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Our study investigates the potential of diffusion MRI (dMRI), including diffusion tensor
imaging (DTI), fixel-based analysis (FBA) and neurite orientation dispersion and density
imaging (NODDI), to detect microstructural tissue abnormalities in rats after mild
traumatic brain injury (mTBI). The brains of sham-operated and mTBI rats 35 days after
lateral fluid percussion injury were imaged ex vivo in a 11.7-T scanner. Voxel-based
analyses of DTI-, fixel- and NODDI-based metrics detected extensive tissue changes
in directly affected brain areas close to the primary injury, and more importantly, also
in distal areas connected to primary injury and indirectly affected by the secondary
injury mechanisms. Histology revealed ongoing axonal abnormalities and inflammation,
35 days after the injury, in the brain areas highlighted in the group analyses. Fractional
anisotropy (FA), fiber density (FD) and fiber density and fiber bundle cross-section
(FDC) showed similar pattern of significant areas throughout the brain; however, FA
showed more significant voxels in gray matter areas, while FD and FDC in white matter
areas, and orientation dispersion index (ODI) in areas most damage based on histology.
Region-of-interest (ROI)-based analyses on dMRI maps and histology in selected brain
regions revealed that the changes in MRI parameters could be attributed to both
alterations in myelinated fiber bundles and increased cellularity. This study demonstrates
that the combination of dMRI methods can provide a more complete insight into the
microstructural alterations in white and gray matter after mTBI, which may aid diagnosis
and prognosis following a mild brain injury.

Keywords: traumatic brain injury, fixel-based analysis, diffusion tensor imaging, axonal damage, gliosis,
histology, neurite orientation dispersion and density imaging

Abbreviations: AD, axial diffusivity; AI, anisotropy index; CD, cellular density; CFE, connectivity-based fixel enhancement;
CSD, constrained spherical deconvolution; CT, computed tomography; DTI, diffusion tensor imaging; dMRI, diffusion
magnetic resonance imaging; DW-GRASE, diffusion-weighted gradient- and spin-echo; FA, fractional anisotropy; FBA, fixel-
based analysis; FC, fiber bundle cross-section; FD, fiber density; FDC, fiber density and fiber bundle cross-section; FOD,
fiber orientation distribution; FWE, family-wise error; FWF, free water fraction; GM, gray matter; HARDI, high-angular-
resolution diffusion imaging; LFP, lateral fluid percussion; MD, mean diffusivity; MRI, magnetic resonance imaging; mTBI,
mild traumatic brain injury; NODDI, neurite orientation dispersion and density imaging; NDI, neurite density index; ODI,
orientation dispersion index; PBS, phosphate-buffered saline; RD, radial diffusivity; ROI, region-of-interest; ST, structure
tensor; TFCE, threshold-free cluster enhancement; VBA, voxel-based analyses; WM, white matter.
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INTRODUCTION

Magnetic resonance imaging (MRI) and computed tomography
(CT) are routinely used to assess tissue damage in patients after
traumatic brain injury (TBI; Duhaime et al., 2010). While these
imaging methodologies can assess tissue damage after moderate
and severe injury, mild TBI (mTBI) remains a challenge by not
providing clear radiological evidence of brain injury (Mittl et al.,
1994; Iverson et al., 2000; Scheid et al., 2003; Hughes et al.,
2004). Clinically, mTBI is defined by initial brief, decreased, or no
loss of consciousness, disorientation, or amnesia, which tend to
disappear within minutes or hours after injury (Mechtler et al.,
2014; Pervez et al., 2018). However, many patients complain
about persisting symptoms for days or even months after
the injury, such as headache, dizziness, concentration/memory
problems, or other long-term complications, such as sleeping
disorders, emotional distress, depression, or anxiety (Katz et al.,
2015; Ling et al., 2015; Cole and Bailie, 2016; van der Naalt
et al., 2017). These short- and long term-consequences after a
mild injury indicate that there are still ongoing processes in
the brain, which are not detected by the clinically available
imaging methods.

Diffusion MRI (dMRI) detects the displacement of water
molecules, which reflects tissue microstructure. Therefore,
changes in the tissue microenvironment can provide non-
invasively detectable information associated to pathological
processes ongoing in the tissue. In particular, diffusion tensor
imaging (DTI; Basser et al., 1994) has demonstrated a
good sensitivity to reveal microstructure-associated changes of
pathological features of mTBI both in patients (Inglese et al.,
2005; Yuh et al., 2014; Asken et al., 2018; Wallace et al., 2018;
Yin et al., 2019) and animal models of TBI (Bennett et al., 2012;
Hylin et al., 2013; Stemper et al., 2015; Herrera et al., 2017;
Hutchinson et al., 2018). Despite being widely used, the single
tensor model assumes one water pool with Gaussian distribution,
which oversimplifies the highly complex architecture of the
tissue within a voxel. For example, it has been studied that
white matter voxels may contain up to 90% of crossing fibers
(Jeurissen et al., 2013). Therefore, differences detected in a
region-of-interest (ROI) or voxel-based analyses are confounded
by partial volume effects making interpretation of DTI outcomes
a challenge in the presence of multiple fiber bundles or in
the gray matter (Jones et al., 2013). Recently, the introduction
of more advanced techniques, such as high-angular-resolution
diffusion imaging (HARDI) acquisitions (Tuch et al., 2002) in
combination with higher-order diffusion modeling tools, such as
constrained spherical deconvolution (CSD; Tournier et al., 2004,
2007), Q-ball (Tuch, 2004) or persistent angular structure-MRI
(Jansons and Alexander, 2003), offer new windows to estimate
the more complex microstructural environment of the brain
tissue. Based on CSD, Raffelt et al. (2012) introduced a novel
statistical analyses method for HARDI data known as fixel-
based analysis (FBA), which enables quantification of individual
fiber bundle populations within a voxel. More specifically,
the FBA framework provides estimation of microstructural
changes in apparent fiber density and macroscopic changes
in fiber bundle cross-section (Raffelt et al., 2012, 2017). On

the other hand, multi-compartment models, such as neurite
orientation dispersion and density imaging (NODDI; Zhang
et al., 2012), can extract information of volume fractions of
isotropic, hindered, and restricted compartments and identify
microstructural features associated with pathological process
occurring in the brain. Both FBA framework and NODDI
has been already used to assess tissue alterations after TBI
in both animals and humans (Wright et al., 2017; Churchill
et al., 2019; Verhelst et al., 2019; Gazdzinski et al., 2020;
Palacios et al., 2020; Wallace et al., 2020; McCunn et al., 2021;
Muller et al., 2021; Oehr et al., 2021), however, there are few
studies including corroboration of the tissue changes after brain
injury with histology.

The aim of our study was to investigate microstructural
tissue changes throughout the brain in an experimental mTBI
rat model using DTI-, fixel- and NODDI based analyses. We
performed voxel-based analysis (VBA) comparing ex vivo sham-
operated and mTBI brains of the DTI-based metrics: fractional
anisotropy (FA), and axial (AD), radial (RD) and mean (MD)
diffusivities; fixel-based metrics: fiber density (FD), fiber bundle
cross-section (FC), and fiber density and fiber bundle cross-
section (FDC); and NODDI metrics: orientation dispersion
index (ODI), free water fraction (FWF), and neurite density
index (NDI). Histologically, we confirmed axonal alterations
and increased cell density associated to gliosis in highlighted
brain areas in both analyses by using myelin and Nissl stainings,
respectively. Additionally, we performed an ROI analysis on
MRI and histology in the same animals, and correlated values
from individual MRI maps with ones obtained from histological
sections stained for myelin and Nissl. Altogether, this study
explores the potential of established and advanced diffusion MRI
techniques with histological validation, and more importantly,
increases our understanding of tissue microstructural changes in
the brain after mild injury.

MATERIALS AND METHODS

Animal Model
Experimental TBI was induced in male Sprague-Dawley rats
(n = 8; 10 weeks old, 300–350 g, Harlan Netherlands B.V., Horst,
Netherlands) by lateral fluid percussion (LFP) injury. Rats were
anesthetized with a single i.p. injection (6 ml/kg) of a mixture
containing sodium pentobarbital (Mebunat, Orion Pharma,
Finland; 60 mg/kg), magnesium sulfate (127.2 mg/kg), propylene
glycol (39.5%), and absolute ethanol (10%). Then, a craniectomy
(∅ = 5 mm) was performed between bregma and lambda on
the left skull convexity (anterior edge 2.0 mm posterior to
the bregma; lateral edge adjacent to the left lateral ridge).
A fluid percussion device (AmScien Instruments, Richmond, VA,
United States) was then used to induce an LFP injury to the
exposed dura using a transient fluid pulse (21–23 ms) to induce a
mild injury (0.89 ± 0.21 atm). After the injury, we checked that
the dura was intact. Sham-operated rats (n = 6) were subjected to
same operational procedures except for the impact.

Following the operation, the animals were transferred to the
animal facility and housed in individual cages maintained under
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a 12 h light/12 h dark cycle (lights on 07:00 a.m., temperature
22 ± 1◦C, humidity 50–60%) with free access to food and
water. All animal procedures were carried out under licenses
that have been approved by the Animal Ethics Committee
of the Provincial Government of Southern Finland and in
accordance with the guidelines of the European Community
Council Directives 86/609/EREC.

Tissue Preparation
Thirty-five days after the operation, all the rats (n = 14)
were deeply anesthetized under 5% isoflurane in 30%/70%
O2/N2 gas mixture, and transcardially perfused with saline for
2 min (30 ml/min) followed by 4% paraformaldehyde in 0.1 M
phosphate buffer, pH 7.4 (30 ml/min) for 25 min. After perfusion,
the brains were removed from the skull and post-fixed in a
solution of 4% paraformaldehyde until imaging. Before MRI, the
brains were transferred to a solution of 0.1 M phosphate-buffered
saline (PBS) containing 1 mM gadopentetate dimeglumine
(Magnevist, Berlex Imaging, Wayne, NJ, United States) for at least
72 h. The brains were then placed tightly inside a polyethylene
tube filled with perfluoro polyether (Fomblin, Solvay Inc.,
Princeton, NJ, United States) to prevent tissue drying and to
effectively suppress the background signal.

Ex vivo Magnetic Resonance Imaging
Acquisition
The brains were scanned on an 11.7 T NMR spectrometer
(Bruker BioSpin, Billerica, MA, United States), with a Micro2.5
gradient system (maximum gradient strength = 1,000 mT/m).
A 20-mm-diameter birdcage volume coil was used
for radiofrequency transmission and signal reception.
Diffusion data were acquired using a 3D diffusion-weighted
gradient- and spin-echo (DW-GRASE) sequence (Aggarwal
et al., 2010) with TR/TE = 800/33 ms, rare-factor/EPI
factor = 4/3, bandwidth = 100 kHz, number of averages = 2,
FOV = 22.8 mm × 16.8 mm × 11.7 mm, matrix size
(read × phase × phase 2) = 152 × 112 × 78, acquired spatial
resolution = 150 µm3 isotropic (zero-filling interpolation to
0.075 mm3 isotropic), number of uniformly distributed diffusion
directions = 30 for each b-value of 3,000 and 6,000 s/mm2,
number of minimally diffusion-weighted images = 3, diffusion
gradient duration (δ)/separation (1) = 5/12 ms, total acquisition
time∼21 h.

Image Pre-processing
k-space data were processed using in-house code in IDL (ITT
Visual Information Solutions, Boulder, CO, United States) to
reconstruct the diffusion weighted images. Preprocessing of
the reconstructed data consisted of image denoising based
on random matrix theory (Cordero-Grande et al., 2019) and
Gibbs ringing removal using the method of local subvoxel-shifts
(Kellner et al., 2016), both tools included in the MRtrix3 software
(Tournier et al., 2019). Finally, bias field correction was applied to
remove spatial intensity inhomogeneities (Tustison et al., 2010)
followed by motion and eddy current correction using Advanced
Normalization Tools (ANTs) software (Avants et al., 2014).

Fixel-Based, Tensor-Based and Neurite
Orientation Dispersion and Density
Imaging Analyses
To perform FBA (Raffelt et al., 2012), tissue specific response
functions were estimated for white matter (WM), gray matter
(GM), and PBS in an unsupervised manner for each sham-
operated animal (Dhollander and Connelly, 2016), and combined
to create group averaged response functions. Whole brain masks
were obtained for each image. The fiber orientation distributions
(FODs) with a spherical harmonic degree (lmax = 6) were then
estimated from the group averaged response functions using
multi-shell, multi-tissue constrained spherical deconvolution
(MSMT-CSD; Jeurissen et al., 2014). The resulting FODs
were corrected for intensity inhomogeneities using multi-tissue-
informed intensity normalization.

Unbiased Population Template
The FOD maps from all the brains, including sham-operated
and mTBI, were then co-registered in two steps; first with rigid
and affine registration followed by a non-linear registration to
optimize a group-average template. The linear and non-linear
warps generated during co-registration were subsequently used
to warp (without orientation) the intensity normalized FODs
from each rat to the template.

Fixel-Based Metrics: Fiber Density, Fiber Bundle
Cross-Section, Fiber Density and Fiber Bundle
Cross-Section
To ensure that further analysis is performed on fixels that contain
data from all the rat brains, all the individual masks were warped
to the template, and the intersection of the masks were computed
to obtain a population template mask. Then, a white matter
template fixel mask was created by segmenting the peak FOD
amplitudes of each fixel in the FOD based template, at a threshold
of 0.06. The selected threshold for the fixel mask was chosen to
include fixels in crossing fiber areas that are genuinely in WM and
areas with a mixture of WM and GM, without the inclusion of any
spurious fixels. Each FOD lobe from the warped individual rat
brain FODs were segmented into corresponding fixels by taking
the integral of the FOD lobe (at the threshold defined previously)
to obtain the FD per fixel and reoriented into the template
image (Raffelt et al., 2012). The fixel spatial correspondence was
achieved by taking each reoriented fixel in the individual rat brain
FODs and assigning it to the corresponding fixel in the FOD
template (Raffelt et al., 2017). The FC metric was computed from
the deformation fields obtained during co-registration (from the
individual to template). Finally, FDC metric was computed by
modulating the FD with FC computed previously.

Tensor-Based and Multicompartment Model Neurite
Orientation Dispersion and Density Imaging Analyses
We calculated tensor-based metrics using both b-values (i.e.,
3,000 and 6,000 s/mm2) and the iteratively weighted least-
squares (IWLS) method to improve accuracy in the parameter
estimations (Basser et al., 1994; Veraart et al., 2013). The
tensor-based metrics included were fractional anisotropy
(FA), axial diffusivity (AD), radial diffusivity (RD), and
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mean diffusivity (MD). Multicompartment model NODDI
was computed and fitted using the NODDI toolbox (UCL,
United Kingdom) for Matlab1. The derived NODDI indices
included orientation dispersion index (ODI), free water fraction
(FWF), and neurite density index (NDI). For the voxel-wise
analysis, the tensor- and NODDI-based metrics were then
warped to the FOD-based template using the non-linear
transformations obtained during FBA analysis.

Statistical Analysis
Statistical analysis for fixel-based metrics were performed by
connectivity-based fixel enhancement (CFE) which uses whole
brain tractography-derived connectivity information to infer
the amount of cluster-like local spatial support for each
corresponding voxel (Raffelt et al., 2015). For this purpose,
whole-brain tractography was performed on the study-specific
FOD template within the template mask intersection using
the iFOD2 algorithm by generating 20 million streamlines,
angle = 22.5◦, minimum length = 0.3 mm, maximum
length = 22.5 mm, cutoff = 0.06, power = 1. In order
to minimize errors between tractography-derived streamline
densities and spherical deconvolution-derived fiber densities, the
resulting tractogram was reduced to 2 million streamlines using
spherical-deconvolution-informed filtering of tractograms (SIFT;
Smith et al., 2013). Connectivity-based fixel enhancement was
performed for the group analysis FD, FC, and FDC metrics
comparing sham-operated versus mTBI rats applying a spatial
Gaussian filter of 0.3 mm × 0.3 mm × 0.3 mm and using
general linear model with non-parametric permutation testing
(5,000 permutations) using the default MRtrix3 fixelcfestats
tool parameters (C = 0.5, E = 2, H = 3) (Raffelt et al.,
2015). For voxel-based metrics, a spatial Gaussian filter of
0.3 mm × 0.3 mm × 0.3 mm was applied to the data
and the statistical analysis was performed with non-parametric
permutation testing (5,000 permutations) using threshold-free
cluster enhancement (TFCE) with the default FSL randomize tool
parameters (C = 6, E = 0.5, H = 2) (Smith and Nichols, 2009).
Both the DTI- and fixel-based voxel-wise statistical analyses were
fully corrected for family-wise error (FWE). A p-value of less than
0.05 was considered statistically significant.

We pre-selected the regions of interest based on histology in
the same animals as in MRI. We selected the corpus callosum
and external capsule at −1.80 and −3.50 mm from bregma, and
internal capsule and ventrobasal complex at −3.50 mm from
bregma, both ipsi- and contralaterally. A single set of ROIs were
manually drawn in the template. The selection of ROIs was based
on our previous study (San Martín Molina et al., 2020). Then,
the ROIs were transformed to the subject space using the inverse
matrix transformation for each brain. The ROI-based analysis
for histology comparison was performed for tensor-based (FA,
RD, AD, and MD) and CSD-based metrics (FD, dispersion, and
peak), as well as NODDI parameters (ODI, FWF, and NDI). The
ROI-based analysis of FC and FDC were also included but note
that these metrics requires the non-linear transformations used
to generate the template, hence, the corresponded ROIs were
calculated in template space.

1http://nitrc.org/projects/noddi_tolbox

Histological Procedures and Analysis
The histological procedures and ROI analysis were presented in
our previous study (San Martín Molina et al., 2020). In brief, after
ex vivo imaging, the brains were washed in 0.9% NaCl for at least
for 2 h at 4◦C. After this, they were placed in a cryoprotective
solution containing 20% glycerol in 0.02 M potassium phosphate-
buffered saline (pH = 7.4) for 36 h. Then, the brains were blocked,
frozen in dry ice, and preserved at −70◦C until sectioning. The
brains were sectioned in the coronal plane (30 µm, 1-in-5 series)
using a sliding microtome. Sections from the first series were
stored in 10% formalin while the remaining series were stored in
a cryoprotectant tissue-collecting solution (30% ethylene glycol,
25% glycerol in 0.05 M sodium phosphate buffer) at−20◦C until
further processing. The first series of sections was stained with
Nissl (thionin) and the second series with a gold chloride solution
for myelin (Laitinen et al., 2010).

For the quantitative analysis, we selected brain areas that
showed microstructural changes in the group analysis and
were of interest in the TBI pathology (Laitinen et al., 2015;
San Martín Molina et al., 2020; Chary et al., 2021). These
brain areas were the corpus callosum and external capsule
at −1.80 and −3.50 mm from bregma, internal capsule and
ventrobasal complex at−3.50 mm from bregma. All the analyses
were performed on high-resolution photomicrographs of the
sections acquired at a resolution of 0.013 µm2/pixel using
a light microscope (Zeiss Axio Imager 2, White Plains, NY,
United States) equipped with a digital camera (Zeiss Axiocam
color 506). We performed structure tensor (ST) and derived
the anisotropy index (AI; Budde et al., 2011), which correlates
strongly with alternative dispersion measures, from myelin-
stained sections, and cell density (CD) from Nissl-stained
sections using an in-house Matlab code for automated cell
counting analysis (San Martín Molina et al., 2020).

Region-of-Interest Statistical Analyses
All data were analyzed using GraphPad Prism software (version
5.03 for Windows, La Jolla, CA, United States). Differences
between sham-operated and mTBI rats were assessed using
the unpaired two-sample t-test, and differences between
ipsi- and contralateral brain areas within the same brain
using the paired t-test. Pearson’s correlation was used to
correlate dMRI and histological metrics. The Benjamini-
Hochberg false discovery rate (FDR) method was used for
multiple comparison corrections in both tests, and FDR-
threshold q < 0.05 was chosen for statistical significance
(Benjamini and Hochberg, 1995).

RESULTS

Figure 1 shows the outcomes from the group analyses in FA,
AD, FD, FC, FDC, and ODI maps when comparing mTBI
and sham-operated rats. The epicenter of the primary lesion in
mTBI animals was at approximately −3.50 mm from bregma
(asterisk in Figure 1), where we found the most extensive
significant changes between the groups. The secondary damage
expanded into connected areas throughout the brain at 35 days
after the initial injury. These five parameters showed significant
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FIGURE 1 | Whole-brain group differences in FA, AD, FD, FC, FDC, and ODI metrics when comparing sham-operated and mTBI rats after 35 days of the
sham-operation or injury. Areas displaying significant group differences in mTBI versus sham-operated rats (TFCE, p-value < 0.05, FWE-corrected) are overlaid on
the FOD-based template. Significances are displayed as voxels in a light-dark blue scale, representing mTBI group values lower than sham-operated group values,
and in a red-yellow scale, representing mTBI group values higher than sham-operated group values. The asterisk shows the epicenter of the lesion. Au, auditory
cortex; cc, corpus callosum; cg, cingulum; cp, cerebral peduncle; CP, caudate putamen; ec, external capsule; fmj, forceps minor of the corpus callosum; HC,
hippocampus; ic, internal capsule; LG, lateral geniculate nuclei; LS/MS, lateral/medial septal nucleus; MG, medial geniculate nucleus; ml, medial lemniscus; Sub,
subiculum; tg, tegmental nuclei; VB, ventrobasal complex.

decreases (TFCE, p-value < 0.05, FWE-corrected) in mTBI rats
compared to sham-operated ones. From the DTI parameters,
FA significantly decreased in both white and gray matter areas
throughout the brain and AD showed few highlighted voxels in
the midbrain. FD and FDC showed similar pattern of changes
than FA, while the results in FC were restricted to few damaged

areas. ODI significantly increased in the closed areas to the
primary injury, mainly white matter and thalamic areas, which
were also shown in FA, FD, and FDC maps.

Figure 2 shows representative photomicrographs of myelin-
stained sections from a sham-operated and mTBI rat 35 days after
the sham-operation or injury. We observed two microstructural
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FIGURE 2 | FA (A) and FDC (A’) at –1.80 and –3.50 mm from bregma, respectively, from the group analyses. White squares indicate the location of the
photomicrographs shown in (B–H). Representative photomicrographs of myelin-stained sections of a sham-operated and a mTBI rat from the caudate putamen
(B,B’) from –0.90 mm (not shown in A), internal capsule (C,C’) from –1.80 mm, and external capsule (D,D’), auditory cortex (E,E’), corpus callosum (F,F’),
stratum-lacunosum moleculare (G,G’), and ventrobasal complex (H,H’) from –3.50 mm from bregma. White arrowheads point at myelin alterations associated with
axonal damage and asterisks indicate areas with extensive decrease in density of myelinated axons. AI values of these two animals shown in this figure are shown in
Supplementary Table 1. Au, auditory cortex; cc, corpus callosum; CP, caudate putamen; ec, external capsule; ic, internal capsule; l-m, stratum-lacunosum
moleculare; VB, ventrobasal complex. Scale bars: 50 µm (B,B’,D,D’–G,G’), 150 µm (H,H’), and 250 µm (C,C’).

alterations in mTBI animals when compared to sham-operated
rats: axonal alterations shown as dark accumulation of staining
(arrowheads in Figure 2) and decreased axonal density (asterisks
in Figure 2). Axonal alterations are associated to axonal injury
and/or myelin damage, which were consistently found in all areas
exhibiting group differences, in all the animals. We observed
wide-spread axonal alterations rostrally in the brain, such as in
the caudate putamen (arrowheads in Figure 2B’), which appeared
more numerous and closer to the epicenter of the primary
lesion, as in the internal capsule (Figure 2C’), external capsule
(Figure 2D’), cortex (Figure 2E’), and ventrobasal complex
(Figure 2H’). Decrease in axonal density was found in the
internal capsule (Figure 2C’), external capsule (Figure 2D’),
auditory cortex (Figure 2E’), and stratum-lacunosum moleculare
(Figure 2G’). In the corpus callosum, we observed axonal
alterations along the structure ipsi- and contralaterally, and
a decrease in axonal density (Figure 2F’); however, not so
prominent as in other areas. We also observed the thinning of
fiber bundles in the internal capsule at the level of the caudate
putamen (arrow in Figure 2C’).

Figure 3 shows representative photomicrographs of Nissl-
stained sections from a sham-operated and mTBI rat 35 days after
the sham-operation or injury. We found a wide-spread increase
in cell density, associated to gliosis, rostrally in the brain as in
the caudate putamen (Figure 3B’). Gliosis was more evident

closer to the epicenter of the primary lesion, as in the internal
capsule (Figure 3C’), external capsule (Figure 3D’), cortex
(Figure 3E’), corpus callosum (Figure 3F’), and ventrobasal
complex (Figure 3H’). We observed a decrease in cell density in
the stratum-lacunosum moleculare (Figure 3G’) along with the
loss of fiber bundles in the layer (asterisk in Figure 2G’).

We performed an ROI analysis of specific brain regions
on MRI maps at the perilesional and epicenter sites; −1.80
and −3.50 mm from bregma, respectively (Figures 4–6). We
found significant decrease in FA ipsilaterally in mTBI rats when
comparing within mTBI animals and/or between sham-operated
and mTBI rats at −3.50 mm from bregma (Figure 4A). AD
decreased ipsilaterally in the mTBI rats in the corpus callosum
and internal capsule at the epicenter (Figure 4B). On the
contrary, RD (Figure 4C) and MD (Figure 4D) increased at
−1.80 mm in the corpus callosum and/or at −3.50 mm in
the internal capsule. It is worth noting that sham-operated rats
ipsilaterally showed significant differences as compared to the
contralateral side in the ROI analysis, such as FA and AD in the
external capsule (Figures 4A,B), MD in the corpus callosum and
external capsule at−1.80 mm, or internal capsule (Figure 4D).

We did not find significant differences in dispersion values
in any of the brain areas (Figure 5A). Peak FOD amplitudes
showed a significant decrease ipsi- and/or contralaterally, when
comparing sham-operated and mTBI rats or hemispheres within

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 746214

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-746214 November 23, 2021 Time: 12:7 # 7

Chary et al. Microstructural Changes of Mild TBI

FIGURE 3 | FA (A) and FDC (A’) at –1.80 and –3.50 mm from bregma, respectively, from the group analyses. White squares indicate the location of the
photomicrographs shown in (B–H). Representative photomicrographs of Nissl-stained sections of a sham-operated and a mTBI rat from the caudate putamen
(B,B’) from –0.90 mm (not shown in A), internal capsule (C,C’) from –1.80 mm, and external capsule (D,D’), auditory cortex (E,E’), corpus callosum (F,F’),
stratum-lacunosum moleculare (G,G’), and ventrobasal complex (H,H’) from –3.50 mm from bregma. White arrowheads point at gliosis alterations associated with
axonal damage and asterisk indicates less cell density. CD values of these two animals shown in this figure are shown in Supplementary Table 1. Au, auditory
cortex; cc, corpus callosum; CP, caudate putamen; ec, external capsule; ic, internal capsule; l-m, stratum-lacunosum moleculare; VB, ventrobasal complex. Scale
bars: 50 µm (B,B’,D,D’–G,G’), 150 µm (H,H’), and 250 µm (C,C’).

mTBI rats (Figure 5B). FD, FC, and FDC showed decreased
values ipsilaterally in almost all the brain areas in mTBI rats;
specially in those at the level of the epicenter of the primary lesion
at −3.50 mm (Figures 5C–E). Also, a decrease was obtained
ipsilaterally in the sham-operated animals, such as in FD and
FDC in the external capsule (Figures 5C,E) or in FC in the
internal capsule (Figure 5D).

We found significant increases in ODI values in the corpus
callosum, external capsule and internal capsule at −3.50 mm
(Figure 6A). FWF showed a significant increase in the internal
capsule, when comparing when comparing ipsi- and contralateral
hemispheres in mTBI rats, and also in the sham-operated rats in
the corpus callosum, external and internal capsule (Figure 6B).
NDI showed an increase in the corpus callosum at −3.50 mm,
and a decrease in the internal capsule when comparing ipsi- and
contralateral hemispheres in mTBI rats (Figure 6C).

Histological analysis showed that anisotropy index
significantly decreased in the external and internal capsule
at −3.50 mm (Figure 7A), where we found increased
cellularity (Figure 7B).

Table 1 shows the correlation results when comparing MRI
and histology metrics from the ROI analyses. In the corpus
callosum at −3.50 mm, AI showed a negative correlation with
RD (R = −0.544; q = 0.014) (Supplementary Figure 1A).
In the external capsule, we found that cellularity correlated
positively with RD (R = 0.474; q = 0.044) at −1.80 mm from

bregma (Supplementary Figure 1B). At −3.50 mm, the external
capsule showed the most robust correlations. AI positively
correlated with FA (R = 0.737; q = 9.623 × 10−5), peak FOD
amplitude (R = 0.781; q = 1.558 × 10−5), FD (R = 0.473;
q = 0.044), and FDC (R = 0.492; q = 0.034), and negatively
with ODI (R = −0.753; q = 4.780 × 10−5) (Supplementary
Figures 1C,E,G,I,K). Also, cell density correlated negatively
with FA (R = −0.712; q = 2.235 × 10−4), peak FOD
amplitude (R = −0.695; q = 3.656 × 10−4), FD (R = −0.491;
q = 0.034) and FDC (R = −0.505; q = 0.027), and positively
with ODI (R = 0.709; q = 2.100 × 10−4) (Supplementary
Figures 1D,F,H,J,L). The internal capsule showed correlations
between CD and FD (R = −0.571; q = 0.008), and FDC
(R = −0.580; q = 0.007) (Supplementary Figures 1M,N). The
ventrobasal complex showed a negative correlation between CD
and FC (R =−0.467; q = 0.048) (Supplementary Figure 1O).

DISCUSSION

In this study, we used DTI, FBA, and NODDI to investigate
microstructural changes in the mildly injured brain ex vivo.
Whole-brain analyses revealed significant differences throughout
the rat brain when comparing sham-operated and mTBI brains.
FA, FD, and FDC showed a similar pattern of microstructural
changes in the brain in the voxel-based analysis; however,
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FIGURE 4 | Diffusion tensor imaging (DTI) metrics, fractional anisotropy (A), and axial (B), radial (C), and mean (D) diffusivities, were analyzed in the corpus callosum
and external capsule at –1.80 and –3.50 mm, and the internal capsule and ventrobasal complex at –3.50 mm from bregma. Sham-operated animals are indicated in
blue and mTBI in red, while ipsi- and contralateral hemispheres are represented by circles and triangles, respectively. Results are shown as mean and standard
deviation, and paired (*) t-test comparing ipsi- and contralateral sides within animals (*q < 0.05) or unpaired (+) t-test comparing the same hemisphere between
sham-operated and mTBI rats (+q < 0.05), both FDR-corrected. AD, axial diffusivity; cc, corpus callosum; ec, external capsule; FA, fractional anisotropy; MD, mean
diffusivity; RD, radial diffusivity; ic, internal capsule; VB, ventrobasal complex.

FBA metrics showed more significant fixels in white matter,
FA also detected changes in gray matter, while ODI mainly
detected areas closest to the primary lesion. Myelin- and Nissl-
stained sections of the same brains revealed axonal alterations
and increased cellularity in white and gray matter areas.
Quantitative histological analyses of selected brain areas revealed
that alterations in myelinated axons and increased cellularity
correlated to changes in MRI metrics after mTBI.

Our study demonstrates that DTI provides a good sensitivity
to detect microstructural-associated changes associated to mTBI
in both white and gray matter (Bennett et al., 2012; Hylin et al.,
2013; Stemper et al., 2015; Herrera et al., 2017; Hutchinson
et al., 2018). Previous studies demonstrated the presence of
axonal damage and increased cellularity due to gliosis using
histology analysis (Mac Donald et al., 2007a,b; Hylin et al., 2013;
San Martín Molina et al., 2020). More specifically, decreased
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FIGURE 5 | Fixel-based metrics, dispersion (A), peak FOD amplitudes (B), FD (C), FC (D), and FDC (E), were analyzed in the corpus callosum and external capsule
at –1.80 and –3.50 mm, and the internal capsule and ventrobasal complex at –3.50 mm from bregma. Sham-operated animals are indicated in blue and mTBI in
red, while ipsi- and contralateral hemispheres are represented by circles and triangles, respectively. Results are shown as mean and standard deviation, and paired
(*) t-test comparing ipsi- and contralateral sides within animals (*q < 0.05, **q < 0.01) or unpaired (+) t-test comparing the same hemisphere between
sham-operated and mTBI rats (+q < 0.05, ++q < 0.01, +++q < 0.001), both FDR-corrected. cc, corpus callosum; ec, external capsule; FC, fiber bundle
cross-section; FD, fiber density; FDC, fiber density and fiber bundle cross-section; ic, internal capsule; VB, ventrobasal complex.
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FIGURE 6 | NODDI metrics, ODI (A), FWF (B), and NDI (C), were analyzed in the corpus callosum and external capsule at –1.80 and –3.50 mm, and the internal
capsule and ventrobasal complex at –3.50 mm from bregma. Sham-operated animals are indicated in blue and mTBI in red, while ipsi- and contralateral
hemispheres are represented by circles and triangles, respectively. Results are shown as mean and standard deviation, and paired (*) t-test comparing ipsi- and
contralateral sides within animals (*q < 0.05) or unpaired (+) t-test comparing the same hemisphere between sham-operated and mTBI rats (+q < 0.05), both
FDR-corrected. cc, corpus callosum;ec, external capsule; ic, internal capsule; FWF, free water fraction; NDI, neurite density index; ODI, orientation dispersion index;
VB, ventrobasal complex.

FA and AD due to axonal damage, and increased RD have
been associated to gliosis. In our study, the positive association
observed between FA, AD and AI in the corpus callosum and
external capsule were indicative of axonal damage and/or axonal
loss, while the negative association observed between FA and
CD in the external capsule was associated to axonal damage
in conjunction with a marked increase in cellularity. This was
further indicated by the inverse relationship between RD and
AI, and the positive association between RD and CD in both
the corpus callosum and external capsule. With regards to CSD-
derived metrics, the positive association observed in the external
capsule between peak FOD amplitudes, FD and FD, and AI,
and their negative relationship with CD, could be attributed a
reduction in intact healthy fiber bundles and gliosis in those
areas. Interestingly, the positive relationship observed between
dispersion and AI in the ventrobasal complex was contrary to
that observed in the white matter. As the ventrobasal complex
is a region comprising of multiple fiber bundle populations; we
hypothesize that the situation could result either from a reduction

in densities of the primary fiber bundle or an increase in the
densities of the secondary fibers (Riffert et al., 2014; Grazioplene
et al., 2018). The NODDI analysis provided information of the
microstructural compartment contributions, which has shown
promising results in clinical research (Kamiya et al., 2020). Our
voxel-based analysis only showed statistical differences in ODI
in areas showing decreased FA, as suggested in previous studies
(Jespersen et al., 2012; Zhang et al., 2012). Based on histology,
we expected to also obtain differences in both NDI and FWF;
however, it has been described that the reproducibility of NODDI
in rat brain at 9.4 T was lower for FWF than ODI and NDI,
which might require a considerably larger number of animals to
observe biological changes in those parameters after mild TBI
(McCunn et al., 2021).

Previous studies in animal models have shown the potential
of DTI to detect the effect of mild injury in the brain. Wright
et al. (2017) showed that FBA detected more voxels in the
rat brain after severe injury than DTI in vivo. These authors
found reduced FD predominantly in the ipsilateral corticospinal
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FIGURE 7 | Histology metrics, anisotropy index (A) and cellular density (B), were analyzed in the corpus callosum and external capsule at –1.80 and –3.50 mm, and
the internal capsule and ventrobasal complex at –3.50 mm from bregma. Sham-operated animals are indicated in blue and mTBI in red, while ipsi- and contralateral
hemispheres are represented by circles and triangles, respectively. Results are shown as mean and standard deviation, and paired (*) t-test comparing ipsi- and
contralateral sides within animals (*q < 0.05, **q < 0.01) or unpaired (+) t-test comparing the same hemisphere between sham-operated and mTBI rats (+q < 0.05),
both FDR-corrected. AI, anisotropy index; cc, corpus callosum; CD, cellular density; ec, external capsule; ic, internal capsule; VB, ventrobasal complex.

tract, external capsule, fimbria, and corpus callosum, which
also extended along the corpus callosum from the ipsilateral to
contralateral hemisphere after severe TBI in rats. Additionally,
these authors performed track-weighted imaging measurements
revealing significantly fewer streamlines, shorter and straighter
trajectories in the ipsilateral corpus callosum, fimbria, and
internal capsule in TBI rats as compared to sham-operated
ones. In accordance with our study, fixel-based metrics showed
more significant voxels in the white matter as compared to FA.
However, FA showed more significant voxels in the gray matter
as compared to fixel-based metrics. Our results indicate that fixel-
and DTI-based analyses may offer complementary information of
tissue changes after mTBI as already shown in a previous study on
adolescents with moderate-to-severe TBI (Verhelst et al., 2019).
Our study also showed that ODI mainly detected changes in areas
closed to the primary lesion. NODDI has demonstrated to be
sensitive to early acute microstructural changes following a single
closed head controlled cortical impact in rats, not detectable by
DTI (McCunn et al., 2021). Another study using a closed-skull
impact in mice showed greater sensitivity using NODDI than
DTI to microstructural changes in white matter associated to
astrocyte and microglia (Gazdzinski et al., 2020). Human studies
suggested that the combination of DTI and NODDI significantly
enhances our understanding of white matter microstructural
alterations in subacute and chronic TBI (Muller et al., 2021; Oehr
et al., 2021). In summary, our study suggests that the combination
of dMRI parameters may provide more complete information of
changes in tissue microstructure after brain injury, and therefore,

an evaluation including different approaches could provide better
understanding of the tissue damage after brain injury.

Different sensitivity of DTI- and fixel-based analyses could
potentially result from poor fixel correspondence in complex
brain areas, such as crossing fibers or gray matter, thereby
resulting in large intra-group variances. Conventional DTI
studies are typically based on lower diffusion weightings resulting
in decreased angular contrast (Soares et al., 2013). The FBA
framework, which is conditionally valid in the high b-value
regime (≥3,000 s/mm2) (Raffelt et al., 2012; Genc et al.,
2020), provides an improved resolution of crossing fiber bundle
populations (Tournier et al., 2013). As, the diffusion-weighted
signal originating from a restricted compartment is nearly
fully preserved (Hall and Alexander, 2006; Yeh et al., 2010),
and high b-values attenuate the signal from the extracellular
water, the diffusion-weighted signal which is assumed to be
restricted in the radial direction (Stanisz et al., 1997; Assaf
and Basser, 2005; Alexander, 2008; Assaf et al., 2008; Barazany
et al., 2009; Alexander et al., 2010) corresponds to the intra-
axonal water-content (Raffelt et al., 2012). Moreover, as the
FOD amplitude is relatively equal to the total radial diffusion-
weighted signal, it provides an approximate measure of the
intra-axonal volume of the corresponding fiber bundle (Raffelt
et al., 2012). Therefore, the estimated FD metric is largely derived
from the anisotropic WM component of the diffusion MRI signal
and, is thereby highly specific to changes in axonal density
(Tournier et al., 2004, 2007; Raffelt et al., 2012). Moreover, we
also demonstrated the use of CSD-derived metrics for providing
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a better understanding of the tissue-specific sources underlying
the microstructural alterations post mTBI. Our findings were
consistent with previous literature, as changes in conventional
DTI-based metrics can be influenced by several pathological
events, not just decreased density, such as axonal injury, gliosis,
edema, or increased membrane permeability (Mac Donald et al.,
2007a; Budde et al., 2011; Bennett et al., 2012; Salo et al.,
2017). Future studies may benefit by the incorporation of signal
fractions representative of tissue-specific microstructure (Khan
et al., 2020; Mito et al., 2020). It is worth mentioning that
advanced methodologies come at the cost of more complex data
processing; however, these methods can provide more specific
information on tissue microstructure and pathological alterations
in the context of brain diseases, disorders, and injuries, and
specially with a more comprehensive histological validation.

We used higher b-value than typically used in vivo, as it has
been shown that diffusivity values ex vivo are decreased 2-3-
fold as compared to in vivo due to changes in (1) temperature
and (2) tissue microstructural properties following chemical
fixation (Sun et al., 2003; Rane and Duong, 2011; Wu et al.,
2013; Wang et al., 2018). As opposed to in vivo conditions,
wherein the extra-axonal water signal attenuates with increasing

b-value, the presence of immobile water confined in bodies of
glial cells and other minute compartments such as vesicles, has
been postulated in the extra-axonal space ex vivo (Stanisz et al.,
1997; Veraart et al., 2019). Therefore, despite studies using high
b-values enable a more direct comparison with in vivo results,
further in vivo studies of mTBI using advanced dMRI are needed
to provide more insights into the potential of these imaging
methods (Wright et al., 2017; San Martín Molina et al., 2020;
Pham et al., 2021).

While we have used CFE to correct for multiple comparisons,
CFE applies on each measure separately that may give rise to false
positives over the nominal alpha-threshold due to testing several
parameters per a fixel or a voxel (Smith et al., 2021). However,
given the complexity of CFE correction, it is challenging to decide
what is the best approach to strike balance between Type I and
Type II errors in the analysis. As a mitigation approach in this
work, we used histology to verify the findings of DTI, FBA, and
NODDI analyses. We also note that the statistically significant
differences in the maps were in locations where we would
expect to see differences based on previous experiments on how
the tissue damage expands from the cortical primary lesion to
connected areas as secondary damage. We used FWE correction

TABLE 1 | Coefficient (R) and q-values (q) from the Pearson’s correlations between dMRI and histological metrics.

cc (−1.80 mm) cc (−3.50 mm) ec (−1.80 mm) ec (−3.50 mm) ic (−3.50 mm) VB (−3.50 mm)

AI CD AI CD AI CD AI CD AI CD AI CD

FA R 0.086 −0.061 0.429 −0.016 0.237 −0.333 0.737 −0.712 0.013 −0.344 0.045 −0.333

q 0.809 0.877 0.075 0.961 0.401 0.187 9.623 × 10−5*** 2.235 × 10−4*** 0.962 0.172 0.915 0.187

AD R 0.156 0.166 0.018 −0.165 0.026 0.051 0.436 −0.357 −0.033 −0.098 0.350 −0.348

q 0.643 0.616 0.961 0.621 0.951 0.898 0.070 0.154 0.926 0.775 0.164 0.166

RD R −0.017 0.150 −0.544 −0.040 −0.228 0.474 −0.410 0.434 −0.076 0.347 0.188 0.119

q 0.961 0.660 0.014* 0.924 0.426 0.044* 0.093 0.071 0.835 0.168 0.554 0.738

MD R 0.199 0.258 −0.251 −0.167 −0.121 0.282 −0.040 0.086 −0.099 0.057 0.360 −0.057

q 0.523 0.350 0.367 0.616 0.735 0.287 0.924 0.809 0.775 0.882 0.149 0.882

Disp R 0.039 0.153 −0.248 −0.058 −0.082 −0.172 −0.175 0.049 −0.055 −0.115 0.459 −0.026

q 0.926 0.651 0.373 0.882 0.818 0.603 0.591 0.903 0.887 0.744 0.053 0.951

Peak R 0.151 0.079 0.329 0.036 0.231 −0.181 0.781 −0.695 0.072 −0.189 0.193 −0.383

q 0.657 0.829 0.193 0.926 0.417 0.573 1.558 × 10−5*** 3.656 × 10−4*** 0.846 0.551 0.540 0.123

FD R 0.084 −0.089 0.105 −0.122 0.257 −0.423 0.473 −0.491 0.443 −0.571 0.038 −0.302

q 0.813 0.805 0.768 0.734 0.354 0.081 0.044* 0.034* 0.066 0.008** 0.926 0.248

FC R 0.102 −0.277 −0.125 −0.461 0.149 −0.147 0.324 −0.261 0.125 −0.416 0.103 −0.467

q 0.770 0.299 0.725 0.051 0.660 0.660 0.201 0.342 0.725 0.087 0.769 0.048*

FDC R 0.093 −0.103 0.177 −0.139 0.266 −0.413 0.492 −0.505 0.419 −0.580 0.018 −0.374

q 0.792 0.769 0.588 0.687 0.330 0.090 0.034* 0.027* 0.084 0.007** 0.961 0.133

ODI R −0.167 −0.001 −0.089 0.190 −3.290 × 10−4
−0.042 −0.753 0.709 0.028 0.200 −0.150 0.434

q 0.598 0.997 0.791 0.537 0.999 0.912 4.780 × 10−5*** 2.100 × 10−4*** 0.947 0.515 0.633 0.071

FWF R 0.355 0.416 0.161 0.190 0.103 0.026 −0.321 0.371 −0.202 0.209 0.313 0.148

q 0.160 0.088 0.611 0.537 0.761 0.948 0.215 0.138 0.511 0.490 0.230 0.635

NDI R 0.002 −0.078 0.435 0.301 0.218 −0.421 −0.230 0.292 0.030 −0.308 −0.164 0.095

q 0.995 0.818 0.071 0.255 0.462 0.083 0.425 0.272 0.941 0.243 0.603 0.775

Numbers in bold indicate the correlations significantly different from zero: *q < 0.05; **q < 0.01; ***q < 0.001. AD, axial diffusivity; AI, anisotropy index; cc, corpus
callosum; CD, cellular density; Disp, dispersion; ec, external capsule; FA, fractional anisotropy; FC, fiber bundle cross-section; FD, fiber density; FDC, fiber density and
fiber bundle cross-section; FWF, free water fraction; ic, internal capsule; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion index; RD, radial
diffusivity; VB, ventrobasal complex.
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when performing (potentially highly correlated) voxel- and fixel-
based analyses as there exist a potentially large number of false
positives that arise with data-informed clustering, such as TFCE.
However, in the ROI-based analysis, where the ROIs were defined
based on the brain anatomy, we used FDR that is more liberal
than FWE. Our reason for using FDR with ROIs is that it controls
the number of false positives effectively, while simultaneously
having a considerably lower number of false negatives than FWE.
This balancing act, in turn, may lead to better reproducibility than
strict control for false positives as argued by Geerligs and Maris
(2021).

Our study included animals in the subacute stage, 35 days
after the injury, which were subset of our previous in vivo study
(San Martín Molina et al., 2020). This subgroup of animals
showed, at day 3, hyperintensity associated to edema in the
somatosensory cortex on in vivo T2-weighted images in four
out of eight mTBI rats and hypointensity related to parenchymal
bleeding in one of these four rats. After 28 days, three out
of eight rats showed persistent but less pronounced cortical
edema as compared to the acute time point, even two out of
those three rats still showed signs of bleeding. The complex
cortical patterns at the level of the primary injury associated
to the secondary injury, and more importantly, to pathological
outcomes warrant future studies. Despite of cortical damage
in T2-weighted MRI, all the animals presented a consistent
pattern of secondary tissue damage throughout the brain based
on histology. Although the dura of the sham-operated and
mTBI animals remained intact and no brain tissue damage
was inflicted during the craniotomy, differences between ipsi-
and contralateral hemispheres in sham-operated animals were
reported. Histologically, the sham-operated rats did not present
any tissue damage or cellular alteration. However, the sham-
operation involving craniotomy might cause effects, e.g., swelling,
that could affect the measurements at acute and/or subacute
stages. Future studies should consider including a group of naïve
rats to discern between minor sham-operation alterations and
tissue damage associated to the injury.

Human histopathological studies are very scarce, and the
low mortality after mTBI does not allow histopathological
examination to correlate with MRI experiments in mTBI
patients. Preclinical experiments including histology provide
an opportunity to understand the mTBI pathogenesis (Bennett
et al., 2012; Hylin et al., 2013; Stemper et al., 2015; Haber
et al., 2017; Yu et al., 2017; San Martín Molina et al.,
2020; Sinke et al., 2021). In our study, there were axonal
alterations observed in all the areas highlighted in dMRI analyses,
which were consistent across all the mTBI animals. These
findings demonstrate that significant differences between sham-
operated and mTBI rats in dMRI analyses reflected ongoing
microstructural alterations after injury.

CONCLUSION

This study reveals the potential of the dMRI framework to detect
microstructural alterations when comparing sham-operated and
rats post mTBI. The combination of dMRI-based analyses
could provide a more complete insight into the detection

of microstructural alterations in white and gray matter after
mild injuries. Advanced methodologies in combination with
histopathological characterization of the same subjects can open
new avenues into the improvement of our understanding of
dMRI, which can directly enhance the diagnosis and prognosis
of the mildly injured brain.
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