitative trait loci (QTL). The design and implementation
of such experiments is straightforward; further, over time there
have been marked improvements in data analysis (e.g., Broman
et al., 2003). However, this experimental design has two major
drawbacks. One, the F2 crosses generally encompass only a small
fraction of the genetic diversity available within Mus musculus
or Rattus norvegicus and two, the mapping resolution, even with
very large populations, is relatively poor (Darvasi et al., 1993).
QTL mapping in heterogeneous stock (HS) populations addresses
both of these issues. HS mice are derived by crossing multiple
inbred strains (generally chosen for their genetic diversity), fol-
lowed by outbreeding for numerous generations to increase the
dimensions of the genetic map. The disadvantage of the extant
HS populations is that each contains relatively few families (∼50).

Thus, family structure and genetic drift, are potentially confound-
ing factors for data analysis. Plomin and McClearn (1993) appear
to have been the first to suggest the use of murine HS popula-
tions for QTL analysis. Talbot et al. (1999), using HS/Ibg mice
(formed by crossing eight inbred laboratory strains), were the first
to demonstrate the marked increase in QTL mapping resolution.
Demarest et al. (2001), using HS/Npt mice (a somewhat different
eight-way cross), confirmed this observation. Recently, we have
reported the development of a new HS population (Iancu et al.,
2010), derived from the eight inbred strains that have been used to
form the Collaborative Cross (Churchill et al., 2004). Because of
the inclusion of three wild-derived strains, the HS-CC is 3–4 times
more genetically diverse than other HS populations (Roberts et al.,
2007). Thus, one of the issues inherent in HS QTL mapping, i.e.,
accurately determining the underlying haplotype, is particularly
relevant here. The current study was initiated to evaluate the best
approach to mapping in complex HS populations. To focus on the
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complexity issue, we examined different analysis strategies across
a breadth of genetic diversity. Three different populations were
examined: (1) a F2 intercross derived from the C57/BL6J (B6) and
DBA/2J (D2) inbred mouse strains; (2) the HS4 derived by cross-
ing the B6 and D2 strains with the BALB/cJ and LP/J strains; (3)
the HS-CC.

The phenotypes used in this study are brain gene expression
data described previously (Iancu et al., 2010); such high through-
put gene expression studies allow the quantification of expression
levels for tens of thousands of genes. However, the large volume
of data also require careful pre-processing and filtering if spurious
results are to be avoided. A variety of experimental design and tech-
nical factors can influence the reliability of gene expression and
eQTL detection (Churchill, 2002). Standard approaches and soft-
ware have been developed for the analysis of expression data; our
initial processing steps for the expression data closely followed the
approach described by (Du et al., 2008). In addition to this stan-
dard processing pipeline, several additional pre-processing steps
have been recently suggested. Specifically, the array version used
here consists of two different physical strips. It has been shown
(Shi et al., 2009) that normalization procedures that take into
account the strip assignment of probes result in improvement in
the quantification of the expression levels. Additionally, the pres-
ence of SNPs within the probe sequence has also been shown to
affect the accuracy of detection (Walter et al., 2007). Outlier sam-
ples in microarray data have been shown to affect the downstream
analysis in several recent studies (Pearson et al., 2003; Baty et al.,
2008; Ernst et al., 2008; Shieh and Hung, 2009); here we apply an
outlier removal procedure to both the microarray and genotype
data. Finally, filtering the array probes based on the probability of
detection beneficially affects the quality of the data (Archer and
Reese, 2009).

One common approach to QTL analysis is to test for associa-
tion between genotypes at individual markers and the phenotype
of interest [single-marker (SM) analysis]. A publicly available
method that implements a variant of SM analysis and is suitable
for use in complex mouse crosses is the efficient mixed-model
association (EMMA; Kang et al., 2008)1. One essential feature
of this method is the ability to control for sample relatedness
in a computationally efficient manner. A different approach for
genetic mapping is to integrate information from several mark-
ers, estimate the probability of descent from each of the founder
inbred populations and evaluate if there are significant phe-
notype differences between alleles inherited from the different
progenitor strains (Mott et al., 2000). An implementation of
this method is available in the HAPPY program2; one advan-
tage of this algorithm is the ability to identify the ancient strain
allele effects. The present study evaluates concordance between
these two methods. In order to combine the distinct advan-
tages of each method, we suggest a procedure for combining
the two algorithms, resulting in a “joint model” (JM) approach
that identifies ancestral allele effects and also controls for kinship
structure.

1http://mouse.cs.ucla.edu/emma/
2http://www.well.ox.ac.uk/happy/happy1.2.shtml

Different methods of QTL detection can result in conflict-
ing outcomes, based on different assumptions about possible
population substructure and the techniques used to adjust for
it. As a result, a number of algorithms addressing this issue have
been introduced (Devlin et al., 2001; Pritchard and Donnelly, 2001;
Kang et al., 2008; Valdar et al., 2009; Listgarten et al., 2010). In most
of these studies the genetic relatedness between samples is treated
as a single confounding factor; the shared genetic background is
assumed to control the phenotype through the collective action
of loci dispersed throughout the whole genome. However, much
less explored is the fact that relatively large genomic regions (such
as individual chromosomes or other sets of haplotype blocks) can
also vary in similarity between individuals. Critically, this relat-
edness is not fully captured by the whole genome kinship matrix
but nevertheless affects the expression levels of large sets of genes.
In the present study we show that relatedness based on specific
genomic regions is a serious confounding factor and that it can
be effectively attenuated using the procedures analyzed in this
study.

Our paper is organized as follows. First, we compare the concor-
dance between the two methods across the three mouse crosses;
this comparison is repeated after additional data pre-processing
steps. A procedure combining both haplotype reconstruction and
kinship structure correction is introduced and its results compared
with the original algorithms. Second, we show that the kinship
structure in the two complex crosses, both genome-wide and at
individual chromosomes, displays a strong influence: probe cor-
relation with kinship structures results in excess eQTL detection.
Each of these steps reveals potential pitfalls in current QTL detec-
tion procedures; our goal is to identify an optimal strategy for
mapping in complex populations.

MATERIALS AND METHODS
ANIMALS
Breeding the HS-CC mice
Males and females of the eight parental strains (B6, CAST, NOD,
129, NZO, PWK, A, and WSB) were obtained from Jackson Lab-
oratory. The strains were randomly assigned a letter from A to
H; the order of assignment is the order noted above. The goal
of the breeding strategy described below was to create a small
panel (32 families) of the HS-CC mice; for such a small panel,
a completely balanced breeding design is not possible. At G1 the
following reciprocal F1 hybrids were formed: A×B, B×A; C×D,
D×C; E× F, F× E; G×H, H×G. At G2 the following recipro-
cal four-way crosses were formed: AB×CD, CD×AB; BA×DC,
DC×BA; EF×GH, GH× EF; FE×HG, HG× FE. At G3, 32
unique eight-way cross families were formed: ABCD× EFGH,
×GHEF,×FEHG,×HGFE. . .HGFE×ABCD,×CDAB,×BADC,
×DCBA. Each family was bred in duplicate. Of the 64 matings, 61
had litters; the three matings without litters were CDAB× EFGH,
EFGH×CDAB, and CDAB×HGFE. Thus, all 32 of the planned
families were formed. Beginning with G4, the families were out-
bred using a circle breeding design – a male from family 1 was bred
to a female from family 2 and so on; the breeding was randomized
to maintain the maximum diversity of the maternal and paternal
chromosomes. At G6, the colony was expanded to 48 families by
breeding a male from family 1 to a female from family 17 and so on.
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At G12 one male and one female from each family was randomly
chosen for striatal gene expression analysis.

Breeding the HS4 mice
Males and females of the four parental strains (B6, D2, C, and
LP) were obtained from the Jackson Laboratory. At G1 the 12
possible reciprocal F1 were hybrids were formed, followed at G2
by forming the 48 possible reciprocal four-way crosses. The four-
way crosses were then outbred following a similar design to that
noted for the HS-CC. At G19 one male and one female from each
family was randomly chosen for striatal gene expression analysis.
Details of the sample preparation are found in (Malmanger et al.,
2006). Based on RNA quality, on maximizing family diversity and
on gender neutrality, 64 samples were chosen for gene expression
analysis. High quality data were obtained for 54 samples.

Breeding the F2 mice
Male and female B6 and D2 mice were obtained from the Jack-
son Laboratory. The reciprocal F1 hybrids were formed, followed
by the formation of the four possible reciprocal F2 hybrids. Eight
males and females were randomly selected from each of the reci-
procal crosses. From the 64 samples, high quality expression data
were obtained for 56 samples.

GENE EXPRESSION DATA PROCESSING
Gene expression data were obtained from the striatum using the
Illumina WG 6.1 array exactly as described by the manufacturer.
Data were imported into R3 using the lumi package (Du et al.,
2008). Samples that were more than two standard deviations away
from the mean inter-array correlation (Oldham et al., 2008) were
not used in this study. This procedure was repeated three times
resulting in stabilization of IAC and reduction of the datasets from
94 to 87 samples (HS-CC), 60 to 56 samples in F2, and 54 to 47
samples in the HS4.

Strip-level quantile normalization (Shi et al., 2009) was per-
formed using a modified version of the procedure available in the
lumi package. We removed from the data any probe that over-
lapped with known SNPs in any of the founding populations,
using the publically available Wellcome Trust Sanger Institute data-
base of known polymorphisms4. Further removed from analysis
was any probe unlikely to be reliably detected (McClintick and
Edenberg, 2006; Archer and Reese, 2009), using the detection-Call
procedure available in the lumi R package. Using a cutoff thresh-
old of 0.01, all probes not expressed in at least a quarter of the
samples were removed.

COMPUTATION OF GENOME-WIDE AND LOCAL GENETIC DISTANCES
For computing genetic distances between genomic locations, each
genome was encoded as a long vector with entries in the range
0, 1, 2 based on the allelic content at a specific marker. Differ-
ences between two genomes were computed using the “vegdist”
function in the “vegan” R package5, using the “manhattan” option
for the distance function; this resulted in a kinship matrix similar

3http://www.r-project.org
4http://www.sanger.ac.uk/resources/mouse/genomes/
5http://cran.r-project.org/web/packages/vegan/index.html

to the one used by EMMA. For computing genetic differences at
specific intervals, an identical procedure was employed, but using
only the allelic differences at the two intervals flanking an interval.
Our general procedure is to express pairwise relationships between
individuals as square symmetric matrices, following the approach
introduced in (Excoffier et al., 1992). For computing phenotype
distances between individuals, the absolute value difference was
used a distance measure.

RESULTS
INITIAL COMPARISON OF HAPPY AND EMMA RESULTS
The two detection methods differ in the way they quantify genetic
variability. HAPPY evaluates whole genomic intervals between
two successive markers while EMMA evaluates each marker inde-
pendently. For our purposes, an interval that shows significant
association in HAPPY was deemed to reproduce EMMA results
if at least one of the flanking markers were associated by EMMA
with the same gene expression level. The comparison procedure is
summarized in Figure 1.

Genetic analysis is often performed in relation to one phe-
notype; the genomic location showing significant relationship is
denoted as a QTL. In contrast, eQTL analysis considers the expres-
sion level of many genes as phenotypes of interest. In our study, we
denote an eQTL as a significant relationship between a genomic
location and a gene expression level. A gene could be modulated by
several genomic locations while a genomic location could modu-
late several genes; here each of these pairs is regarded as a separate
eQTL. Gene expression levels regulated by genomic locations in
the immediate vicinity are denoted as cis, while genomic locations
on different chromosomes or in distant locations on the same
chromosome are denoted as trans. The exact delineation between
cis and trans varies in the literature; in the present study we use the
available marker density to determine the choice. For HAPPY, we
consider a gene to be cis regulated if the gene is situated between
the two genetic markers defining the genomic interval that mod-
ulates the gene. For EMMA, we define a regulated gene as cis if

FIGURE 1 | HAPPY intervals are compared with EMMA individual
markers. HAPPY eQTLs associated with interval 1 correspond to EMMA
eQTLs associated with either marker A or marker B. EMMA eQTLs
associated with marker C correspond with HAPPY eQTLs associated with
either interval 2 or 3.
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the significant marker is either of the two genetic markers flanking
the gene.

In order to quantify the level of agreement between the meth-
ods, we employed an adapted version of Receiver Operator Char-
acteristic (ROC) analysis (Huson et al., 1966). We kept the EMMA
significance threshold fixed at p= 0.01 and we varied the HAPPY
detection threshold between 0 and 1, recording the proportion
of “false positives” (FP) and “true positives” (TP), based on the
proportion of EMMA results recovered. The results span a curve
within the unit square between the points (0,0) and (1,1), with
chance overlap results falling on the main diagonal and perfect
overlap including the (0,1) point; better overlap is denoted by the
ROC curve “bending” more toward the (0,1) point and away from
the main diagonal. Intuitively, more of a “bend” signifies that the
TP are increasing faster than the false negatives as the threshold is
increased.

For the initial assessment of eQTL detection by HAPPY and
EMMA gene expression was normalized and processed using the
default options of the“lumiExpresso” function of the lumi R pack-
age (Du et al., 2008); no attempt was made to remove outlier
samples or eliminate any array probes. The results are summarized
in Figure 2; reproducibility varied with the genetic background

(Figure 2A) with the best performance achieved in the HS4 data.
Additionally, in all three cases better concordance was observed
for the cis eQTLs (see Figures 2B–D).

IMPACT OF ADDITIONAL DATA PRE-PROCESSING STEPS
In an attempt to improve the concordance between the two meth-
ods, a series of additional data pre-processing steps were per-
formed. First, the gene expression samples were systematically
examined for array outliers. The approach closely followed the
strategy outlined in (Oldham et al., 2008). Briefly, correlations
were calculated for each pair of samples across probe expression
levels. For each sample, an average inter-array correlation was cal-
culated; the distribution of these values was examined and any
values that were two standard deviations from the mean were
removed. This procedure was repeated three times resulting in
stabilization of the inter-array correlation and reduction of the
data sets from 94 to 87 samples (HS-CC), 60 to 56 samples F2),
and 54 to 47 samples (HS4).

In an analogous manner the genotype data were examined for
outliers. First, a kinship matrix was constructed for each of the
populations in a manner similar to the procedure used by EMMA
(Kang et al., 2008). The simplest form of kinship matrix was used,

FIGURE 2 | Initial comparison of eQTL detection across mouse crosses and methods. (A) Level of overlap across the three mouse crosses; HS4 results
are superior to both F2 and HS-CC. (B–D) Cis results are more reproducible in all three datasets.
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which assigns equal weight to each genomic location (markers)
and adds all the allelic differences to arrive at a genome-wide
measure of dissimilarity among individuals. The average distance
between each individual to the population was computed and this
distribution was examined for outliers, i.e., individuals with aver-
age distance more than two standard deviations from the mean.
Four such outliers were found only in the HS-CC group; these
samples were removed.

Recent work has demonstrated that the physical configuration
of the Illumina WG 6.1 BeadChip array has an effect on array per-
formance (Shi et al., 2009). Strip-level quantile normalization was
performed using a modified version of the procedure available in
the lumi R package. Next, data were culled for any probes that over-
lapped with known SNPs in any of the founding populations, using
the publicly available Wellcome Trust Sanger Institute database of
known polymorphisms6. Further removed from analysis was any
probe unlikely to be reliably detected (McClintick and Edenberg,
2006; Archer and Reese, 2009), using the detection-Call procedure

6http://www.sanger.ac.uk/resources/mouse/genomes/

available in the lumi R package. Using a cutoff threshold of 0.01,
all probes not expressed in at least a quarter of the samples were
removed. Following these steps, the 45,000 probes represented on
the Illumina WG 6.1 BeadChip array were reduced to 14825 probes
(F2), 13758 probes (HS4), and 10233 probes (HS-CC).

The results of the data filtering steps outlined above are illus-
trated in Figure 3. Results from the HS4 data are still superior
to the F2 and HS-CC, although to a much lesser extent com-
pared to unfiltered data (see Figure 2A). Additionally, in each case
data filtering results in a marked increase in concordance between
methods (Figures 3B–D).

To evaluate the effects of data filtering on the number of eQTLs
detected, we compared the concordance of eQTLs affecting only
the probes left in the dataset after the filtering. In this compar-
ison, the method and the identity of the probes were identical;
the only difference was the data filtering. We observed that in the
HS-CC data, the filtering steps resulted in relatively low concor-
dance between the results, especially for the HAPPY procedure
(Figure 4A). Additionally, we observed a large decrease number in
the number of eQTLs detected, with HAPPY once again showing
rather dramatic effects (Figures 4B,C). If the eQTLs detected in

FIGURE 3 | Results of data filtering on the concordance between HAPPY and EMMA. (A) Concordance comparison across the three data sets. HS4
concordance is best, with HS-CC and F2 slightly behind. (B–D) Concordance before and after data filtering. In all cases data filtering improves concordance
between the methods.
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FIGURE 4 | Concordance of results and number of eQTLs for the probes
retained after data filtering. (A) The HAPPY and EMMA results for the

retained probes are compared using ROC analysis. (B,C) Number of eQTLs
detected by HAPPY and EMMA, respectively, before and after data filtering.

the unfiltered data are correct, then they should also be detected
in the filtered data. The fact that they are not suggests that many
of the eQTLs detected in the unfiltered data are in fact FP.

COMBINING THE HAPPY AND EMMA DETECTION PROCEDURES
In many cases, uncovering the founder strain origin of the allele
generating an eQTL is of high interest. Population substructure
can generate spurious associations between a locus and a gene
expression level. Population stratification is manifested by a set of
genomic locations that discriminate between the subpopulations,
and also by a number of gene expression levels that are different
between the same subpopulations. An eQTL detection proce-
dure will likely detect associations between all genomic locations
and expression levels that discriminate between the populations.
These associations are questionable in light of the biological inter-
pretation usually ascribed to eQTLs, which implies that genetic
variations directly modulate the gene expression level. Including
the sample relatedness information in the analysis can attenuate
this problem by identifying the probe expression levels that are
really caused with genome-wide differences between subpopula-
tions, and not necessarily directly caused by a single eQTL that
happens to be correlated with the genome-wide differences.

We attempted to retain both of these desirable properties by
combining the two detection methods. We created the JM detec-
tion procedure by using the EMMA framework, but replacing
the single-marker genotype information with the founder strain
haplotype probability. This information is returned by the HMM
inference procedure included in the HAPPY package.

The results of the JM procedure are illustrated in Figure 5. In
the F2 the sample relatedness is expected to be relatively uniform
and, as expected, we do not observe an improvement of JM over
HAPPY (see Figure 5A). In the HS4, even though the concor-
dance between HAPPY and EMMA is already high, the JM still
provides additional improvement (Figure 5B). The most substan-
tial improvement is achieved in the HS-CC (Figure 5C). Overall,
the JM procedure tends to recover probes in the intersection of the
two original algorithms, as illustrated for the HS-CC (Figure 5D).

GENETIC ARCHITECTURE OF F2 AND HS CROSSES
While the genetic structure of the F2 population is well understood,
the larger number of ancestral lines and breeding generations in

the two HS populations can be expected to give rise to higher levels
of genetic complexity.

As previously demonstrated for CD-1 mice (Aldinger et al.,
2009), members of outbred populations are not necessarily equally
related (or unrelated). A combination of constraints on the breed-
ing schemes and allele fixation result in unpredictable correlations
between the genetic structure of individuals; these correlations
have implications for QTL detection (Valdar et al., 2009; Listgarten
et al., 2010). In order to determine whether genetic relatedness
was uniformly distributed across the genome, we computed the
correlation between individual genomic intervals and the kinship
matrix. Pairwise distances between individuals were computed
using the genetic information at the two markers flanking an
interval; these distances were arranged in a square symmetric
matrix that was tested for correlation with the kinship matrix,
using the Mantel test (Mantel, 1967). For the F2 data, 196 out of
213 genomic intervals available were correlated (r > 0.1) with the
full genome kinship matrix, signifying that genetic relatedness is
relatively uniformly distributed across the genome. However, for
the HS4 and HS-CC data, only about half of the genomic inter-
vals delineated by the available markers were correlated with the
kinship matrix, implying that genetic relatedness is more varying
across the genome.

The full genome kinship matrix is based on comparing the total
number of alleles shared by individuals. An implicit assumption
in this procedure is that genetic relatedness is uniformly distrib-
uted throughout the genome. Since this is not the case in the
HS populations, we further explored this issue by constructing
kinship matrices using the genetic information from individual
chromosomes. If genetic relatedness were uniformly distributed,
then the correlation between these chromosomal kinship matri-
ces and the full genome kinship matrix would be uniformly high.
However, we find that in the HS-CC these correlations are fairly
low and uneven, varying between 0.32 for chromosome 18 and
0.48 for chromosome 2. Furthermore, when the chromosomal
kinship matrices are correlated amongst themselves, we find that
some pairs have correlation only as high as 0.27 (chromosomes 4
and 17) while other pairs have correlation as low as 0.01 (chromo-
somes 2 and 17). We conclude that kinship information is unevenly
distributed amongst the chromosomes; for example while some
samples are related according to the chromosome 2, they could
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FIGURE 5 | Results of the JM procedure. (A) JM compared with HAPPY in
the F2 data. There is no improvement in the ability to reproduce the original
EMMA results. (B) HS4 results show better ability of JM to reproduce EMMA

results. (C) HS-CC results, JM has best improvement of JM of HAPPY. (D)
Overlap of eQTLs (p < 10–5) across the three methods with JM detecting a
large portion of intersection of HAPPY and EMMA results.

appear unrelated according to chromosome 17. The situation
is very similar in HS4, where correlations between chromoso-
mal specific kinship matrices and the full genome kinship matrix
range between 0.3 and 0.5, while the lowest correlation between
chromosomal kinship matrices is−0.02.

KINSHIP-PROBE CORRELATIONS RESULT IN OVERABUNDANCE OF
eQTLs
In a similar manner to computing correlations between genetic
relatedness matrices, a correlation value between the kinship
matrix and an individual probe expression level can be computed.
The absolute value difference in probe expression value between
samples results in a square matrix; this matrix can then be cor-
related with the kinship matrix. In the HS-CC filtered dataset, of
the 10,233 probes 279 probes displayed a correlation value >0.1
with the kinship matrix; slightly different thresholds did not sub-
stantially alter the results. We hypothesized that the 279 by 608
probe/interval pairs correlated with the kinship matrix will have
an overabundance of eQTLs due to the kinship structure effects.
In order to test this hypothesis, we computed the overlap between
the selected marker/probe pairs and the total eQTLs detected
by each method. Using the Fisher exact test, we found that the

HAPPY results showed very significant overabundance of eQTLs
for the selected probe/intervals (p < 2× 10−16, odds ratio 6.6),
where odds ratios above 1 denote overlap above chance. We report
odds ratios as a more informative value since, for all comparisons,
the Fisher test p-values were extremely low. We also verified that
the number of eQTLs detected by HAPPY in each interval did
not correlate with the length of the interval between the mark-
ers. For the EMMA and the JM procedures, the overabundance
was still significant but at much lower levels (odds ratios of 1.62
and 1.32, respectively). This decrease in overabundance of eQTLs
can be explained by the incorporation of the kinship informa-
tion by the latter procedures. We find similar situation in HS4,
where HAPPY results showed eQTL overabundance for selected
interval/probe pairs (odds ratio 2.6), while overabundance was
alleviated for EMMA and JM (odds ratios of 1.5 and 1.3, respec-
tively). This analysis was not applicable in the F2, where almost all
of genomic intervals were correlated with the kinship matrix.

The above results demonstrate that genetic differences dis-
persed throughout the whole genome collectively affect gene
expression levels.

We subsequently inquired whether individual chromosomes
show genetic differences that correlate with gene expression levels.
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In order to address this issue, we searched for probes that are
correlated with the chromosome 1 kinship matrix (correlation
>0.1) and we found 188 such probes. Additionally, we found 156
genomic intervals also correlated with the chromosome 1 kinship
matrix. These combinations probe/intervals resulted in significant
overabundance of detected eQTLs returned by all three methods,
with odds ratios of 9.19, 3.89, and 3.02 for HAPPY, EMMA, and
JM, respectively.

Importantly, we note that in spite of incorporating the full kin-
ship matrix information, EMMA and JM did not fully eliminate
the overabundance of eQTLs due to the shared genetic informa-
tion on chromosome 1. The situation is similar for almost all 19
chromosomes: HAPPY results are highly overabundant for inter-
val/probe pairs that are correlated with the chromosomal kinship
matrix (odds ratios between 1.63 and 9.19, with mean odd ratio
4.44). EMMA and JM are still affected, albeit with less severity: for
EMMA the odds ratios varied between 1.89 and 3.89 (mean 2.56),
while for JM the odds ratios varied between 1.16 and 3.02 (mean
1.82). These values are highly significant, but they are smaller than
the odds ratios for HAPPY, signifying that correction by the full
genome kinship matrix has a beneficial effect. However, in order
to control for the effects of shared genotypes on chromosome 1,
the analysis has to include the chromosome 1 kinship matrix. We
accomplished this adjustment using the chromosome 1 kinship
matrix, incorporated into the EMMA analysis. As expected, this
procedure significantly reduced the amount of overabundance of
eQTLs: the odds ratio dropped from 3.89 to 2.01.

DISCUSSION
We performed two complementary comparisons of eQTL detec-
tion results: comparison across methods and a comparison across
genetic backgrounds. The first comparison resulted in several
steps that greatly improved detection reproducibility. The second
comparison resulted in biological insights about the nature of
genetic modulation of gene expression. We find that distributed
genetic control of expression is detectable using genome-wide or
chromosome-wide genetic relatedness.

Our results indicate that a naïve search of eQTLs in HS popula-
tions can result in large number of discordant results. We find that
including low reliability data in the analysis results in low repro-
ducibility across methods. We believe that results not reproducible
across methods are more likely to be artifactual, and the fact that
we can substantially increase reproducibility across methods by
appropriately filtering the data strengthens this argument.

The eight founder inbred strains used in the development of the
CC differ widely across a large set of phenotypes. When the same
phenotypes are mapped in CC-derived populations, it is of interest
to elucidate whether the effects of an ancient parental allele, now
acting on a different genetic background, are concordant with
the phenotype differences between the founder strains. Therefore,
determining the likely origin of a genomic interval within CC-
derived populations is desirable and HAPPY accomplishes this
inference using an HMM approach. On the other hand, correcting
for population kinship structure is also important, and EMMA
accomplishes this in a computationally efficient manner, suitable
even for the large datasets resulting from high throughput expres-
sion and genotyping studies. We retain both of these features in

the JM procedure. As expected, JM preferentially detects eQTLs
that were found by both HAPPY and EMMA. These results sug-
gest that JM could an optimal approach for eQTL detection in
complex crosses.

The full genome kinship structure of our HS populations is
complex due to the specifics of the breeding process. A possible
factor contributing to this uneven relatedness between samples is
the relatively small number of breeding generations for our HS-CC
population. The large differences in relatedness across chromo-
somes are surprising and their origin is unclear. We hypothesize
that a possible explanation lies in the chromosome specific recom-
bination dynamics. Recombination frequency is uneven across the
genome, some of the inbred lines display differences in recombina-
tion rates and the rate of recombination is heritable (Koehler et al.,
2002; Dumont and Payseur, 2011). A complex interplay between
these factors could give rise to the chromosomal specific kinship
structure observed here. The example of chromosome 1 is most
illustrative. In the HS-CC HAPPY results, for the intervals/pairs
correlated with the chromosome 1 kinship matrix, we detected an
extreme level of eQTL overabundance, with odds ratio of 9.19. The
overabundance was alleviated only partially by the EMMA and JM
adjustment based on the full genome kinship matrix. This obser-
vation is interesting in light of a number of previous results. First, a
region on distal chromosome 1 with strong influence on brain gene
expression (eQTL hotspot) and neurobehavioral traits has been
identified (Mozhui et al., 2008). Second, recombination on mouse
chromosome 1 is dominated by “recombination hotspot,” regions
of high recombination frequency (Kelmenson et al., 2005). In our
HS populations, we observed that a significant number of dis-
tant genetic markers display relatively high levels of LD. The latter
observations implies that long-range linkage within chromosome
1, partially due to localized recombination events, could generate
a complex structure of relatedness across individuals that does not
necessarily mirror the other chromosomes or the full genome kin-
ship relationships. Also, the presence of recombination hotspots
suggests that simply increasing the number of breeding genera-
tions will not resolve the issue of divergence of kinship structure
across chromosomes. This possibility is supported by the fact that
divergence was still present in the HS4 population, which had a
larger numbers of generations compared to the HS-CC.

Regardless of the causes, the variability of the relatedness
structure across the genome strongly affects eQTL detection. We
observed significant overabundance of eQTLs for specific inter-
val/probe pairs, which we were able to predict using the correlation
structure between probes, genomic intervals, and kinship matri-
ces. While the confounding effects of the full kinship matrix are
attenuated by EMMA and JM procedures, the overabundance due
to chromosomal specific kinship structure remains. A possible
solution for this problem is the inclusion of additional kinship
matrices in the analysis pipeline, as demonstrated by the HS-CC
EMMA results on chromosome 1. However, the chromosome spe-
cific kinship information could be incorporated into any other
methods that adjust for the full genome kinship structure.

These results have potential biological implications. First, we
show that large numbers of probes are correlated with either the
full genome kinship matrix or with specific chromosomal differ-
ences between the samples. This implies that significant biological
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modulation of gene expression is due to correlated genetic poly-
morphisms distributed across large genomic regions. This“distrib-
uted”modulation of biological activity likely coexists and interacts
with the one-to-one relationship between genotype and pheno-
type that is the focus of QTL studies. One approach of uncovering
this distributed genetic control is the matrix correlation technique
employed in the current study. A second biological implication
regards the effect of population substructure on genetic associa-
tions. While we show that chromosomal specific effects have the
potential to confound interval/marker associations, we also note
the converse: it is possible for individuals that are not closely related
according to the full genome kinship matrix to have similar tran-
scription profiles, provided that they are related according to one
of the chromosomal kinship matrices.
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