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Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a progressive
autosomal dominantly inherited cerebellar ataxia characterized by the aggregation of
polyglutamine-expanded protein within neuronal nuclei in the brain, which can lead to
brain damage that precedes the onset of clinical manifestations. Magnetic resonance
imaging (MRI) techniques such as morphometric MRI, diffusion tensor imaging (DTI),
functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy
(MRS) have gained increasing attention as non-invasive and quantitative methods for
the assessment of structural and functional alterations in clinical SCA3/MJD patients
as well as preclinical carriers. Morphometric MRI has demonstrated typical patterns
of atrophy or volume loss in the cerebellum and brainstem with extensive lesions in
some supratentorial areas. DTI has detected widespread microstructural alterations
in brain white matter, which indicate disrupted brain anatomical connectivity. Task-
related fMRI has presented unusual brain activation patterns within the cerebellum
and some extracerebellar tissue, reflecting the decreased functional connectivity of
these brain regions in SCA3/MJD subjects. MRS has revealed abnormal neurochemical
profiles, such as the levels or ratios of N-acetyl aspartate, choline, and creatine, in both
clinical cases and preclinical cases before the alterations in brain anatomical structure.
Moreover, a number of studies have reported correlations of MR imaging alterations
with clinical and genetic features. The utility of these MR imaging techniques can
help to identify preclinical SCA3/MJD carriers, monitor disease progression, evaluate
response to therapeutic interventions, and illustrate the pathophysiological mechanisms
underlying the occurrence, development, and prognosis of SCA3/MJD.

Keywords: SCA3/MJD, MR imaging, morphometric MRI, diffusion tensor imaging, blood oxygen level-dependent
functional MRI, magnetic resonance spectroscopy

INTRODUCTION

Spinocerebellar ataxias (SCAs) are a group of autosomal dominantly inherited progressive
neurodegenerative disorders with obvious clinical and genetic heterogeneity (Klockgether et al.,
2019). To date, more than 40 genetically distinct SCA subtypes have been identified (Klockgether
et al., 2019). Spinocerebellar ataxia type 3, also known as Machado–Joseph disease (SCA3/MJD), is
the most common type of autosomal dominantly inherited cerebellar ataxia (Tang et al., 2000; Jiang
et al., 2005; Costa Mdo and Paulson, 2012; Chen et al., 2018b). The characterized manifestations
include not only progressive cerebellar ataxia but also pyramidal and extrapyramidal signs,
such as dysarthria, dysphagia, dystonia, peripheral neuropathy, and oculomotor abnormalities
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(Schöls et al., 2004; Costa Mdo and Paulson, 2012). SCA3/MJD
is caused by unstable cytosine–adenine–guanine (CAG) repeats
located in the 10th exon of the ATXN3 gene (Kawaguchi et al.,
1994; Schöls et al., 2004; Chen et al., 2018a). The number
of repeats in the mutant ATXN3 allele ranges from 52 to
91 in SCA3/MJD patients, which results in the expansion of
a polyglutamine tract within the ATXN3 protein (Todd and
Paulson, 2010; Souza et al., 2016). The accumulation and the
aggregation of expanded polyglutamine stretches within the
nuclei of neurons in susceptible brain regions might induce direct
or indirect neurotoxic effects that eventually lead to neuron
loss and brain atrophy (Yamada et al., 2001; Costa Mdo and
Paulson, 2012). These abnormalities in neuronal nuclei involve
both cortical and subcortical regions, including the cerebral
cortex, basal ganglia, thalamus, cerebellum, and brain stem, as
observed in previous neuropathological and histopathological
studies (Durr et al., 1996; Yamada et al., 2001; Schöls et al., 2004).
These brain lesions may be responsible for the motor and the
mental dysfunctions identified in SCA3/MJD patients in previous
clinical and neuroradiological studies (Klockgether et al., 2019;
Figure 1). The earliest pathophysiological changes precede the
appearance of ataxia symptoms in preclinical SCA carriers (Maas
et al., 2015), and detailed knowledge of the preclinical stage is
of great significance for a more comprehensive understanding
of the pathogenesis of SCAs. Two primary scales currently used
to quantify the motor defects of ataxia in natural history studies
of SCAs are the Scale for the Assessment and Rating of Ataxia
(SARA) (Schmitz-Hubsch et al., 2006) and the International
Cooperative Ataxia Rating Scale (ICARS) (Trouillas et al., 1997),
both of which are semi-quantitative and have been extensively
validated as useful tools for ataxia severity assessment (D’Abreu
et al., 2007); the higher the total score, the worse is the patient’s
ataxic syndrome. In addition, the total score has been shown to
be correlated with measures of the quality of life in patients with
SCAs (Saute et al., 2012). However, these scales lack sensitivity
in the early stages of SCA, including in the preclinical stages
when disease-modifying therapies and neuroprotective agents
are likely to be most effective (Rubinsztein and Orr, 2016),
and usually have poor test–retest reliability (Mueller et al.,
2006). Consequently, non-invasive and objective biomarkers
should supplement clinical scales to directly identify subtle brain
abnormalities in individuals before the onset of ataxia and assess
the treatment effects of therapeutic interventions. Neuroimaging
techniques have shown promising results in the investigation
of brain damage with high accuracy and reproducibility. Since
SCAs have extremely low prevalence rates (Schulz et al.,
2010) and histopathological data are scarcely available for most
degenerative ataxias, magnetic resonance (MR)-based structural
and functional imaging techniques have gained growing attention
in the exploration of pathogenic mechanisms and potential
biomarkers that can indicate disease progression even in the
preclinical stage of neurodegenerative diseases such as SCA
(Dohlinger et al., 2008; D’Abreu et al., 2010; Baldarcara et al.,
2015; Mascalchi and Vella, 2018). Structural or functional
abnormalities of the brain tissue can be observed by different
MR imaging techniques, including morphometric magnetic
resonance imaging (MRI), diffusion tensor imaging (DTI),

blood oxygen level-dependent functional MRI (BOLD fMRI),
and magnetic resonance spectroscopy (MRS). The utility of
these techniques constitutes a potential source of neuroimaging
biomarkers, which can be used to identify potential pathogenesis
underlying both manifested and preclinical SCA patients, assess
disease severity and progression, monitor therapeutic effects, and
determine nuances that can be used as endpoints for future
clinical trials. Given this scenario, the purpose of this review
was to summarize the main MR imaging properties and their
correlation with clinical features in manifested and preclinical
SCA3/MJD patients, which could help to assess the value of
MR imaging indicators as diagnostic, disease progression, and
surrogate biomarkers for SCA3/MJD.

MORPHOMETRIC MRI

Morphometric MRI has become a standard method to monitor
brain morphological alterations in neurodegenerative diseases. In
patients with SCAs, the main focus has been the visualization and
the quantification of brain volume changes that particularly affect
the cerebellum and the brainstem. Patterns of atrophy in different
SCA genotypes are specific but sometimes overlapping. Voxel-
based morphometry (VBM) allows a quantitative assessment and
automatic unbiased measurement of brain tissue density and
volume with high accuracy and repeatability.

Widespread Alterations in Brain
Morphology in SCA3/MJD Patients
Previous conventional MRI study using manual segmentation
method has revealed widespread lesions in the brain structure
of SCA3/MJD patients, including those in the cerebellum, brain
stem, cerebral cortex, and basal ganglia (Klockgether et al.,
1998). Morphometric MRI studies using VBM analysis allow
a quantitative and automatic assessment of brain atrophy in
the cerebellum, brainstem, basal ganglia, thalamus, and distinct
cortical areas, as shown in Figure 2 and summarized in Table 1.
Widespread reductions in cortical gray matter density validated
the atrophy of the whole brain (D’Abreu et al., 2012). To quantify
the shape complexity of cortical folding, three-dimensional
fractal dimension method was applied in the assessment of
cortical degeneration, and reduced cerebral complexity more
extensive than traditional olivopontocerebellar regions and the
corticocerebellar system was detected (Wang T. Y. et al., 2015;
Wang et al., 2020; Huang et al., 2017). Besides that, the involved
cortex widely overlaps with cerebellum-related cortex and basal
ganglia-related cortex (Wang et al., 2020). Using volumetric
measurements, SCA3/MJD patients showed extensive atrophy
of the cerebral cortex, thalamus, and basal ganglia, as well
as the cerebellum and the brainstem (Rezende et al., 2018).
The cerebellum and the brainstem, compared with the other
abovementioned regions, appear to be more severely affected
in SCA3/MJD patients (Lukas et al., 2006; Schulz et al., 2010;
Eichler et al., 2011; Kang et al., 2014; Hernandez-Castillo et al.,
2017; Rezende et al., 2018; Peng et al., 2019). Susceptibility-
weighted imaging revealed atrophy of the cerebellar nuclei in
SCA3/MJD patients (Stefanescu et al., 2015), and a hyperintense
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FIGURE 1 | The pathological mechanisms underlying atrophy and its correlations with clinical manifestations.

signal of the transverse pontine fibers was observed by T2-
weighted and/or proton-weighted axial MRI in 14 out of 31 SCA3
patients (Murata et al., 1998) as well as in one other postmortem-
confirmed case (Imon et al., 1998), which are all consistent
with an olivopontocerebellar atrophy pattern as demonstrated in
neuropathologic studies (Durr et al., 1996; Schöls et al., 2004).

Volume reductions in the basal ganglia area of SCA3/MJD
patients have also been reported (Klockgether et al., 1998; Murata
et al., 1998; de Rezende et al., 2015; Rezende et al., 2018). Pallidal
atrophy was found in two patients whose disease durations were
over 10 years (Tokumaru et al., 2003), and significant decreases
in gray matter volume were observed in the putamen and the
pallidum (Lopes et al., 2013; Reetz et al., 2013). Some studies
have failed to observe atrophy of the basal ganglia, which might
be attributable to the relatively short disease duration of the
recruited patients (Peng et al., 2019).

In order to find out whether cerebral cortex is affected
in SCA3/MJD patients and to find the clinical and
neuropathological connections with these regions, de Rezende
et al. (2015) collected MRI data of 3D-T1 MR images of 49
patients with SCA3/MJD. The cortical thickness and the volume
of subcortical nuclei were calculated by FreeSurfer, widespread
cortical and subcortical atrophy was found (de Rezende et al.,
2015). VBM studies also confirmed the extensive reduction in
the volume of gray matter in the brain cerebral cortex, including
the frontal, parietal, temporal, and occipital lobes (Goel et al.,
2011; D’Abreu et al., 2012; Duarte et al., 2016). In addition,
significant loss of both gray and white matter in the thalamus
has been reported by VBM (Kang et al., 2014; Duarte et al.,
2016), which is consistent with the decreased thalamic volumes
in SCA3/MJD patients when compared to controls using both

automated measurements and manual segmentation methods
(D’Abreu et al., 2011).

A longitudinal study with a large number of subjects showed
that the gray matter density of multiple brain regions other
than the cerebellum was also a strong determinant of the
final ICARS score (D’Abreu et al., 2012), which was a strong
supporting information for the widespread brain pathology
in SCA3/MJD. A correlation of the atrophy profiles in the
cerebellum and the brain stem with the SARA/ICARS total
scores and disease duration of SCA3/MJD patients has been
found (Liang et al., 2009; Hernandez-Castillo et al., 2017; Peng
et al., 2019), suggesting that these regions account for the main
clinical features found in SCA3/MJD patients. In addition, a
previous study using multimodal MR imaging-based analyses
in a large cohort of patients and presymptomatic subjects
showed that volume measurements were more sensitive than
SARA (Reetz et al., 2013), which provides a strong empirical
basis for using these objective neuroimaging biomarkers to
supplement ataxia assessment scales in the evaluation of clinical
outcomes. Some neuroimaging studies have demonstrated an
inverse correlation between the CAG repeats length and the
volume of brainstem, cerebellum, and basal ganglia (Yoshizawa
et al., 2003; Schulz et al., 2010; Camargos et al., 2011; Peng et al.,
2019), whereas some failed to reveal a significant association
between the CAG repeat expansion and the volume changes in
the specific brain region (Burk et al., 1996; Klockgether et al.,
1998; Eichler et al., 2011; Goel et al., 2011; Guimarães et al., 2013;
Stefanescu et al., 2015; Huang et al., 2017). Apart from these
neuroimaging reports, a pathoanatomic study also disclosed no
correlation between the degeneration of the cerebellar Purkinje
cell layer or the deep cerebellar nuclei with the CAG repeat
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FIGURE 2 | Areas of decreased gray matter density (hot colors) and white matter density (cold colors) when comparing MJD/SCA3 and controls (P < 0.001).
Reprinted with permission from Wiley (D’Abreu et al., 2012).

length (Scherzed et al., 2012). Considering that several studies
have demonstrated the inverse correlation between CAG repeat
length and age of onset as well as disease severity, the rapid
cerebellar degeneration in SCA3 patients with earlier disease
onset may not be caused by the longer CAG repeat length alone
(Huang et al., 2017).

Brain Morphology Abnormalities
Progress From Infratentorial to
Supratentorial Areas
Brain morphology abnormalities are initially observed in the
infratentorial areas early in the disease course. Studies in
preclinical SCA3 patients have detected volumetric reductions in
the brainstem, substantia nigra, and spinal cord (Rezende et al.,
2018). Jacobi et al. (2013) also recorded a mild loss of brainstem
volume in a cohort of nine preclinical European SCA3/MJD
carriers, although the result was non-significant after a statistical
analysis, which was in line with the results of a recent MRS
study that demonstrated reduced N-acetyl aspartate (NAA)/myo-
inositol (mI) ratios in the pons of preclinical SCA3/MJD carriers
(Joers et al., 2018). These observations indicated that brain

structural and functional damage begins in the early stages
and precedes the onset of clinical manifestations of SCA3/MJD,
which is commonly observed in neurodegenerative disorders,
such as Huntington’s disease, Alzheimer’s disease, and familial
amyotrophic lateral sclerosis (Ramani et al., 2006; Faria et al.,
2016; Lee et al., 2017).

Later in the disease course, structural damage diffusely
proceeds to the supratentorial areas. Mild frontal atrophy and
pallidal atrophy were observed in two patients whose disease
durations were over 10 years (Tokumaru et al., 2003). High-
intensity change along the internal capsules was also detected by
T2-weighted MR image in an autopsied case who died at aged 60,
which was 19 years after her initial symptoms, and the autopsy
findings suggested neuronal loss, astrocytosis, and gliosis in the
internal segment of the globus pallidus (Horimoto et al., 2011).
Wang T. Y. et al. (2015) detected abnormal electroencephalogram
signals in the cerebral cortex of SCA3 patients in the late stage
of the disease. In another study, extensive atrophy of the basal
ganglia and cerebral cortex was also observed in the late stages of
SCA3/MJD (Rezende et al., 2018), which was consistent with the
dementia and delirium symptoms in four SCA3/MJD patients in
the late stages (Ishikawa et al., 2002).
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TABLE 1 | Summary of baseline data of the affected brain regions detected with voxel-based morphometry analysis.

References Sample
size

Age AOO DD CAG Ataxia scale Ataxia
score

MRI scanner Magnetic flux
density

Head
coil

Cere-
bellum

Brain
stem

Cere-
brum

Basal
ganglia

Thalami Limbic
system

Peng et al.
(2019)

31 38.91 34.88 4.81 71.84 International
Cooperative
Ataxia Rating
Scale (ICARS)

26.81 Sonata, Siemens 1.5 T –
√ √ √ √

Meles et al.
(2018)

17 45.3 35.6 9.7 70 Scale for the
Assessment
and Rating of
Ataxia (SARA)

10 Achieva, Philips 3 T 32-
channel

√ √ √

Hernandez-
Castillo
et al. (2017)

17 40.41 33.47 6.94 - SARA 13.26 Achieva, Philips 3 T 32-
channel

√ √ √

Duarte
et al. (2016)

13 43.66 32.94 7.51 65.67 SARA 11.92 Magnetom TIM
Trio, Siemens

3 T 12-
channel

√ √ √ √ √

Kang et al.
(2014)

12 50.5 – 11.0 70.6 SARA 10.3 Magnetom TIM
Trio, Siemens

3 T 8-
channel

√ √ √

Guimarães
et al. (2013)

38 40.38 40.02 9.3 68.08 ICARS/SARA 32.08/14.65 Achieva, Philips 3 T –
√ √

Lopes et al.
(2013)

32 46.78 36.72 10.09 69.0 SARA 13.6 Achieva, Philips 3 T –
√ √ √ √

D’Abreu
et al. (2012)

45 47.02 37.04 9.97 72 ICARS 36.36 Elscint Prestige 2 T –
√ √ √ √ √ √

Goel et al.
(2011)

10 38.0 - 5.8 – ICARS 48.6 Magnetom Vision
Plus, Siemens

1.5 T –
√ √ √

Schulz
et al. (2010)

24 47.3 - 11.7 – SARA 12.0 Sonata, Siemens 1.5 T –
√ √

Nanri et al.
(2010)

4 73 - 12 – – – Magnetom
Symphony,
Siemens

1.5 T –
√ √

Lukas et al.
(2006)

9 53 47 – 64 ICARS 30 Magnetom
Symphony,
Siemens

1.5 T –
√ √ √

AOO, age of onset; DD, disease duration.
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So far, the most commonly used clinical outcome and disease
severity assessment measures in natural history studies and
clinical trials of SCAs are ataxia rating scales such as SARA
and ICARS, However, both of them are semiquantitative and
lack sensitivity in the earliest stages of SCAs, including the
preclinical stages when brain structural damage has already
taken place (Rezende et al., 2018). Although such scales are
essential for disease progression assessment, they should be
supplemented with quantitative and non-invasive neuroimaging
data to directly assess the neuroanatomic alteration of the brain.
Meanwhile, the use of MR imaging technique in the late stages
of SCA3/MJD may be limited, as shown in the longitudinal
study that no progression of atrophy was detected after an
interval of approximately 1 year, which might be caused by
the floor effect or short duration of follow-up (D’Abreu et al.,
2012). Thus, a combination of both clinical scales and MR
imaging techniques or even body fluid biomarkers will allow
a better reflection of the disease trajectory and a larger effect
size than any biomarker alone, which will enable an accurate
evaluation of disease progression and brain atrophy staging
in neurodegenerative diseases, especially in rare diseases like
SCA where patient recruitment is challenging. Besides that, as
discovered by Rezende et al. (2018) a typical caudal–rostral
progression of brain structural damage in SCA3/MJD patients
suggested a potential staging scheme for SCA3/MJD like the
Braak staging scheme of brain pathology for Parkinson’s disease.
Further longitudinal studies with postmortem histology data are
needed to validate this hypothesis.

The Correlation of Brain Atrophy With
Motor and Cognitive Impairments in
SCA3/MJD Patients
The cerebellum plays an important role not only in motor
control but also in non-motor functions such as language,
memory, and visual ability (Wolf et al., 2009). Stoodley and
Schmahmann (2010) illustrated that when the anterior lobe
of the cerebellum and parts of the cerebellum lobule VI are
damaged, communication between the cerebellar motor system
and the cerebral and spinal motor systems is interrupted, which
can result in cerebellar motor syndrome. In addition to its
role in motor coordination, the cerebellum is also involved in
cognitive processing and emotional control (Schmahmann and
Caplan, 2006). When lesions involve the posterior lobe of the
cerebellum and vermis, the cerebral cognitive system modulated
by the cerebellum may be disrupted, which can lead to cerebellar
cognitive affective syndrome (CCAS) (Schmahmann and Caplan,
2006; Stoodley and Schmahmann, 2010). Many studies have
demonstrated the occurrence of cognitive deficits, including
executive impairments, such as verbal fluency and verbal
memory deficits, and impairments in spatial cognition, including
visuospatial function, visual memory, visuoconstruction, and
visual attention, and emotional deficits in SCA3/MJD patients
(Maruff et al., 1996; Zawacki et al., 2002; Kawai et al., 2004;
Klinke et al., 2010; Lopes et al., 2013; Roeske et al., 2013; Braga-
Neto et al., 2014), which are in accordance with the characteristic
manifestations of CCAS (Schmahmann and Sherman, 1998;

Schmahmann, 2004; Schmahmann and Caplan, 2006; Braga-
Neto et al., 2014). Widespread cerebral cortical atrophy was also
correlated with motor (de Rezende et al., 2015) and cognitive
(Lopes et al., 2013) impairments. Occipital damage is specifically
associated with visuospatial deficits, and the cingulate gyri
plays an important role in motor control and the regulation
of cognition (Paus, 2001; de Rezende et al., 2015). Atrophy
of the hippocampus may partly explain the visual and verbal
memory impairments observed in some SCA3/MJD patients
(de Rezende et al., 2015).

The basal ganglia are a group of subcortical nuclei that
interconnect with the thalamus and the cerebral cortex by several
parallel reentrant loops and are primarily responsible for motor
control (Alexander et al., 1986; Alexander and Crutcher, 1990).
Information flows back to the cortex through two functional
opposing pathways from the basal ganglia to precisely perform
the movement (Lanciego et al., 2012). On the one hand, the
motor circuit originates from several frontal lobe regions and
mainly projects to the putamen. After intermediate processing,
the information is returned to the neocortex through the
ventrolateral part of the thalamus (Riecker et al., 2003). On the
other hand, the striatum can also target the output stage of
the basal ganglia through the external segment of the globus
pallidus and the subthalamus (Riecker et al., 2003; Lanciego
et al., 2012). Basal ganglia abnormalities can lead to dystonia and
parkinsonism, however, parkinsonian motor features seem not to
be that common in SCA3/MJD patients since the degeneration
of the motor territory of the subthalamic nucleus can partially
ameliorate the manifestation of parkinsonism in SCA3/MJD
patients (Schols et al., 2015). The correlation between brain
atrophy patterns and ataxia has also been found in SCA1, SCA6
(Schulz et al., 2010), SCA7 (Hernandez-Castillo et al., 2016), and
SCA17 (Reetz et al., 2010) patients, suggesting that these clinical
manifestations may be caused by the same atrophy pattern.

However, most of the previous SCA3/MJD brain
morphological studies are macroscopic changes of gray and
white matter (such as the volume of gray and white matter, etc.),
and the changes of brain microstructure are not very clear. In
recent years, the rapid development of neuroimaging technology,
especially DTI technology, provides the possibility for the study
of the microstructural integrity of white matter in vivo.

DIFFUSION TENSOR IMAGING

Water diffuses mainly along the major axis of the white matter
(WM) fiber tract in brain tissue (Moseley et al., 1990). Therefore,
by measuring the directionality of water diffusion (fractional
anisotropy, FA) (Basser and Pierpaoli, 1996) and three other main
parameters, including axial diffusivity (AD), radial diffusivity
(RD), and mean diffusivity (MD), DTI has become a widely
used quantitative and non-invasive methodology to assess the
microstructure and the integrity of the brain WM fiber tracts
(Le Bihan, 2003). Tract-based spatial statistics (TBSS), using non-
linear image transformation, is a widely applied technique in DTI
analysis that can combine the strength of both voxel wise and
tractography-based analyses (Smith et al., 2006). By measuring

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 749

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00749 July 31, 2020 Time: 15:53 # 7

Wan et al. MR Imaging of SCA3/MJD

the anisotropic diffusion of water in the WM tract, TBSS can
provide information about anatomical connectivity in the brain
(Yeh et al., 2009).

Decreased FA and Increased AD, RD,
and MD in SCA3/MJD Patients
DTI studies with TBSS have revealed a widespread decrease
in FA accompanied by increased AD, RD, and MD in the
WM across the whole brain, especially the cerebellum and
the brainstem, as well as some supratentorial areas, such as
the bilateral frontal, parietal, temporal, and occipital lobes and
thalamus, in patients with SCA3/MJD compared with those
in controls, as shown in Figure 3 (Guimarães et al., 2013;
Nunes et al., 2015; Jao et al., 2019). What is more, MD
increases showed a similar pattern as FA decreases (Kang
et al., 2014; Wu et al., 2017; Jao et al., 2019), and these
findings were in line with the results from the multi-atlas
segmented findings (Rezende et al., 2018). WM abnormalities
were also identified in some fiber pathways that were mostly
in the cerebellar connecting tracts, including the pyramidal
tract, thalamic radiations, medial lemnisci, corticospinal tract,
corticobulbar tract, and corticopontocerebellar tract in patients
with SCA3/MJD (Rezende et al., 2018; Jao et al., 2019). WM
tract impairments are common features among SCA patients.
Decreased FA and increased MD in the cerebellar peduncles,
the bilateral posterior limb of the internal capsule, and the
corona radiata have been observed in SCA2 patients (Hernandez-
Castillo et al., 2015), and widespread FA reductions beyond the
cerebellum and the pons have also been found in SCA7 patients
(Alcauter et al., 2011).

WM Tracts Are Partially Impaired in the
Preclinical Stage of SCA3/MJD
SCA3/MJD is a progressive neurodegeneration disease with
brain pathology preceding the onset of clinical symptoms.
The discovery of the microstructural changes of preclinical
SCA3/MJD is helpful to find neuroimaging markers and
even predict the clinical onset of disease. Wu et al. (2017)
identified decreased FA values and increased MD in the
cerebellar peduncles of preclinical SCA3/MJD patients. A multi-
atlas analysis in another study revealed that all DTI-based
parameters were abnormal in the cerebellar peduncles of
asymptomatic SCA3/MJD gene carriers (Rezende et al., 2018).
WM impairments in the cerebellum were also discovered in
preclinical patients with SCA1 (Yoo and Oh, 2017) and SCA6
(Falcon et al., 2016). The cerebellar peduncles are responsible for
both efferent and afferent information. The inferior cerebellar
peduncles consist of olivocerebellar and dorsal spinocerebellar
tracts and are mainly involved in the coordination of movement
and proprioception, receiving movement information and
sensory information related to movement (Tokumaru et al.,
2003). The middle cerebellar peduncles mainly receive afferent
fibers from the pontine nuclei to the cerebellum, which make up
most of the corticopontocerebellar tract, bringing information
from the cerebral cortex (Keser et al., 2015). The superior
cerebellar peduncles contain mostly efferent fibers that originate

from the cerebellar nuclei for the connections of the cerebellum
and the mesencephalon and the cerebrum (Johna, 2006; Dayan
et al., 2016). These abnormalities in the cerebellar peduncles in
preclinical SCA patients exemplify that the afferent and efferent
systems of the cerebellum have already been damaged in the early
disease course of SCA.

WM Lesions Are Related to Disease
Severity in SCA3/MJD Patients
Abnormal TBSS results were inversely correlated with SARA
scores, ICARS scores, and neuropsychological assessment results
of SCA3/MJD patients, which indicated that damage to the
WM tracts across specific regions may be closely related to
disease severity in SCA3/MJD patients, including the severity
of movement disorders (Kang et al., 2014; Peng et al., 2019)
and cognitive dysfunction (Lopes et al., 2013; Wu et al., 2017).
WM plays a vital role in connecting various brain regions
and coordinating the communication between them, while no
significant correlation was found between any of the DTI
parameters and the number of CAG repeats in expanded alleles
(Guimarães et al., 2013; Kang et al., 2014; Peng et al., 2019).

DTI-derived AD and RD have been demonstrated to be
promising biomarkers of axonal injury and myelin abnormalities,
respectively, in mouse models of white matter injuries (Song
et al., 2002, 2003, 2005). Consistent with the DTI changes
in SCA3/MJD, DTI-derived AD and RD increased were also
detected in different types of multiple sclerosis lesions (Naismith
et al., 2013; Wang Y. et al., 2015). It has been suspected
that the changes of AD may reflect the changes of axons in
a time-dependent way, characterized by initial decrease when
axonal degradation is expected during the acute phase and
then normalization or even increase with the removal of axonal
fragments (Concha et al., 2006), while the extent of increased
RD reflects the severity of demyelination and the increased
freedom of cross-fiber diffusion in white matter (Song et al., 2002,
2005). Thus, the increase of AD and RD found in SCA3/MJD
patients supports the hypothesis of the coexistence of chronic
axonal damage and extensive myelin degeneration as observed in
experimental models of multiple sclerosis and other white matter
injuries. As previously mentioned, FA indicates the directionality
of water diffusion (Pierpaoli and Basser, 1996), and reduced FA
can be caused by the degradation of axonal membranes, i.e.,
myelin sheaths (Werring et al., 2000; Pierpaoli et al., 2001),
and reductions in axonal fiber density (Takahashi et al., 2002;
Beaulieu, 2009). MD is the overall mean-squared displacement
of water molecules restricted by organelles and membranes (Neil
et al., 1998), which reflects the diffusivity of water based on
cellular density and extracellular volume (Gass et al., 2001; Le
Bihan et al., 2001). Thus, reduced FA and increased MD in the
same brain tissue indicate the disrupted structure of myelin and
axons along with abnormal levels of cellular fluid (Pfefferbaum
and Sullivan, 2005). To conclude, the pattern of DTI metrics
alternation in SCA3/MJD (decreased FA and increased MD, RD,
and AD) reflects the dysfunction of the axonal function of white
matter fibers and myelin degeneration rather than the process of
primary demyelination. Neuropathological studies have observed

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 749

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00749 July 31, 2020 Time: 15:53 # 8

Wan et al. MR Imaging of SCA3/MJD

FIGURE 3 | (A) Areas of reduced fractional anisotropy (P < 0.05, corrected). (B) Areas of increased axial diffusivity (P < 0.05, corrected). (C) Areas of increased
radial diffusivity (P < 0.05, corrected). Reprinted with permission from Wiley (Guimarães et al., 2013).

neuronal loss and atrophy in the cerebellum, brainstem, and
spinal cord (Riess et al., 2008) as well as the thalamus (Durr
et al., 1996; Rüb et al., 2003; Tokumaru et al., 2003; Schols
et al., 2015), basal ganglia (Durr et al., 1996; Yamada et al.,
2008; Horimoto et al., 2011), and cerebral cortex (Paulson et al.,
1997; Yamada et al., 2001; Seidel et al., 2012), which would
eventually result in the loss of axons and the degeneration
of neurons, providing a putative mechanism for the observed
extensive WM involvement.

While it is true that DTI is very sensitive for the detection
of microstructural degeneration, it is also important to note
that DTI metrics such as FA or MD values can only provide
comprehensive information about the integrity of brain WM
(Concha, 2014). The sensitivity of DTI metrics to progressive
brain changes in SCA3/MJD remains largely unexplored
(Ashizawa et al., 2018). In addition, the commonly used DTI

model might miss a subtle degeneration in WM and fail
to distinguish crossing fibers (Ashizawa et al., 2018). These
shortcomings can be compensated by more sophisticated
diffusion models. Recently developed multicompartment
techniques such as neurite orientation dispersion and density
imaging model, by separating the signal deriving from
different tissue compartments, have shown superior tissue
and pathological specificity and might be particularly useful in
detecting crossing fiber degeneration (Gatto et al., 2018; Broad
et al., 2019). It is also worth paying attention to the continuous
time random walk model, which could complement the
traditional DTI model by providing supplemental information
of brain tissue complexity (Ingo et al., 2014; Gatto et al.,
2019). In addition, non-Gaussian diffusion models using fractal
derivative model or fractional order model have been introduced
to describe anomalous diffusion in human brain tissues with
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improved accuracy of MR imaging (Magin et al., 2008; Zhou
et al., 2010; Liang et al., 2016).

Further animal studies and postmortem histology studies are
still needed to validate the correlation of microstructural lesions
and alteration of MRI metrics. Ideally, postmortem brain tissues
are the closest ones for studying human diseases, whereas from
the pre-clinical validation standpoint, animal models, especially
mammalian models such as the classic ataxin-3-Q79 transgenic
mouse that develops a progressive neurological phenotype of
ataxia (Chou et al., 2008), the first humanized ataxin-3 knock-
in mouse model, which combines the molecular and behavioral
disease phenotypes with the genetic features of SCA3 (Switonski
et al., 2015), and other knock-in mouse model that exhibits
prominent aggregate pathology (Ramani et al., 2015), are all
highly valuable for the clinical or the pre-clinical histopathologic
validation of imaging data as well as the validation of disease
mechanisms and treatment effect.

The morphological analysis of brain structure and DTI are
mainly focused on the changes of brain anatomical structure
at present. Although a direct and complete view of the
relationship between brain structure and brain function is still
largely unknown (Yang et al., 2016), the brain anatomical
structure serves as the cornerstone that influences the brain
function and disease progression, and the brain structural MRI
researches in SCA3/MJD patients also promote the exploration
of brain function.

BLOOD OXYGEN LEVEL-DEPENDENT
FUNCTIONAL MRI

BOLD fMRI is a commonly used technique that can detect the
spatiotemporal distribution of neural activity across the brain
based on the detection of blood oxygenation level-dependent
signal changes (Ogawa et al., 1990). In general, the differences
in local brain activation patterns between patients with ataxia
and normal controls were analyzed, with the presumption that
the existence of differences may be related to neural circuit
dysfunction in the patient group (Currie et al., 2013). There is a
growing interest in exploring the utility of task-based and resting-
state functional MRI in SCA patients for monitoring functional
abnormalities in brain tissue.

Functional MRI patterns have detected a general dysfunction
in the motor network in SCA3/MJD patients. Stefanescu et al.
(2015) found that hand movement-related cerebellar activation
was altered in SCA3/MJD patients, and significant activation in
the ventral part of the dentate nucleus along with a reduced but
non-significant reduction in the cerebellar cortex was detected
when the subjects were instructed to open and close their right
fist at a frequency of 1.66 Hz. Interestingly, in another fMRI
study, cortical region activation was increased at 1 and 3 Hz but
decreased at 5 Hz in 13 patients with early SCA3/MJD who were
instructed to finger tap at 1, 3, and 5 Hz. Additionally, significant
activation of subcortical regions, including the putamen, globus
pallidus, and thalamus, was also discovered (Duarte et al., 2016).

The activation of cortical and subcortical regions in
SCA3/MJD patients might represent a compensatory mechanism

to overcome cerebellar dysfunction. Variations in BOLD fMRI
signals depend on synaptic input (Lauritzen et al., 2012).
Given that the ventral dentate nucleus is included in the
pontocerebellar pathway (Glickstein and Doron, 2008), the
increased activation of the ventral part of the dentate may
suggest a possible compensatory recruitment of pontocerebellar
areas to compensate for dysfunction in the spinocerebellar
projections (Stefanescu et al., 2015), which is consistent with
immunohistochemical data showing that afferent mossy fibers
from pontine nuclei were preserved in SCA3/MJD patients
(Koeppen et al., 2013). The decreases in the fMRI signal in
SCA3/MJD patients may be due to decreased mossy fiber
input to the cerebellum caused by the degeneration of the
spinocerebellar tract. In addition, decreased activation at high
frequency may hint that patients had surpassed the dynamic
range of maintained function (Duarte et al., 2016). However,
BOLD fMRI studies in patients with SCA3/MJD are very limited,
and further studies are required to validate these hypotheses.

This inconsistency between the two studies may have been
caused by differences in movement postures and frequency
variation. In addition, discrepancies in the clinical characteristics
of the patients studied, such as course of disease, CAG copy
number, SARA scores, etc., may have also affected the results.
Therefore, further prospective studies are needed to address the
sensitivity and the specificity of these findings.

MAGNETIC RESONANCE
SPECTROSCOPY

MRS is a non-invasive method that allows in vivo quantification
of altered metabolite concentrations in brain tissue based on
signals of hydrogen protons. MRS can provide biomarkers for
neurological disorders even in cases where a lesion has not
yet been observed in MR images (Duarte et al., 2012). The
levels of NAA, Cho, mI, and Cr are the main metabolites
that are focused on in most MRS studies. NAA concentration
is an indicator of neuronal volume, viability, and integrity
(Bachelard and Badar-Goffer, 1993; Tsai and Coyle, 1995),
and the lack of NAA is associated with injury or loss of
neurons and axons in various conditions (Bruhn et al., 1989;
Kugel et al., 1992; Meyerhoff et al., 1994; Oppenheimer
et al., 1995). Cho is the precursor of the neurotransmitter
acetylcholine and membrane constituent phosphatidylcholine
(Miller, 1991) and serves as an indicator of cell membrane
and neurotransmitter metabolism (Lirng et al., 2012), mI
is a marker of glial activation (Brand et al., 1993), which
reflects neuronal injury and degeneration (Duarte et al.,
2012), and Cr is an indicator of brain energy metabolism
(Firbank et al., 2002; Lirng et al., 2012). The concentration
of Cr is relatively stable under normal conditions; therefore,
it often serves as a reference for comparisons (Lirng et al.,
2012). Each metabolite shows a characteristic pattern at very
specific resonance frequencies in MRS (Cousins, 1995). The
neurometabolic spectrum detected in patients reflects the cell-
specific changes in neurons or astrocytes, which cannot be
evaluated by other neuroimaging methods.
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Neurochemical Alterations in Clinical
SCA3/MJD Patients
Lower NAA and glutamate levels, reflecting the loss or
dysfunction of neurons, were detected in the cerebellum
and pons of SCA3/MJD patients (Adanyeguh et al., 2015),
which was in agreement with the neuron loss found by
neuropathological and structural imaging studies (Tokumaru
et al., 2003; Lukas et al., 2006; Guimarães et al., 2013). The
glial marker mI was elevated in the cerebellum and pons
(Adanyeguh et al., 2015), reflecting the activation of glial
cells in response to neuron degeneration (Brand et al., 1993;
Allaman et al., 2011; Duarte et al., 2012). Total Cr (tCr)
levels were also elevated in both the cerebellar vermis and
pons in SCA3/MJD patients (Adanyeguh et al., 2015). The
increase in tCr may be a compensatory response to maintain
the function of the phosphocreatine/creatine kinase system
to ensure the energy supply of brain tissue (Brewer and
Wallimann, 2000). Moreover, the increased tCr may play a role in
inhibiting the formation of free radicals and thereby strengthen
neuroprotection (Adanyeguh et al., 2015). Similarly, increased
tCr has also been detected in the brains of Huntington’s disease
mouse models by 1H MRS (Zacharoff et al., 2012), suggesting that
there may be similar abnormalities in brain energy metabolism in
polyglutamine disease. Additionally, there is also evidence that
the levels of glutamate and glutamine were reduced in cerebellar
lesions, reflecting neuronal loss/dysfunction (Lopes et al., 2013;
Adanyeguh et al., 2015).

In line with previous findings of decreased NAA/Cr ratios
in the cerebellum (Lirng et al., 2012; Wang et al., 2012; Lopes
et al., 2013; Chen et al., 2014; Huang et al., 2017; Peng et al.,
2019) and deep WM (D’Abreu et al., 2009), a recent meta-
analysis has also demonstrated a decrease in the NAA/Cr ratio
in the cerebellum of SCA3/MJD patients compared to that of
normal controls (Krahe et al., 2020). Reduced NAA/Cho, a
marker reflecting brain metabolism (Meyerhoff et al., 1994; Ng
et al., 1994; van der Grond et al., 1995), was also observed
in the same areas (Lirng et al., 2012; Chen et al., 2014; Peng
et al., 2019). Therefore, levels of NAA, suggestive of extensive
neuronal and axonal dysfunction, might be regarded as an
effective diagnostic marker of neurodegeneration in SCA3/MJD.
The patterns with Cho/Cr have been more heterogeneous, with
some studies demonstrating a reduced Cho/Cr ratio in the
cerebellum (Peng et al., 2019; Krahe et al., 2020), but this was not
obvious in other studies (Wang et al., 2012; Chen et al., 2014).
Regarding these findings, further studies are needed to validate
Cho as a metabolic marker (Krahe et al., 2020). The abnormal
neurochemical ratios in different brain regions are summarized
in Table 2.

Neurochemical Profile Abnormalities
Precede Clinical Manifestations
A recent profound study detected reduced NAA/mI ratios
in the pons and cerebellum in SCA3/MJD patients whose
estimated disease onset was within 10 years (Joers et al., 2018).
Significantly reduced NAA/Cr and NAA/Cho ratios in the
cerebellar hemispheres and vermis were also observed in the early

stages of SCA3/MJD (SARA score < 10) (Lirng et al., 2012).
Using 18F-fluorodeoxyglucose positron emission tomography,
Soong and Liu detected abnormal FDG consumption levels in
the cerebellum, brainstem, and cerebral cortex in asymptomatic
carriers of SCA3/MJD (Soong and Liu, 1998). Additionally,
in other SCA diseases, such as SCA1, SCA2, and SCA6,
neurochemical changes were also found to precede the onset of
clinical manifestations (Guerrini et al., 2004; Wang et al., 2012).
Potentially, MRS can reveal early metabolic/cellular changes
in various SCAs, which are likely to occur before cerebellar
signs are obvious, even before brain atrophy, which indicates
that the measurement of neurochemical changes in brain tissue
by MRS may be superior to clinical observation in particular
circumstances. The discovery of early neurochemical changes
in non-ataxia mutant gene carriers could not only help to
illustrate the underlying pathophysiology of SCAs but also
provide a window for early intervention preceding irreversible
brain damage. However, neurochemical abnormalities in the
premanifest stage of SCAs remain largely unexplored (Joers
et al., 2018). More studies at the preclinical stage in patients
with different SCA genotypes are needed to further support the
potential of neurochemical metabolites as prognostic biomarkers.

Neurochemical Metabolites Are
Associated With Clinical Features
Similar to morphometric neuroimaging, neurochemical
alterations, including NAA/Cr, Cho/Cr, or NAA/Cho ratios,
correlated with disease duration, SARA scores (Lirng et al., 2012;
Wang et al., 2012; Huang et al., 2017), ICARS scores (Peng
et al., 2019), and genetic data (Wang et al., 2012; Peng et al.,
2019) in SCA3/MJD patients, suggesting that MRS can serve as a
biomarker to monitor the progression of ataxia and evaluate the
response to therapeutic interventions, even in the early stages of
SCA3. Importantly, an animal study of SCA1 has validated the
sensitivity and the specificity of MRS as a non-invasive technique
to reflect the extent of recovery from neurodegeneration even

TABLE 2 | Abnormal neurochemical ratios in different brain regions.

Brain region Abnormal
neurochemical
ratios

References

Cerebellum NAA/Cr Lei et al., 2011; Lirng et al.,
2012; Wang et al., 2012;
Lopes et al., 2013; Chen
et al., 2014; Huang et al.,
2017; Peng et al., 2019;
Krahe et al., 2020

Cho/Cr Peng et al., 2019; Krahe
et al., 2020

NAA/mI Joers et al., 2018

NAA/Cho Lei et al., 2011; Lirng et al.,
2012; Chen et al., 2014;
Peng et al., 2019

Brain stem NAA/mI Joers et al., 2018

Thalamus NAA/Cr, NAA/Cho Peng et al., 2019

Deep white matter NAA/Cr, Cho/Cr D’Abreu et al., 2009
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TABLE 3 | The correlation of neurochemical ratio abnormalities and clinical data.

Clinical data Correlation Cerebellum Deep white matter

NAA/Cr Cho/Cr NAA/Cho NAA/Cr Cho/Cr

DD Relevant Huang et al., 2017; Peng et al., 2019 Peng et al., 2019 Lirng et al., 2012 / /

Irrelevant Lirng et al., 2012 Lirng et al., 2012 Peng et al., 2019 D’Abreu et al., 2009 D’Abreu et al., 2009

SARA Relevant Lirng et al., 2012; Wang et al., 2012 Lirng et al., 2012 Lirng et al., 2012 / /

Irrelevant / / / / /

ICARS Relevant Peng et al., 2019 Peng et al., 2019 / / /

Irrelevant / / Peng et al., 2019 D’Abreu et al., 2009 D’Abreu et al., 2009

CAG Relevant Peng et al., 2019 / Peng et al., 2019

Irrelevant Wang et al., 2012; Huang et al., 2017 / / D’Abreu et al., 2009 D’Abreu et al., 2009

DD, disease duration.

better than standard motor behavioral assessment (Öz et al.,
2015). Moreover, the test–retest reproducibility of neurochemical
profiles by MRS was demonstrated to be reliable not only within
site (Terpstra et al., 2016) but also between sites (Deelchand
et al., 2015; van de Bank et al., 2015), which is crucial for its
utility in future multisite trials. However, there have also been
contrasting findings that make these inferences inconclusive;
these studies showed that CAG repeat length and clinical features
(such as SARA scores and course of disease) were not related to
the concentrations of any neurochemical metabolites (D’Abreu
et al., 2009; Adanyeguh et al., 2015; Joers et al., 2018). The
detailed correlations of neurochemical ratio abnormalities and
clinical data are summarized in Table 3. A recent study using a
novel multi-variate approach, distance-weighted discrimination,
allows a combination of multiregional neurochemical profiles
to estimate time to disease onset, and the correlation between
the DWD-based MRS scores and SARA and duration in SCA3
patients has suggested a regional effect of neurochemical
profiles (Joers et al., 2018). Further studies would be of interest
to determine whether neurochemical metabolite levels are a
useful biomarker of disease progression, and the relationship
between regional neurochemical levels and brain pathology
deserves more attention.

CONCLUSION AND PERSPECTIVES

In conclusion, this review summarized the value of MR imaging
techniques in detecting structural and functional changes in
patients with SCA3/MJD and demonstrated the feasibility of
detecting neuroimaging abnormalities in the preclinical stage of
this disease, as well as their correlations with clinical features and
disease severity. These MR imaging abnormalities identified in
clinical and preclinical SCA3/MJD patients provide significant
insights into the pathogenesis of the disease. Morphometric
MR imaging has been proven to be an effective method of
monitoring brain atrophy. DTI studies provide comprehensive
information about the integrity of brain WM, and metabolites
related to neuronal loss, glial cell activation, and abnormal brain
energy metabolism have been detected by MRS. Both DTI and
MRS abnormalities indicate that the synaptic function or density
might have been disrupted, while the sensitivity of DTI metrics,

MRS, and functional MR imaging alterations to progressive
changes of brain tissue in SCA3/MJD remains unclear. In
addition, due to the heterogeneity in imaging parameters across
different studies, such as the magnetic flux density, sequences
of image acquisition, and operation protocols, the accuracy
of a direct comparison between various research results is
relatively limited. Histopathologic and animal studies are further
needed to validate the correlation between MR imaging and
pathological findings. A combination of multiple data sets from
magnetic resonance imaging and clinical scales or even body fluid
biomarker might perform better in the identification of potential
biomarkers in SCAs. Validated neuroimaging biomarkers are of
great value in guiding patient eligibility, patient stratification,
and tracking therapeutic response in clinical trials. Standardized
and systematic analyses of demographics and clinical and genetic
data could contribute to defining the sensitivity of neuroimaging
biomarkers. In light of this fact, multisite longitudinal prospective
studies utilizing multimodal MR imaging techniques in a large
cohort of patients as well as preclinical mutation carriers with
SCA3/MJD are crucially needed to validate the capability of
MR imaging in the diagnosis and the differentiation of SCA
subtypes, predicting the age of disease onset in preclinical
individuals, monitoring disease progression even before the
onset of symptoms, and assessing the therapeutic effect of
clinical treatments.
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