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Abstract 
Read alignment is an important step in RNA-seq analysis as the result 
of alignment forms the basis for downstream analyses. However, 
recent studies have shown that published alignment tools have 
variable mapping sensitivity and do not necessarily align all the reads 
which should have been aligned, a problem we termed as the false-
negative non-alignment problem. Here we present Scavenger, a 
python-based bioinformatics pipeline for recovering unaligned reads 
using a novel mechanism in which a putative alignment location is 
discovered based on sequence similarity between aligned and 
unaligned reads. We showed that Scavenger could recover unaligned 
reads in a range of simulated and real RNA-seq datasets, including 
single-cell RNA-seq data. We found that recovered reads tend to 
contain more genetic variants with respect to the reference genome 
compared to previously aligned reads, indicating that divergence 
between personal and reference genomes plays a role in the false-
negative non-alignment problem. Even when the number of 
recovered reads is relatively small compared to the total number of 
reads, the addition of these recovered reads can impact downstream 
analyses, especially in terms of estimating the expression and 
differential expression of lowly expressed genes, such as 
pseudogenes.
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Introduction
Read alignment is the process of mapping high-throughput 
sequencing reads against a reference genome or transcriptome 
to identify the locations from which the reads originate. This 
step is typically one of the first steps in the analysis of RNA 
sequencing (RNA-seq) data prior to downstream analyses such 
as variant calling and gene expression analysis. There have been 
a number of published tools which have been developed to per-
form RNA-seq alignment, such as HISAT21, STAR2 Subread3, 
CRAC4, MapSplice25 and GSNAP6. More recently, new alignment- 
free tools have been developed specifically for gene expres-
sion analysis which skips the alignment of reads to the reference  
and instead performs pseudoalignment. However, these align-
ment-free tools are only applicable to specific types of analyses  
and have limitations compared to traditional alignment  
methods7. The correctness of alignment programs are crucial  
to the accuracy of the downstream analyses. Unfortunately,  
previous studies have shown that while these tools have low  
false positive rates, they do not necessarily have low false nega-
tive rates8,9. This means that while many of the reads were likely 
to be correctly aligned, there are still many incorrectly una-
ligned reads which should have been aligned. These incorrectly 
unaligned reads, or false negative non-alignments, adversely 
affect the accuracy of the alignment produced and can also  
affect the result of downstream analyses, such as variant call-
ing, indel (insertion-deletion) detection and gene fusion  
detection9.

There are a number of factors which contribute to the false 
negative non-alignment problem. One such factor is the type of 
algorithm utilised in the alignment tool. In order to efficiently 
perform alignment against a typically large reference genome 
in an acceptable amount of time, and to account for splicing 
events inherent in RNA-sequencing data, many alignment tools  
use heuristic-based matching of seed sequences generated 
from read sequences. Due to the typically short length of a seed  
sequence and the existence of repetitive regions within the  
genome, there may be multiple locations assigned to a given 
read which results in the alignment tool excluding the read due  
to ambiguity – a problem known as multi-mapping reads.  
Another factor which causes false negative non-alignment  
problems is the divergence between the reference genome and 
the personal genome of the organism being sequenced. The  
reference genome is typically constructed from a small number  

of samples and thus will only represent a limited degree of 
the organism’s diversity. Alignment of reads to the reference  
genome will thus be imperfect due to natural variation present 
in an individual organism. While alignment tools do take into  
account the variability between the reference genome and an  
individual’s genome by allowing for mismatches, insertions 
and deletions during alignment, they are unable to handle a  
substantial degree of genetic variation, such as hyper-edited  
sites, gene fusion and trans-splicing.

Correcting for a false negative non-alignment problem is much 
more difficult compared to correcting false positive reads. For 
false positive reads, there are a number of strategies which can 
be employed to help filter these type of reads, such as by remov-
ing lower quality alignments, removing reads with multiple 
alignment locations and re-aligning reads with a more specific 
alignment tool. Recovering false negative reads, on the other 
hand, is not as straightforward as it is not possible to identify 
their putative alignment region in the genome. One possible strat-
egy for solving the false negative non-alignment problem is to 
tune the parameters used for alignment in order to maximise the 
amount of reads aligned, such as by increasing the threshold for 
multi-mapping reads and/or increasing the number of mis-
matches allowed. However, this approach is limited as there is no 
ground truth in real data to help with optimisation, and increas-
ing the number of reads aligned will also result in an increase in 
the number of false positive reads. Another strategy for solving 
the false-negative non-alignment problem is by incorporating 
variation information during alignment, in the form of utilis-
ing alternate loci sequences within the reference genome10 or 
integration of a single nucleotide polymorphism database to the 
reference1, to help minimise the effect of divergence of the per-
sonal genome compared to the reference genome. This approach 
is also limited as it requires existing variation information, which 
may not be available in non-model organisms.

We have recently applied the idea of Metamorphic Testing 
– a software testing technique designed for the situation where  
there is an absence of an oracle (a method to verify the correct-
ness of any input) – for performing software testing on the  
STAR sequence aligner11. Metamorphic testing involves multi-
ple executions of the program to be tested with differing inputs,  
constructed based on a set of relationships (Metamorphic rela-
tions - MR), and checking that the outputs produced satisfy the  
relationships12,13. In our previous study11, we developed an 
MR to test the realignability of previously aligned reads in the  
presence of irrelevant ’control’ chromosomes constructed from  
previously unaligned reads. We discovered that a non-trivial  
amount of reads that were previously aligned to the reference 
genome were now aligned to the control chromosomes consist-
ing of reads which were unable to be aligned to the reference.  
Further investigation indicated that some of the unaligned 
reads have high similarity to the aligned reads, indicating the  
possibility of these reads being false negative non-alignments.

In this paper, we aim to tackle the problem of false-negative 
non-alignments by taking inspiration from our previous work on 
metamorphic testing. We have developed Scavenger, a pipeline 

           Amendments from Version 1
Following the comments from the reviewers, the authors have 
made the following update to the manuscript:
1. Added extra clarifications to sections of the methods, result 
and discussions, as well as in table captions for Table 6.
2. Updated the table layout of Table 2 and Table 3 to fix incorrect 
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designed to recover incorrectly unaligned reads by exploiting 
information from reads which are successfully aligned. We  
applied the Scavenger pipeline on a number of simulated and 
actual RNA-seq datasets, including both bulk (normal) and  
single-cell RNA-seq datasets, and demonstrated the ability of  
Scavenger in recovering unaligned reads from these datasets. 
We then analysed the impact of adding these recovered reads on 
downstream analyses, in particular gene expression analysis, 
and discovered that lowly expressed genes, in particular genes  
of the pseudogenes category, are more affected by the false- 
negative non-alignment problem. We also verified that the diver-
gence between the personal genome and the reference genome 
is a contributing factor to the false-negative non-alignment  
problem and showed that Scavenger is able to recover reads  
which are unaligned due to higher degree of variability within  
the reads sequence.

Methods
Implementation
Scavenger is a python-based pipeline designed to recover  
unaligned reads by utilising information from aligned reads. 
The pipeline takes in sequencing reads in FASTQ format as the  
input, along with a reference genome sequence in FASTA  
format and a corresponding index for the alignment tool built 
using the reference genome. There are 4 main steps in the  
Scavenger pipeline - source execution of alignment tool,  
follow-up execution using aligned reads as input and una-
ligned reads as index, consensus filtering of follow-up execution 
result to obtain putative alignment location, and re-alignment of  
unaligned reads to the reference genome (Figure 1). The una-
ligned reads which are able to be successfully re-aligned back  
to the genome are then re-written back to the alignment result  
from the source execution.

Source execution
The first step of the Scavenger pipeline is the source execu-
tion where sequencing reads are aligned to the reference genome  
using a sequence alignment program. The alignment program 
used must satisfy the three properties which are required to  
validate the metamorphic relation underlying the read recov-
ery pipeline - deterministic alignment, realignability of mapped  
reads, and non-realignability of unmapped reads. Currently, 
STAR is utilised for aligning RNA sequencing reads in the  
Scavenger pipeline as it has been previously evaluated as 
being a reliable general-purpose RNA-seq aligner, with good 
default performance8, as well as satisfying the three properties  
above11. The source execution step can be skipped if the  
user has previously performed alignment of sequencing reads 
by passing in the alignment file produced in either SAM or  
BAM format as input to the Scavenger pipeline.

Follow-up execution
In the follow-up execution step, both aligned and unaligned 
reads are first extracted from the alignment file produced during  
source execution. For reads which have been successfully and 
uniquely aligned, a sequencing reads file (in FASTQ format) 
is created using the reads’ sequence and sequence qualities  
retrieved from the alignment records. In the case of reads which  

did not align to the reference genome, reads with identical 
sequences are first grouped together in order to minimise com-
putational complexity and to reduce the potential location for  
alignment. The unique unaligned sequences are then extended  
with spacer sequences (sequence of N nucleotides) in order  
to form sequence bins of equal length and to ensure that aligned 
reads do not align between two unaligned sequences. These 
sequence bins are concatenated into artificial chromosomes 
and stored into a new temporary genome file. Depending on the  
alignment program utilised, a new index will then need to  
be created based on the temporary genome containing the  
artificial chromosomes prior to alignment. Finally, sequencing  
reads of previously aligned reads are aligned to the tempo-
rary genome containing unaligned read sequences using the 
alignment tool used in source execution. In the current  
Scavenger pipeline, STAR is again utilised in the follow-up 
execution with a number of extra parameters in order to disable  
spliced alignment to ensure that input reads only align to one  
unaligned read sequence and to remove the restriction of the  
number of locations (i.e. unaligned read sequence) that the  
input reads can align to in the temporary genome.

Consensus filtering
The next step of the Scavenger pipeline is consensus filtering. 
Reads which align during the follow-up execution step are  
extracted from the alignment file produced from the previous 
step to obtain information regarding similarity between reads  
aligned during source execution and reads which did not align 
during source execution. Each unaligned sequence may have  
alignments to multiple aligned reads from the source execution. 
As these aligned reads may be aligned to different regions in 
the reference genome, consensus filtering is performed to select  
putative sites for re-alignment. For each unaligned sequence, 
intervals are created based on the reference genome location of  
previously aligned reads that align to the unaligned sequence.  
Overlapping intervals are then merged to form longer inter-
vals to both reduce the number of putative sites for re-alignment 
and to increase the support for the interval to be selected as a  
putative site. An interval is considered as being a putative site 
if there is more than one read within the interval and the level  
of support for the interval (i.e. the number of previously aligned 
reads that fall within the interval) is greater than the consen-
sus threshold, which is set to 60% of the number of previously 
aligned reads that align to the unaligned sequence by default.  
During this step, there is also an optional filtering criteria  
that can be utilised to remove unaligned sequences which 
likely originate from a low complexity region or tandem repeat  
region. The filtering method is based on the tandem repeat  
detection step used in the ROP tool14, which uses MegaBLAST15 
to align reads against a repeat sequence database, such as  
RepBase16.

Re-alignment
The final step is the re-alignment step where unaligned sequences 
which pass the filtering steps are re-aligned to the reference 
genome using the putative location obtained from reads aligned 
during source execution as a guide. For each unaligned sequence, 
the reference genome sequence around the putative location 
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(extended 100 base pairs at both the start and the end of the  
putative location) is extracted and stored as the new genome for 
aligning the unaligned sequence. Alignment of the unaligned 
sequence is then performed against the new genome using either 
MegaBLAST or STAR depending on whether the putative  
location of the unaligned sequence originated from unspliced 
alignment or from spliced alignment during the source execu-
tion, respectively. MegaBLAST is utilised for unspliced align-
ment due to its high sensitivity, though a strict parameter of 64%  
overlap and 85% query identity (which replicates the result of 
STAR alignment) is also utilised to reduce the false positive  
recovery of sequences. Unaligned sequences which are suc-
cessfully and uniquely aligned back to the reference genome 
are then added back to the alignment file of the source execu-
tion by modifying the alignment records of previously unaligned  
reads whose sequence matches the recovered unaligned  
sequence.

Parallelising Scavenger
Both the consensus and re-alignment steps of the Scavenger 
pipeline are computationally expensive due to the potentially 
large number of unaligned reads to be processed. However, 
the processing of the inputs are independent to each other thus 
allowing for parallelisation of processing unaligned reads in 
order to reduce the overall runtime of the pipeline. Scavenger 
takes advantage of Python’s built-in multiprocessing library in 
order to parallelise the consensus and re-alignment steps across 
the available CPU cores of the machine.

To enhance the scalability of Scavenger, a framework has been 
provided to enable parallel computation of a read recovery 
session on cloud computing resources. Cloud computing ena-
bles convenient, on-demand network access to a shared pool of  
configurable computing resources17. Central to the model of  
cloud computing is the virtualisation of computing resources 
to enable sharing of pooled resources. These resources can be  
commissioned and decommissioned as the user requires.  
Scavenger has a framework that employs the resources offered 
by the cloud provider Amazon Web Services (AWS). The cloud 
provider enables the user, using their own account credentials, 
to create a number of computing “instances”, which are the  
virtual machines upon which the user can perform their com-
putational workload. In the case of AWS, such resources are  
termed “EC2 instances”. An instance typically can be provi-
sioned within minutes of the user request, and the user is charged  
by the hour. Some cloud providers, such as AWS, offer reduced 
price “spot” instances at a greatly reduced price, such that  
the user places a “bid” for a spot instance on the proviso that 
the instance will be terminated should the current market price  
for the instance exceed the initial bid price. To minimise the 
cost for users, Scavenger utilises AWS spot instances. The cloud  
computing feature of Scavenger, after initial configuration on 
the user’s controlling computing resource, uses the AWS EC2 
cloud instances to perform the various steps of read recov-
ery, and also uses AWS cloud storage (S3) to store test data and 
results. The Scavenger cloud processing feature co-ordinates 
all interactions with the cloud resources, with logging infor-
mation stored both locally and on the cloud. The user 

can elect to have a large job to be spread among a number of 
cloud instances, with Scavenger creating the instances and  
distributing the work load evenly amongst the instances. The  
cloud computing feature of Scavenger is optional, and the user  
can elect to use their own computing resources if desired.

Operation
Scavenger is written in Python 3 and is designed primarily 
as a command line program for Linux operating system. The  
runtime and memory requirement of Scavenger depends on the 
size of the sequencing reads input and the aligner used, with  
30GB being the minimum amount of RAM required for align-
ment and recovery of reads from human dataset using STAR  
aligner. The Scavenger pipeline is available from Scavenger  
GitHub repository (https://github.com/VCCRI/Scavenger), with 
archived source code available from Zenodo18.

Datasets
Three different types of RNA-seq datasets – simulated, nor-
mal (bulk) and single-cell – were utilised to evaluate the Scav-
enger pipeline. The simulated datasets were obtained from a 
previous study8 which generated 3 sets of simulated RNA-seq 
datasets from the hg19 reference genome using BEERS 
simulator19 with varying parameters to emulate different level 
of dataset complexity. As the simulated datasets were format-
ted in FASTA format, high quality scores were added to each  
of the simulated reads to produce corresponding FASTQ files.  
These files were then input into Scavenger for both source  
alignment and read recovery with either STAR v2.5.3a or  
Subread v1.6.0 as the alignment tool. The GRCh37.p13 refer-
ence genome was obtained from GENCODE20 and modified to  
contain reference chromosomes only, and used to create the  
indexes for each alignment tool. For STAR specifically, the 
annotation file was extracted from a previous study8 and utilised  
in index creation to help increase the accuracy for alignment  
across splice junctions.In the evaluation of alignment results 
for simulated datasets, we used the analysis script that was used  
in the previous study8 to analyse the correctness of the  
alignment results.

The normal and single-cell RNA-seq datasets were obtained 
from publicly available human and mouse datasets which were 
deposited to the NCBI Sequence Read Archive21 (Table 1). Pre-
processing of the datasets was performed using Trimmomatic 
v0.36 to remove low quality sequence and short reads. The  
pre-processed datasets were then analysed by Scavenger using 
STAR v2.5.3a as the alignment tool in the source execution  
and for realignment of spliced reads, together with BLAST 
v2.6.0 for re-alignment of unspliced reads. Indexes used for  
aligning of both human and mouse datasets were generated from 
GRCh38 and GRCm38 reference genomes respectively, which 
were obtained from GENCODE together with the correspond-
ing annotation files (version 27 for human and version 15 for  
mouse). As before, annotation was used to augment the index to 
increase accuracy for alignment. The Repbase database16 was  
also utilised to remove low complexity reads and reads from 
repetitive regions. For human datasets, the simple, humrep and  
humsub sequence files from Repbase were concatenated and  
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used to create a BLAST database. Reads that passed consen-
sus were aligned to this database and the aligned reads that 
have a minimum of 90% sequence identity and 80% sequence  
coverage were removed for further processing in Scavenger. 
A similar approach was used for the mouse datasets, but the  
simple and mousub sequence files from Repbase were used  
instead for filtering low complexity reads and reads from  
repetitive region.

For mouse strain analysis, strain-specific VCF files for non- 
reference mouse strains containing SNPs derived against the  
reference C57BL/6J mouse genome were downloaded from the 
Mouse Genome Project (MGP)22. The calculation of the number 
of SNPs found within aligned reads was performed using the  
intersect tool from Bedtools v2.27.123, while statistical analy-
sis were performed using the independent t-test function from  
SciPy library v1.2.1 (Python v3.6.4).

For running the alignment using STAR, the following command 
is used: STAR –runThreadN <threads> <aligner_extra_
args> –genomeDir <genome_index> –readFilesIn 
<read_files> –outFileNamePrefix <output_
prefix>. As for running the alignment using subread, the 
following command is used: subread-align -T <threads> 
-t 0 <aligner_extra_args> -i <genome_index> 
<read_files> -o <output_file> <bam_option>. 
And lastly, for running the alignment using BLAST, the follow 
command is used: blastn -query unmapped_read -subject 

target_genome -task megablast -perc_identity 
<identity> -qcov_hsp_perc <coverage> -outfmt 
″17 SQ SR ″ -out <sam_output> -parse_deflines. 
During follow-up alignment using STAR, the following parameters 
are additionally used: –outFilterMultimapNmax <num_
reads> –alignIntronMax 1 –seedSearchStartLmax 
30.

Results
Recovery of reads on simulated data
To evaluate the ability of the Scavenger pipeline to recover 
false-negative non-aligned reads, we first tested Scavenger using 
previously published human simulated data. The varying level 
of complexity of the simulated datasets represents the degree of 
divergence between the sequencing reads generated compared 
to the reference genome, ranging from low polymorphism and 
error rate (T1), moderate polymorphism and error rate (T2) and 
high polymorphism and error rate (T3). The results of the source 
execution of STAR with default parameters are consistent with 
the previously published result, with >99% of reads being 
aligned in both T1 and T2 and >90% of reads being aligned in 
T3 (Table 2). After running the Scavenger pipeline, we were 
able to recover between 4-30% of the previously unaligned reads 
in the three datasets, resulting in an increase of aligned reads 
ranging from ~1,500 to ~160,000. The majority of reads recov-
ered by Scavenger are aligned in the correct position, with 79.4% 
of reads being correctly recovered in T1 and >98% of reads 
being correctly recovered in T2 and T3.

Table 1. List of datasets used for Scavenger testing and evaluation. The datasets are divided into three sections: 1. Datasets 
from selected non-reference mouse strain, 2. Normal (bulk) RNA-seq dataset from either human or mouse, and 3. Single-cell RNA-seq 
dataset from mouse.

Accession ID Samples ID Organism Tissue/Source

SRP039411 SRR1182782 - SRR1182783 Mus musculus Liver

ERP000614 ERR032989 - ERR032991; ERR032997 - ERR032998; 
ERR033006 - ERR033009; ERR033017 - ERR033019

Mus musculus Brain

SRP020636 SRR826292 - SRR826299; SRR826308 - SRR826315; 
SRR826340 - SRR826347; SRR826356 - SRR826363

Mus musculus Liver

SRP068123 SRR3087147 - SRR3087158; SRR3087171 - SRR3087176 Mus Musculus Hippocampus

SRP013610 SRR504764 - SRR504766 Mus musculus Eye

SRP076218 SRR3641982 - SRR3641983; SRR3641990; SRR3642003 
- SRR3642005; SRR3642012 - SRR3642014

Mus musculus Heart

SRP045630 SRR1554415 - SRR1554417 Mus musculus Retina

SRP016501 SRR594393 - SRR594401 Mus musculus Brain; Colon; Heart; Kidney; Liver; Lung; 
Skeletal Muscle; Spleen; Testes

SRP075605 SRR3578721 - SRR3578725 Homo sapiens Fibroblasts

SRP122535 SRR6337339 - SRR6337344 Homo sapiens Embryonic stem cell

SRP013027 SRR4422503 - SRR4422506; SRR4422535 - SRR4422538; 
SRR4422626 - SRR4422629

Mus musculus Hindbrain; Limb; Heart

SRP045452 80 randomly selected samples Mus musculus Hippocampus
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The difference in the number of aligned reads between the three 
datasets can be explained by the degree of divergence between 
the sequencing reads and the reference genome; and the limi-
tation of the alignment tool in aligning reads which display a 
high degree of polymorphism. The simulated sequencing reads 
in both T1 and T2 have high homology to the reference genome  
due to the lower degree of polymorphism and error rate  
introduced meaning that the majority of these reads will be 
accurately mapped to the reference genome with a very small  
number of mismatches during alignment. In contrast, the  
sequencing reads in T3 – with the higher polymorphism and error 
rate – have a much higher degree of divergence compared to 
the reference genome thus resulting in more mismatches dur-
ing alignment and therefore causing it to fail to be aligned. The  
Scavenger pipeline is able to recover more reads in T2 and  
T3 compared to T1 due to the greater number of aligned reads  
that contain mutations within the sequence. During follow up 
execution, Scavenger exploits the fact that these aligned reads  
will have closer similarity to the unaligned reads, which will  
also contains mutations, therefore resulting in the alignment of  
the aligned reads to the unaligned reads to obtain the putative  
location for the unaligned reads for recovery.

Another method to solve the false-negative non-alignment  
problem is to adjust the parameters of the alignment tool uti-
lised in order to allow alignment of reads with a higher degree of  
polymorphism. As has been shown previously, alignment of 
the simulated datasets using STAR with optimised parameters  
results in >99.2% of the reads being aligned, with T1 and  
T2 reaching nearly 99.9% of reads being aligned (Table 3). 
The Scavenger pipeline is unable to obtain the high degree of  
alignment achieved with parameter optimisation due to limita-
tions in Scavenger’s approach to recover reads. Since Scavenger 
utilises information from aligned reads to find the putative 
location of unaligned reads for recovery, it is not possible to 
recover any unaligned reads from regions which have no read  
alignments. As such, the reads that the Scavenger pipeline is  
able to recover are reads from regions which already have  
alignment. This is unlike parameter optimisation, which allows 
for alignment with a higher threshold of mismatches in any region 
irrespective of whether there was alignment in the region. This 
observation can be seen in the high degree of overlap (>96.5%) 
of the reads recovered by the Scavenger pipeline compared to  
the reads recovered by optimised parameters. The Scavenger  

pipeline is still able to recover some reads which are unaligned  
with optimised parameters, particularly in T3 where Scavenger 
recovered ~9.75% of previously unaligned reads. Unlike  
Scavenger recovery with default parameters, the majority of  
recovered reads after alignment with optimised parameters are 
incorrectly aligned in both the T1 and T2 datasets. Given the 
very high degree of alignment in these lower complexity datasets, 
it is likely that the unaligned reads are reads which can align to  
many locations in the genome and thus correctly recovering 
these reads is very difficult and error prone. These results indi-
cate that parameter optimisation provides a solution to the false- 
negative non-alignment problem, performing better than 
Scavenger. However, given that performing parameter opti-
misation is not trivial due to lack of ground truth in real data-
sets, these results also show that Scavenger can be utilised as an  
alternative to help recover false-negative non-aligned reads.

We also performed a comparison of the Scavenger pipeline 
against a recently published tool, Read Origin Protocol (ROP) 
v1.0.8, which is primarily designed to identify the origin of  
unaligned reads14. The ROP tool consists of 6 steps, with each  
step designed to identify different causes for unaligned reads:  
reads with low quality, lost human reads, reads from repeat 
sequences, non-colinear RNA reads, reads from V(D)J recom-
bination and reads belonging to microbial communities. The  
result of running ROP on the simulated dataset shows that  
ROP is able to identify an average of ~29,000 reads in the T1 
and T2 datasets, and ~58,500 reads in T3 dataset (Table 4). In  
particular, the majority of reads in the T1 and T2 dataset are 
correctly identified as lost human reads, while the majority of  
reads in T3 dataset are incorrectly identified as immune 
reads. Checking the correctness of ROP identified reads is not  
straightforward given that most steps within ROP does not  
produce alignment information. Thus, correctness testing was 
performed only on the genome-based alignment information  
produced during the lost reads steps. The result of the correct-
ness testing shows that >92.6% of the reads identified by ROP  
are incorrectly aligned (Table 5).

Divergence of personal genome results in false-
negative non-aligned reads
One factor which may affect the false-negative non-alignment 
problem is the divergence of sequences between the reference 
genome and personal genome which results in alignment tools 

Table 2. Alignment statistics for simulated datasets before and after Scavenger recovery using default parameters for STAR.

Dataset Source execution Scavenger pipeline Unaligned 
reads 

recovered

% recovered 
reads correct

% recovered 
reads incorrect

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned

T1 9,671,586 8,022 33,486 9,672,770 8,330 31,994 1,492 79.4 20.6

T2 9,617,585 17,163 56,827 9,634,469 17,496 39,610 17,217 98.1 1.9

T3 8,595,549 67,559 933,274 8,753,899 67,995 774,488 158,786 99.7 0.3
The result shown is an average from 3 samples.
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Table 3. Alignment statistics for simulated datasets before and after Scavenger recovery using optimised parameters for 
STAR.

Dataset Source execution Scavenger pipeline Unaligned 
reads 

recovered

% recovered 
reads correct

% recovered 
reads incorrectAligned 

correctly
Aligned 

incorrectly
Unaligned Aligned 

correctly
Aligned 

incorrectly
Unaligned

T1 9,673,309 6,861 15,660 9,673,362 6,948 15,519 141 37.8 62.2

T2 9,643,573 14,570 11,237 9,643,715 14,675 10,990 246 55.5 44.5

T3 9,437,748 75,395 83,687 9,445,855 75,448 75,527 8,160 99.4 0.6
The result shown is an average from 3 samples.

Table 4. Unaligned reads identified by ROP in the simulated dataset.

Dataset Unaligned 
reads identified

Low Quality 
Reads

Low Complexity 
Reads

rRNA 
reads

Lost 
Reads

Repeat 
reads

NCL 
Reads

Immune 
Reads

Microbial 
Reads

T1 31,469 1 188 251 30,398 502 9 120 1

T2 27,328 0 306 148 23,508 1,690 28 1,639 9

T3 58,544 3 2,469 13 3,085 7,123 132 45,696 24

The result shown is an average from 3 samples.

Table 5. Unaligned reads identified by ROP in the simulated dataset.

Dataset Unaligned 
reads recovered

% recovered read 
correct

% recovered read 
incorrect

T1 29,614 5.1% 94.9%

T2 22,032 6.6% 93.4%

T3 2,986 7.4% 92.6%

The result shown is an average from 3 samples.

being unable to properly align the reads due to the higher  
number of mismatches. To evaluate the ability of Scavenger in 
recovering these false-negative non-aligned reads which arise  
due to divergence of the personal genome, an experiment was 
devised where reads from non-reference inbred laboratory mouse 
strains were aligned to the reference C57BL/6J mouse genome 
to imitate alignment of reads from the personal genome against  
the reference genome. Multiple nonreference mouse strains –  
129S1/SvImJ, A/J, CAST/EiJ, DBA/2J and NOD/ShiLtJ – were 
utilised as the genomes of these strains have previously been  
characterised by the Mouse Genome Project (MGP), with 
variations from each strain identified relative to the reference  
mouse genome. We collected 80 publicly available RNA-
seq samples from the selected mouse strains, with each strain  
having a minimum of 13 samples from at least 3 different  
projects with varying characteristics, and performed alignment 
of these samples against the reference genome using STAR  
with default parameters. The result of the source alignments  
shows that there is generally a high degree of mappability of  

the reads, ranging from 82.2% up to 98.1%. After recovery 
with Scavenger, we were able to re-align ~4.75% of unaligned  
reads in the source execution, corresponding to an increase in 
the number of aligned reads ranging from 17,000 to 396,000 
reads (Table 6).

Further analysis was performed to evaluate the hypothesis 
that reads recovered by Scavenger have a higher degree of 
polymorphism due to the divergence between the ’personal’  
non-reference mouse strain genome against the reference 
genome. We randomly selected 1,000 unspliced reads which are  
aligned in the source execution and 1,000 unspliced reads  
recovered by Scavenger from each sample, and then calculated 
the number of single nucleotide polymorphisms (SNP) found  
within the location of the aligned reads from the list of strain- 
specific SNPs published by MGP against the reference mouse 
genome. The same analysis was then repeated a further 9 times,  
for a total of 10 iterations, to allow for significance testing. The 
majority of the reads which are either successfully aligned 
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or recovered did not contain any known SNPs. However, the  
number of reads which contain SNPs is significantly higher  
(by t-test, p-value < 10−27) in the reads recovered by Scavenger 
compared to the reads aligned in the source execution for 4  
of the 5 strains analysed (Figure 2A). Furthermore, the 
number of reads with a high number of SNPs (> 5) are also  
significantly higher (by t-test, p-value < 10−21) in the reads  
recovered by Scavenger for all of the strains analysed indicat-
ing that Scavenger is able to recover reads which are more 
polymorphic compared to the reads aligned during the source 
execution (Figure 3 and Figure 2B). These results validate the  
hypothesis that reads recovered by Scavenger have a higher  
degree of polymorphism as a result of the divergence between 
the personal genome and the reference genome and further  
demonstrates the ability of Scavenger in dealing with the 
false-negative non-alignment problem.

Effect of Scavenger recovery pipeline on downstream 
analysis
While alignment of reads is an important step in RNA-seq  
analysis, further downstream analyses are required in order to 
interpret the data into meaningful results. As one of the most  
common applications of RNA-seq analysis is gene expression  
analysis, we focused on identifying the effect of adding reads  
recovered by Scavenger on the expression of genes. The dataset  
utilised for testing consisted of 23 publicly available RNA-seq 
samples selected from 3 separate projects of varying charac-
teristics, with 11 samples originating from two human projects  
and 12 samples originating from a single mouse project. The 
result of source execution using STAR with default parameters  
shows a high degree of mappability in all datasets, ranging from 
~95.9% in human datasets and ~92.9% in the mouse dataset  

(Table 6). After recovery of reads with Scavenger, we were 
able to recover ~3.1% of unaligned reads on average across the 
three datasets, corresponding to an increase ranging from 7,000  
reads up to 102,000 reads. While the number of reads recovered  
are quite low relative to the number of previously aligned  

Figure 2. The number of reads containing SNPs found within 
source aligned reads and Scavenger recovered reads. A. The 
number of reads with ≥ 1 SNPs found within reads. B. The number 
of reads with high number of SNPs (> 5) found within reads.

Table 6. Alignment statistics for all RNA-seq datasets in source alignment with STAR and after recovery of reads with 
Scavenger. The datasets are divided into three sections: 1. Datasets from selected non-reference mouse strain, 2. Normal (bulk) RNA-seq 
dataset from either human (†) or mouse (§), and 3. Single-cell RNA-seq dataset from mouse.

Accession 
ID

Read 
length 

(bp)

Total reads Source 
aligned 

reads

Source 
unaligned 

reads

Source 
mappability 

(%)

Rescue 
aligned 

reads

Rescue 
unaligned 

reads

Rescue 
mappability 

(%)

Rescued 
reads

Unaligned 
reads 

rescued (%)

SRP039411 97 47,077,051 44,052,994 3,024,056 93.6 44,162,052 2,915,000 93.8 109,057 3.61

ERP000614 73 30,406,321 29,529,186 877,136 97.1 29,571,416 834,905 97.3 42,230 4.72

SRP020636 93 10,695,056 10,023,946 671,110 93.8 10,053,119 641,937 94 29,173 4.43

SRP068123 89 36,237,495 29,132,806 7,104,689 82.2 29,342,165 6,895,330 82.7 209,360 2.9

SRP013610 54 21,039,752 20,514,308 525,444 97.5 20,531,454 508,298 97.6 17,146 3.19

SRP076218 86 20,183,248 19,802,286 380,962 98.1 19,822,443 360,805 98.2 20,157 5.49

SRP045630 99 15,931,928 15,550,706 381,221 97.6 15,578,309 353,618 97.8 27,603 7.24

SRP016501 48 85,677,826 82,218,772 3,459,055 96.2 82,614,984 3,062,842 96.6 396,213 8.86

SRP075605† 51 30,851,404 29,278,793 1,572,611 95 29,356,220 1,495,184 95.2 77,427 5.26

SRP122535† 50 15,658,933 15,121,371 537,562 96.6 15,133,718 525,214 96.7 12,347 2.58

SRP013027§ 100 28,031,517 26,043,731 1,987,786 92.9 26,092,526 1,938,992 93.1 48,794 2.49

SRP045452 51 2,286,199 1,307,716 978,483 57.3 1,313,084 973,116 57.5 5,368 0.621

The result shown is an average of all samples per accession ID.
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reads, the addition of tens and hundred of thousands of reads  
is still likely to affect the expression of the genes.

Gene quantification of aligned reads is performed using 
featureCounts24 to produce read counts per gene, which is then 
normalised to reads per million (RPM). In the source align-
ment, the number of genes expressed, defined as having non-zero  
read counts, in the human datasets average to 26,000 genes, 
while the number of genes expressed in the mouse dataset is  
25,800 genes. In Scavenger recovered alignment, we see an 
increase of up to 3 expressed genes per sample, indicating the  
ability of Scavenger to recover genes which are falsely consid-
ered as non-expressed in the source alignment (Figure 5A). The 

recovery of reads in previously non-expressed genes is likely  
due to the extension of putative alignment locations, which 
may introduce regions which have no alignment in the source  
execution. Further investigation into the reads recovered by  
Scavenger shows that the reads are not distributed evenly across  
all the expressed genes – with  only ~2150 and ~5900 genes  
receiving an increase in read counts in human and mouse  
datasets, respectively. The majority of genes with increased read 
counts do not see much change in gene expression, with only 
~14 genes having more than 1 fold-change difference between  
source expression and recovered expression. Interestingly,  
genes which have substantial difference after recovery are  
generally genes with low expression in the source execution 

Figure  3. Distribution of number of SNPs found within source aligned reads and Scavenger recovered reads for each non-
reference mouse strain. Scavenger is able to recover reads with a higher number of SNPs (> 5) compared to source alignment.
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Figure 4. Gene expression in source alignment and after Scavenger recovery for genes whose reads are recovered. Coloured 
points indicates genes with expression difference of greater than 1 fold change.

(log2(RPM) < 5), potentially indicating that some lowly  
expressed genes may actually have higher true expression than 
what is reported due to the alignment tool being unable to  
pick up these reads (Figure 4). This also has implications in 
further downstream analyses as lowly expressed genes are  
typically excluded from analysis, when instead it should not  
have been excluded as their true expression is actually higher.

We then performed further investigations into the genes with  
more than 1 fold-change difference after recovery to study the 
types of genes affected by the false-negative non-alignment 
problem. The majority of genes with recovered expression 
in the human and mouse dataset are classified as pseudogenes 
(>60%), with the second most frequent type being protein  
coding genes (22% and 9% for human and mouse dataset,  
respectively) (Figure 5B). Moreover, most recovered genes with 
very low expression in the source alignment (log2(RPM+1)  
< 5) are in the pseudogenes category implying that many pseu-
dogenes expression are likely to be under-reported due to reads  

originating from pseudogenes not being picked up by the align-
ment tool (Figure 4). Frequency analysis of the recovered 
genes also shows that some genes are consistently recovered 
across at least half of the samples in human and mouse datasets  
respectively, potentially indicating that these genes are harder 
to be picked up by the alignment tool due to its sequence being  
highly polymorphic. The finding that expression of pseudogenes 
are particularly affected by the false-negative non-alignment  
problem is significant as recent studies have shown that  
pseudogenes are incorrectly assumed to be non-function-
ing and actually have a role in regulating  biological processes,  
particularly in diseases such as cancer25,26. The reason that  
pseudogenes are more affected by Scavenger recovery is likely 
due to a number of factors, including the large number of  
mutations accumulated within pseudogenes which results in  
greater divergence between pseudogene sequences and per-
sonal genomes; and the typically low expression of pseudogenes,  
which will result in higher relative fold change difference in  
expression as a result of recovery by Scavenger (Figure 6).
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Applying Scavenger recovery on single-cell RNA-seq 
data
Single cell RNA-sequencing (scRNA-seq) is fast becoming a 
mainstream method for transcriptomics analysis due its ability 
to elucidate transcriptional heterogeneity of individual cells. 
However, there are a number of challenges when dealing with 
scRNA-seq datasets due to systematically low read counts,  
as a result of the small amount of transcripts which are cap-
tured during library preparation, and a high degree of technical  
noise27. Given Scavenger’s ability in recovering false-negative  
non-recovered reads in normal bulk RNA-seq datasets and 
the effect it has on downstream analyses, we hypothesise that  
recovery of unaligned reads in scRNA-seq datasets with  
Scavenger will likely have a greater impact on downstream 
analysis due to limited amount of reads available, while also  
helping with reducing technical noise. To test this hypothesis,  
80 randomly selected samples were collected from a mouse 
brain scRNA-seq dataset and which are then aligned with  

STAR, followed by recovery of reads with Scavenger. The 
scRNA-seq samples have an average read depth of ~2.3 mil-
lion reads (after pre-processing), with ~57.3% of the reads able 
to be aligned in the source execution (Table 6). Scavenger was 
only able to recover 0.6% of the unaligned reads, corresponding  
to an increase of ~5,400 reads. The low number of reads  
which are able to be successfully recovered by the Scavenger  
pipeline is likely due to the low number of aligned in reads in  
source alignment, which provides less information that  
Scavenger can utilise during the follow-up execution.

As per the norm for scRNA-seq datasets, the number of genes  
with non-zero read counts is much lower compared to the  
number of non-expressed genes in bulk RNA-seq datasets,  
averaging 5,800. Of these expressed genes, only 12% of the  
genes (~700) have an increase in read counts, with the major-
ity of these genes having little difference in expression and ~12 
genes having a fold-change difference greater than 1 (Figure 7A).  

Figure 5. Effect of Scavenger read recovery on gene expression for normal (bulk) RNA-seq datasets. A. The number of genes 
whose reads are recovered by Scavenger, categorised based on the fold change in normalised expression (RPM) between source alignment 
and after Scavenger recovery. B. The number of genes with more than 1 fold change in normalised expression categorised based on their 
gene types.
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Figure 6. Distribution of Scavenger recovered reads categorised by gene type for normal (A) and single-cell (B) RNA-seq datasets. 
In general, most reads are located in a region without a feature or within a protein coding gene. However, a high percentage of reads in 
human bulk RNA-seq datasets are located in other gene types, more specifically mitochondrial genes, due to the high source expression of 
these genes.

Unlike in bulk RNA-seq datasets, genes with substantial  
difference after recovery range from lowly expressed genes 
up to highly expressed genes, though genes with the greatest  
difference in expression are still those with low expression  
in the source alignment (Figure 4). Furthermore, a different 
pattern was also observed in the types of genes which have sub-
stantial difference in scRNA-seq datasets, with the protein  
coding category being the majority, followed by the pseudogene 
category (Figure 7B). The difference in pattern is likely due to 
comparatively higher abundance of protein coding genes and 
the low capture efficiency of scRNA-seq methods, meaning that  

reads from pseudogenes are less likely to be captured and  
therefore rescued. This can be seen from the much lower number 
of pseudogenes expressed in scRNA-seq dataset (~150)  
compared to bulk RNA-seq datasets (~3,500).

Discussion
The false-negative non-alignment problem is a prevalent  
problem in many of the published RNA-seq alignment tools,  
resulting in loss of information from incorrectly unaligned reads. 
To help. solve the false-negative non-alignment problem, we  
have developed Scavenger – a pipeline for recovery of unaligned 
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reads using a novel mechanism based on sequence similar-
ity between unaligned and aligned reads. Scavenger utilises the  
follow-up execution concept adapted from our previous work 
on metamorphic testing to find aligned reads from the source  
execution which have similar sequences to the unaligned reads 
by aligning the aligned reads against unaligned reads. The  
location of the aligned reads are then used as a guide to re-align  
the unaligned reads back to the reference genome using either 
BLAST or the original alignment tool depending on if the puta-
tive location originates from unspliced or spliced alignment, 
respectively, to ensure that splicing information is retained in  
recovered reads.

We have applied Scavenger on simulated datasets with vary-
ing degrees of complexity and showed that Scavenger is able to 

recover unaligned reads across all complexity levels with a rea-
sonably high degree of accuracy. In particular, Scavenger is  
able to recover the most amount of reads in datasets that exhibit 
a high degree of complexity where read sequence is more  
divergent compared to the reference genome. We further show 
that although alignment of reads with optimised parameters are  
able to produce a higher number of aligned reads compared  
to after recovery with Scavenger, the reads recovered by  
Scavenger have high degree of overlap to reads recovered with 
parameter optimisation. The lower number of reads recovered 
by after Scavenger is a result of Scavenger using information 
from aligned reads to find putative locations for unaligned reads,  
meaning that Scavenger is unable to recover reads from region  
with no alignment – unlike parameter optimisation which does 
not have the same limitation. Given the non-trivial difficulty of  

Figure 7. Effect of Scavenger read recovery on gene expression for single-cell RNA-seq datasets. A. The number of genes whose 
reads are recovered by Scavenger, categorised based on the fold change in normalised expression (RPM) between source alignment and 
after Scavenger recovery. B. The number of genes with more than 1 fold change in normalised expression categorised based on their gene 
types.
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performing parameter optimisation on real datasets, we recom-
mend the use of Scavenger as an alternative to help with recov-
ering incorrectly unaligned reads after minimal or no parameter  
optimisation since the reads recovered by Scavenger are 
highly similar to reads recovered by alignment with optimised  
parameter.

There are a number of possible factors which may contribute 
to the false-negative non-alignment problem. One such factor  
is the divergence between the reference genome and the per-
sonal genome, leading to higher mismatches during alignment  
of sequenced reads against the reference genome. In order  
to validate that divergence of genomic sequences result in incor-
rectly unaligned reads, we devised an experiment whereby  
RNA-seq datasets from non-reference mouse strains were  
aligned against the reference mouse strain. We then analysed 
the reads which were aligned in the source execution against 
those recovered by Scavenger and showed that Scavenger is able 
to significantly recover more reads which have a higher number 
of reported strain-specific SNPs. This result both confirms that  
divergence of sequences between the reference genome and  
the personal genome does affect the false-negative non- 
alignment problems and that Scavenger is able to recover reads 
which are incorrectly unaligned due to a higher degree of  
sequence divergence.

As alignment of reads is only the first step in an RNA-seq  
data analysis, we also investigated the effect of the false-negative 
non-alignment problem on downstream analyses, in particular  
on gene expression analysis. After recovery of reads with  
Scavenger, we show that ~14 genes have more than 1 fold change 
in expression compared to the source alignment and that these  

genes are typically genes with low expression. Interestingly, the 
majority of genes with >1 expression difference belong to the  
pseudogenes category, indicating that the expression of  
pseudogenes are likely to be under-reported due to reads from 
pseudogenes being incorrectly unaligned by the alignment tool.  
Given the ability of Scavenger to recover gene expression in  
normal (bulk) RNA-seq datasets, we then investigated the 
ability of Scavenger in recovering reads from scRNA-seq data-
set as scRNA-seq datasets have the characteristics of having low  
reads counts and high degree of technical noise. Scavenger  
recovery affected the expression of 12% of the expressed genes, 
with ~12 genes having more than 1 fold change in expression.  
Unlike the bulk RNA-seq dataset, the genes with >1 change 
in expression range from lowly expressed genes up to highly  
expressed genes, with the genes belonging primarily to the  
protein coding category.

The current version of Scavenger supports STAR as the  
alignment tool for source execution and re-alignment of  
spliced reads. However, the user can choose to modify the 
alignment tool utilised by Scavenger with the alignment tool  
of their choice. Ideally the tool should satisfy the three  
properties underlying the read recovery pipeline – deter-
ministic alignment, realignability of mapped reads, and  
non-realignability of unmapped reads – to ensure that the  
recovered reads are deterministic. To show the extensibility of 
Scavenger, we have tested Subread, another RNA-seq alignment  
tool, as a replacement for STAR within the Scavenger pipe-
line and demonstrated that Scavenger is still able to recover  
incorrectly unaligned reads with similar performance to STAR 
(Table 7 and Table 8). It should be noted that the recovery  
performance of Subread is different compared to STAR due  

Table 7. Alignment statistics for simulated datasets before and after Scavenger recovery using default parameters for 
Subread.

Dataset Source execution Scavenger pipeline Unaligned 
reads 

recovered

% recovered 
reads correct

% recovered 
reads incorrect

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned

T1 9,305,067 74,497 620,436 9,332,335 79,653 588,012 32,424 84.1% 15.9%

T2 8,985,799 87,576 926,625 9,107,130 92,296 800,574 126,051 96.3% 3.7%

T3 4,802,130 106,487 5,091,384 4,984,817 108,947 4,906,235 185,148 98.7% 1.3%
The result shown is an average from 3 samples.

Table 8. Alignment statistics for simulated datasets before and after Scavenger recovery using optimised parameters for 
Subread.

Dataset Source execution Scavenger pipeline Unaligned 
reads 

recovered

% recovered 
reads correct

% recovered 
reads incorrect

Aligned 
correctly

Aligned 
incorrectly

Unaligned Aligned 
correctly

Aligned 
incorrectly

Unaligned

T1 9,416,480 262,926 320,594 9,419,057 264,906 316,037 4,557 56.5% 43.5%

T2 9,283,792 397,323 318,885 9,287,022 398,775 314,203 4,682 69.0% 31.0%

T3 7,111,603 2,251,068 637,330 7,122,864 2,251,625 625,512 11,818 95.3% 4.7%
The result shown is an average from 3 samples.
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to the different algorithm employed by Subread for align-
ment and, potentially, due to Subread violating the deterministic  
alignment property.

Data availability
Source data
Simulated datasets used in this study were obtained from  
Baruzzo et al.8

The datasets are publically available from: http://bioinf.itmat.
upenn.edu/BEERS/bp1/datasets.php

Software availability
Project name: Scavenger

Project home page: https://github.com/VCCRI/Scavenger

Archived source code: https://doi.org/10.5281/zenodo.335899518

Operating system(s): Linux

Programming language: Python 3 and Shell

Other requirements:STAR and Subread

License:MIT
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Page 4: "(i.e. the number of aligned reads that fall within the interval)" -> which aligned 
reads? the unaligned realigned or the aligned? 
 

○

Page 4: please describe (intuitively) what “realignability of mapped reads” and “non-
realignability of unmapped reads” means. 
 

○

 Page 6: "mousub" > “mouse”? 
 

○

Page 6-7: command lines are ugly (maybe due to two columns page format). 
 

○

Section “Results”: it would be useful to describe the running times and the RAM 
requirements of Scavenger in the various experimental analysis to better understand 
whether it can be run on low-end and mid-range servers. 
 

○

Table 6 reports the results of different experiments described in the manuscript. The last 
sentence on page 9 might be confusing since it states that the minimum number of rescued 
reads is 17,000 whereas the table includes two smaller values (12,347 and 5,368).  We 
suppose that these two lines refer to the results on Mouse scRNA reads. We suggest the 
authors to better specify the experiment on each line (or split the table in two). 
 

○

Table 6 reports the results for all the samples considered in the evaluation (human and 
mouse). We believe that the authors should specify the organism for each accession ID. 
 

○

Page 10: We concur with the other reviewer and we think that the sample size for random 
sampling of reads is too small relative to the total mapped reads.  The authors should 
improve this part of the manuscript. 
 

○

Page 10: "11 samples originating from two human projects" -> there is no table. I would like 
to see it (as done for the mouse samples). 
 

○

Figure 3: the caption is wrong. There is no B subfigure. Moreover, the axes have no labels 
making the charts harder to understand. 
 

○

Page 12: “and the typically low expression of pseudo- genes which is therefore more 
affected by increase an in reads as a result of recovery by Scavenger” -> please rephrase this 
sentence since it’s not completely clear to us. 
 

○

Page 15: "are able produce" -> "are able to produce"○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: algorthmic bioinformatics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 31 Jul 2022
Andrian Yang, Victor Chang Cardiac Research Institute, Sydney, Australia 

We thank the reviewer for their overall positive assessment of our work, as well as their 
constructive comments. Please find below our point-by-point response to the reviewer's 
comments: 
 
Major remarks: 
We have a single main remark for the authors. 
Although we appreciate the extensive experimental evaluation, it is not easily reproducible.  We 
suggest the authors publish the commands used to run all the experiments in a supplementary 
repository or document, ideally in the form of a Snakemake or Nextflow pipeline. 
 
We thank the reviewer for the suggestion and will be happy to share commands used with 
viewers upon request. We will endeavour to make all code available upon publication in 
future studies. 
 
Moreover, in Section “Dataset” the authors report the commands used to run STAR, subread-
align, and blastn.  We think that it is not useful to report them in the manuscript and we suggest 
to remove them for better readability. 
 
While we thank the reviewer for the suggestion, we believe the inclusion of the commands 
used are helpful for the viewer to understand the alignment parameter used in each of the 
program as the result of the alignment may differ depending on the alignment parameters 
used. 
 
Minor remarks and typos:

Page 4: "(i.e. the number of aligned reads that fall within the interval)" -> which aligned 
reads? the unaligned realigned or the aligned?

○

We have added a clarification in the section highlighted by the reviewer. 
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Page 4: please describe (intuitively) what “realignability of mapped reads” and “non-
realignability of unmapped reads” means.

○

The requirement of realignability of mapped reads is for reads which are mapped in one 
run of the alignment to also be mapped in other runs of the alignment if no other 
alignment parameters are modified. Similarly the definition of non-realignability of 
unmapped reads is for reads which are unmapped in one run of the alignment to also still 
be unmapped other runs of the alignment if no other alignment parameters are modified. 
These requirements differs from the deterministic alignment property, as some (multi) 
mapped reads may be assigned to different mapping location in different runs of the 
alignment even with identical alignment parameters.

 Page 6: "mousub" > “mouse”?○

The mousub term used here refers to the name of the sequence file provided by Repbase 
for mouse organism. We have added extra clarification in the manuscript.

Page 6-7: command lines are ugly (maybe due to two columns page format). ○

Section “Results”: it would be useful to describe the running times and the RAM 
requirements of Scavenger in the various experimental analysis to better understand 
whether it can be run on low-end and mid-range servers.

○

We unfortunately did not record the running times for scavenger across the experimental 
analysis so we are not able to include this information within the manuscript. The RAM 
requirement of Scavenger is largely dictated by the RAM requirement for the alignment tool 
used (~30GB for human genome to run STAR), though it may also scale depending on the 
number of reads processed.

Table 6 reports the results of different experiments described in the manuscript. The last 
sentence on page 9 might be confusing since it states that the minimum number of 
rescued reads is 17,000 whereas the table includes two smaller values (12,347 and 5,368).  
We suppose that these two lines refer to the results on Mouse scRNA reads. We suggest the 
authors to better specify the experiment on each line (or split the table in two).

○

The amount of reads recovered as alluded to in the last sentence on page 9 refers to the 
first section of the table, which give statistics for the datasets from selected non-reference 
mouse strain. We have added extra clarification in the figure caption.

Table 6 reports the results for all the samples considered in the evaluation (human and 
mouse). We believe that the authors should specify the organism for each accession ID.

○

We have added extra clarification in the figure caption.
Page 10: We concur with the other reviewer and we think that the sample size for random 
sampling of reads is too small relative to the total mapped reads.  The authors should 
improve this part of the manuscript.

○

We thank the reviewer for their feedback regarding the experiment where we evaluated the 
degree of polymorphism between source aligned and scavenger recovered reads. We will 
endeavour to perform more rigorous experiment as suggested by the reviewer in future 
studies.

Page 10: "11 samples originating from two human projects" -> there is no table. I would 
like to see it (as done for the mouse samples).

○

The details of the human samples used in this study is included in Table 1.
Figure 3: the caption is wrong. There is no B subfigure. Moreover, the axes have no labels 
making the charts harder to understand. 
 

○
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Page 12: “and the typically low expression of pseudo- genes which is therefore more 
affected by increase an in reads as a result of recovery by Scavenger” -> please rephrase 
this sentence since it’s not completely clear to us. 
 

○

Page 15: "are able produce" -> "are able to produce"○

We have now fixed the sections highlighted by the reviewers following the reviewers’ 
suggestions.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 21 October 2019
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© 2019 Nguyen Q. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Quan Nguyen   
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia 

The authors present Scavenger, a pipeline to recover false unaligned reads by remapping or 
BLAST-search unmapped reads that are similar to aligned reads. The false unaligned reads 
commonly arise from two sources: the actual sequence variation to the shared reference genome 
and the mapping to multiple regions. These reads are usually discarded in a standard analysis 
pipeline.  
 
The software can be useful to rescue unmapped reads in a quantifiable way, which can be 
important in many sequencing data analysis scenarios. Example usage cases are to study the 
expression of frequently mutated genes in diseased samples and in the mapping cases where a 
genome reference is not complete or high divergence to the reference exists. 
 
The authors comprehensively tested Scavenger using three simulation settings, 80 RNA-seq 
datasets from non-reference inbred laboratory mouse strains, 11 human and 12 mouse datasets 
and 80 single-cell datasets. They performed analyses on the effects of recovering falsely unaligned 
reads to downstream analyses and show that pseudogenes affect expression measurements. 
Scanvenger input files are FASTQ files, or mapped BAM/SAM files, and the software has 
functionalities for parallelisation on CPUs and AWS cloud processing.  
 
I suggest some minor revisions below: 

FASTQ read statistics like length and quality should be described. What preprocessing steps 
are required, for example trimming of N bases, filtering of low-quality reads? While multiple 
mapping and divergence in genome sequence are two primary sources of false unaligned 
reads, another common source can be from sequencing base calling error. The authors may 
add discussion on how quality scores affect read recovery.  

○
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The tests for difference in the level of polymorphism between unligned and aligned reads 
are interesting and can lead to important conclusions. These tests can be improved. The 
sample size from a random sampling of reads (1000 reads) is small relative to the total 
mapped reads (< 0.1%), and t-test for results from 10 iterations is not suitable to test for 
testing the enrichment of SNPs in aligned vs unaligned reads. The authors may consider the 
permutation test or others. The authors may also consider known regions of the genome 
where more mutations are expected.  
 

○

The recovery of un-detected genes and effects on fold-change are interesting. The author 
may consider adding information or a panel in figure 5 to show expression levels of these 
affected genes before and after read recovery.  
 

○

Page 4: clarify "qualities" as mapping or sequencing qualities.  
 

○

Page 4: clarify "to reduce potential location for alignment". Can be useful to output total 
reads that can not be rescued due to multiple mapping.  
 

○

Tables 2 and 3, the unaligned category on the third column should be a part of the source 
execution. 
 

○

Add discussion on when Scavenger should be used as an alternative for parameter 
optimisation approach in STAR alignner. For example, on Pages 8 and 15, the authors dicuss 
"performing parameter optimisation is not trivial due to lack of ground truth", how does 
Scavenger perform better in the absence of ground truth?  Would it be due to speed, 
accuracy and quantitativeness?  
 

○

Figure 3, add label A) and B), and description for panel titles and graph axis titles. 
 

○

Page 12, what single-cell sequencing platforms were used for the selected datasets. 
Variation in recovery efficient may occur in, for example, 3'-sequencing and full-length 
sequencing data. 

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly
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Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Transcriptomics, genomics, machine-learning, single-cell

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 31 Jul 2022
Andrian Yang, Victor Chang Cardiac Research Institute, Sydney, Australia 

We thank the reviewer for their overall positive assessment of our work, as well as their 
constructive comments. Please find below our point-by-point response to the reviewer's 
comments:

FASTQ read statistics like length and quality should be described. What preprocessing 
steps are required, for example trimming of N bases, filtering of low-quality reads? While 
multiple mapping and divergence in genome sequence are two primary sources of false 
unaligned reads, another common source can be from sequencing base calling error. The 
authors may add discussion on how quality scores affect read recovery. 

○

We would like to highlight Table 6 to the reviewer which contains the read length statistics 
for each sample. Unfortunately, the read quality information is not readily available so we 
are not able to provide the statistics in the manuscript. With regards to read pre-processing, 
we performed basic pre-processing of sequencing reads using Trimmomatic to remove low 
quality sequence and short reads, though recent studies have shown that read pre-
processing may not be required for RNA-seq alignment as demonstrated in Liao and Shi 
2020 (https://academic.oup.com/nargab/article/2/3/lqaa068/5901066). We agree with the 
reviewer that low quality reads likely contribute to false unaligned reads by aligner due to 
increased mismatches/indel in read sequence as previously described by Dobin and 
Gingeras 2015 (
https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1114s51). 
However,  since the recovery process largely re-utilise the aligner used in the initial 
alignment (source execution), the recovery rate of low quality sequences are likely to be low 
as the recovery process imposes the same minimum sequence requirement for recovery. 
 

The tests for difference in the level of polymorphism between unligned and aligned reads 
are interesting and can lead to important conclusions. These tests can be improved. The 
sample size from a random sampling of reads (1000 reads) is small relative to the total 
mapped reads (< 0.1%), and t-test for results from 10 iterations is not suitable to test for 
testing the enrichment of SNPs in aligned vs unaligned reads. The authors may consider 
the permutation test or others. The authors may also consider known regions of the 
genome where more mutations are expected. 

○

We thank the reviewer for their feedback regarding the experiment where we evaluated the 
degree of polymorphism between source aligned and scavenger recovered reads. We will 
endeavour to perform more rigorous experiments as suggested by the reviewer in future 
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studies.
The recovery of un-detected genes and effects on fold-change are interesting. The author 
may consider adding information or a panel in figure 5 to show expression levels of these 
affected genes before and after read recovery. 

○

We would like to highlight Figure 4 to the reviewer, which provide a summary of the gene 
expression before and after read recovery for the three different type of datasets.  

Page 4: clarify "qualities" as mapping or sequencing qualities.  
 

○

Page 4: clarify "to reduce potential location for alignment". Can be useful to output total 
reads that can not be rescued due to multiple mapping.  
 

○

Tables 2 and 3, the unaligned category on the third column should be a part of the source 
execution.

○

We have added clarifications to the sections that the reviewer highlighted and fixed the 
table layout.

Add discussion on when Scavenger should be used as an alternative for parameter 
optimisation approach in STAR alignner. For example, on Pages 8 and 15, the authors 
dicuss "performing parameter optimisation is not trivial due to lack of ground truth", how 
does Scavenger perform better in the absence of ground truth?  Would it be due to speed, 
accuracy and quantitativeness?

○

A typical alignment optimisation approach, especially in the absence of ground truth, is to 
minimise the amount of unaligned reads by increasing the edit distance threshold during 
alignment at the risk of increasing the number of incorrectly aligned read. While it is 
possible to find an optimised parameter which maximise the number of aligned reads while 
minimising the number of incorrectly aligned reads through varying different parameter 
values, this is not entirely possible to do in the absence of ground truth and will likely take a 
lot of time and effort to test all possible permutation of alignment parameters. Scavenger 
has been shown to be able to recover reads with reasonably high degree of accuracy 
without the need for extensive parameter optimisation, with the reads recovered having 
very degree of overlap to reads recovered with parameter optimisation, and as such, would 
be a good method to utilise after minimal or no parameter optimisation. We have added 
extra discussion in the manuscript.

Figure 3, add label A) and B), and description for panel titles and graph axis titles.○

We have now revised the caption for Figure 3 and added graph axis titles to the figure. 
Page 12, what single-cell sequencing platforms were used for the selected datasets. 
Variation in recovery efficient may occur in, for example, 3'-sequencing and full-length 
sequencing data. 

○

The single-cell sequencing platform utilised for generating the mouse brain scRNA-seq 
dataset by Zeisel et al. is the Fluidigm C1 system with a custom protocol using 5’ capture and 
tagging of RNA modules as described in Islam et al. 2013 (
https://www.nature.com/articles/nmeth.2772).  

Competing Interests: No competing interests were disclosed.
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