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Abstract: In this paper, we introduce a novel algorithm that aims to estimate chromosomes’ structure
from their Hi-C contact data, called Curriculum Based Chromosome Reconstruction (CBCR). Specifi-
cally, our method performs this three dimensional reconstruction using cis-chromosomal interactions
from Hi-C data. CBCR takes intra-chromosomal Hi-C interaction frequencies as an input and outputs
a set of xyz coordinates that estimate the chromosome’s three dimensional structure in the form of a
.pdb file. The algorithm relies on progressively training a distance-restraint-based algorithm with a
strategy we refer to as curriculum learning. Curriculum learning divides the Hi-C data into classes
based on contact frequency and progressively re-trains the distance-restraint algorithm based on the
assumed importance of each curriculum in predicting the underlying chromosome structure. The
distance-restraint algorithm relies on a modification of a Gaussian maximum likelihood function
that scales probabilities based on the importance of features. We evaluate the performance of CBCR
on both simulated and actual Hi-C data and perform validation on FISH, HiChIP, and ChIA-PET
data as well. We also compare the performance of CBCR to several current methods. Our analysis
shows that the use of curricula affects the rate of convergence of the optimization while decreasing
the computational cost of our distance-restraint algorithm. Also, CBCR is more robust to increases in
data resolution and therefore yields superior reconstruction accuracy of higher resolution data than
all other methods in our comparison.

Keywords: genome structure; 3D chromosome structure; Hi-C; curriculum learning; optimization

1. Introduction

The nucleus of each eukaryotic cell stores important information about an organism’s
genetic makeup in the form of chromosomes [1]. Each chromosome is made of DNA, and
the set of all chromosomes is known as the genome. There are well known connections
between the makeup of an organism’s genome and the traits it possesses, for example. hair
color, skin color, propensity for diseases, and so forth [1]. One particularly affective attribute
of a cell’s genome is the shape and spatial occupation of its respective chromosomes. The
organization of chromosomes facilitates inter-gene communication and regulation, thus
contributing to the stability of a genome [2]. Thus, research into the capturing of topological
makeup of chromosomes is valuable.

For this reason, chromosome conformation capturing techniques such as 3C [3], 4C [4],
5C [5], and Hi-C [6–8] were developed to analyze the spatial organization of chromatin in a
cell. Hi-C is a method that utilizes biotin-labeled nucleotides in the pre-ligation step of 3C to
ensure that only ligation junctions are analyzed [6]. The fragments are then analyzed using
massively parallel DNA sequencing to generate reads [6]. These reads are compared to the
original genome, and each fragment is given a score based on the quantity of matching
nucleotides. This results in a contact matrix that describes the interaction frequencies of
the fragments with the original genome. The main advantage to Hi-C analysis is the fact
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that each locus of the genome is compared to each other locus which allows for insight into
its global structure.

Due to the high quantity of data that is produced with the Hi-C method, Hi-C data is
typically used to make inferences of the three-dimensional (3D) structure of chromosomes.
Several methods have been developed for the reconstruction of the chromosomal topology
from contact data [9]. One major class of these methods is called the distance-restraint
method [9,10]. Distance-restraint methods aim to optimize an objective function with
respect to restraints derived from the contact data to find a chromosomal structure that
best suits the contact data [11–13]. Usually, distance-restraint methods use a function to
convert the contact matrix to a distance matrix, known as wish distances, and use these
distances as the constraints for the optimization [9]. This is typically done by randomly
initializing xyz coordinates that correspond to each locus in the chromosome and training
these coordinates to best recreate the wish distances of the input from their respective
pairwise Euclidean distances. In this paper, we introduce a distance-restraint method
for 3D genome reconstruction from intra-chromosomal Hi-C contact data that is inspired
by a curriculum-based strategy. The method will be referred to as Curriculum Based
Chromosome Reconstruction (CBCR).

Curriculum learning is a method of training machine learning models that is inspired
by the way in which humans learn [14]. Human education is structured based on a
progressive construction of topics ordered by increasing difficulty. For example, when
children learn basic math, the concept of counting is introduced first. From counting, one
can learn addition and subtraction. From addition, one can learn multiplication, and from
multiplication, division can be learned. This concept is known as a curriculum. The same
strategy has been implemented in machine learning as well. The general idea behind
curriculum learning in the context of machine learning is to divide a global task into several
smaller subtasks that vary in terms of difficulty but are connected based on transferable
knowledge. From this division, one can train a model beginning with the easiest sub-tasks
and work progressively on more difficult tasks until the global task can be accomplished.
This concept of curriculum learning is the core aspect of CBCR.

In this paper, we rigorously describe the construction of CBCR. We then test CBCR
on both simulated and real Hi-C data. We further validate the performance of CBCR
by utilizing comparisons with FISH, HiChIP, and ChIA-PET data. We show that the
addition of curricula to our distance-restraint algorithm increases its time performance
and accelerates the rate of convergence of the optimization. Our tests show that CBCR
is also more robust to increases in the resolution of the input data when compared with
other standard algorithms. We hope that this paper inspires the use of curricula learning
in other distance-restraint algorithms as an effective method to accelerate convergence,
reduce computational load, and increase performance on higher resolution input data.

2. Materials and Methods

CBCR relies on a distance-restraint algorithm to convert Hi-C interaction frequency
data to into a 3D structure. For the distance restraint algorithm we use a scaled maximum
likelihood as an objective function and utilize gradient ascent to optimize. For ease of
notation, we refer to the distance-restraint algorithm as DR(S, D), where S is an initial
structure composed of xyz coordinates and D is a set of input distances with which we
train the structure S.The outputs of DR are represented as DR(S, D) = (S′, D′) where S′

and D′ are the output structure and distances respectively derived from training on D.
The general method will be as follows. Assume we have a Hi-C data set, D, of N contact
regions. Firstly, we convert the Hi-C contact data D into a set of distances D. We then
divide these corresponding distances D into n smaller subsets, C0, C1, C2, · · · , Cn based
off of information that is assumed to be most pertinent to the 3D structure of the genome;
these assumptions are described in Section 2.1. We refer to these subsets as the curricula.
The curricula are ranked from least difficult to most difficult. We then train a randomly
initialized structure, S0 using the first, easiest curriculum, C0, as an input to the distance-
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restraint algorithm to generate a new structure, S1, and new distances, C′0 corresponding
to the pairwise Euclidean distances from S1, from DR(S0, C0). We then concatenate C′0
with C1 to generate the next set of training data C0,1. Following this, we train S1 using the
data from C0,1 to generate DR(S1, C0,1) = (S2, C′0,1). This process will continue until each
curriculum has been input into DR.

Essentially, we re-train structures generated by the distance-restraint algorithm multi-
ple times in order to generate an increasingly refined predicted 3D chromosomal structure.
This process is depicted visually in Figure 1.

Figure 1. Flow diagram for Curriculum Based Chromosome Reconstruction (CBCR).

2.1. Division of Curricula

This method begs the question of which Hi-C data is most pertinent to the 3D structure
of the chromosome; i.e., what is easy data and what is hard data? Most curriculum-based
machine learning algorithms rely on accuracy metrics to rank the difficulty of certain
subsets; data that generates low predictive accuracy is ranked as more difficult. This is
impossible for the task of genome reconstruction, however, because there are no labels or
categories that can allow for measurements of predictive accuracy. For this reason, the
guiding assumption of this algorithm is that data with a higher contact frequency is more
pertinent to the 3D structure of the genome. From this assumption, we can divide the Hi-C
data into subsets of ranging difficulty based on contact frequency. To divide the curricula,
we order the data based on increasing contact frequency and divide the resulting set into
equal bins so that the first bin has the highest contact frequencies and the last has the
lowest. The higher contact bins are considered easier and are therefore utilized as earlier
training data. See Section 3.1 for details on finding the optimal number of curricula for
this division.

2.2. Conversion of Interaction Frequencies to Distances

As CBCR is a distance-restraint method, we must convert the interaction frequencies
of the Hi-C data to hypothetical Euclidian distances, also known as wish distances. The
relationship between distance and interaction frequencies has been shown to be inversely
exponential both empirically [8,15–17], and theoretically [18,19]. In this work, we assume
the typical inverse relationship utilized in [20]; i.e., we convert based on the formula

d(i, j) =
1

IFγ
i,j

, (1)

where IFij, is the interaction frequency between sites i and j. Here, γ is a hyperparameter
called the conversion factor. In general, the value for γ is unknown and varies depending
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on the underlying chromosome. It has been shown, however, that γ lies in the range
[0.1, 2] for most common cell types [19]. Thus, in this work, we assume that the optimal
conversion belongs to the interval [0.1, 2] and perform a grid search in this interval to find
the optimal model.

2.3. Objective Function

In addition to the division of the contact data into curricula, CBCR will also modify the
objective function proposed by Oluwadare et al., 2018, 3DMax [11]. The objective function
used in the 3DMax algorithm is the log likelihood of the distance data D given some
unknown chromosomal structure S where the distribution of D is assumed to be normal.
We modified this likelihood in such a way that more probabilistic mass is assigned to easy
curricula and less is assigned to difficult curricula. The logic for this assumption is that the
easy curricula, i.e., curricula with higher contact values, is assumed to be more pertinent to
the 3D reconstruction of the chromosome and therefore should have more influence on the
likelihood function. In order to accomplish this, we scale the assumed probabilities of our
contact data based on a factor that depends on the proportion of data that has previously
been utilized for training in the current curriculum. In this work, we refer to data that has
been previously used as training data for the distance-restraint algorithm as previously
seen data.

Assume that we divide our data into n curricula {C1, C2, · · · , Cn}. Let Sk be the
structure at curriculum k and denote the distance corresponding to Sk by Dt′(k) =
{dt′1(k), · · · , dt′r(k)}. Since these distances were generated from a trained structure, we
refer to them as trained distances. Similarly, denote the untrained distance data in curriculum
k by D′(k) = {d′1(k), · · · , d′s(k)}. Since the distances in D′(k) have not been optimized
by DR, they correspond to the distances induced by the first, randomly initialized struc-
ture, S0. Note that r = |C1|+ · · ·+ |Ck−1| and s = |Ck|. Let pk = r

r+s and qk = s
r+s be

the proportion of trained and untrained data respectively at curriculum k. Finally, let
Dt(k) = {dt1(k), · · · , dtr(k)} and D(k) = {d1(k), · · · , ds(k)} be the wish distances cor-
responding to the trained and untrained data respectively. Then we define the scaled
likelihood as

L(S) =
r

∏
i=1

P(Dt(k)|S)∝pk ·
s

∏
j=1

P(D(k)|S)βqk , (2)

where P is the Gaussian distribution conditional on structure S. Here, S represents the
hypothetical true structure of the chromosome. The parameters α ∈ [0, 1] and β = 1− α
are trainable, scaling hyperparameters (see Section 2.4). We assume that Dt and D are
conditionally independent of S in order to derive (2). Since P is assumed to be Gaussian,
L(S) takes the form

L(S) =
1

σ
√

2π

αr+βs
exp

[
− 1

2σ2

(
αpk

r

∑
i=1

(dt′i(k)− dti(k))
2 + βqk

s

∑
i=1

(d′i(k)− di(k))
2

)]
. (3)

Taking the log of L and letting

σ =

√
αpk ∑r

i=1(dt′i(k)− dti(k))
2 + βqk ∑s

i=1(d′i(k)− di(k))
2

r + s
, (4)

we get

log(L(S)) = −(αr + βs) log

√ αpk ∑r
i=1(dt′i(k)− dti(k))

2 + βqk ∑s
i=1(d′i(k)− di(k))

2

r + s

− r + s
2

. (5)

This is the final likelihood function that we aim to optimize.
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2.4. Optimization

In order to estimate the 3D structure, we maximize the log likelihood function (5). Our
maximization relies on gradient ascent. Specifically, we utilize adaptive gradient ascent,
or AdaGrad [21], to optimize the xyz coordinates corresponding to Dt′(k) and D′(k) and
adaptive moment estimation, or Adam [22], to optimize α and β.

AdaGrad is an iterative optimization technique that adapts the learning rate for
each parameter according to sum of previous gradients [21]. This per-parameter update
scheme creates larger updates for sparse parameters and smaller updates for less sparse
parameters. The result is a learning rate that decreases as training progresses depending
on the contribution of each parameter to the loss function. This often results in improved
convergence for sparse data. The mathematical formulation of Adam is as follows. Let λ
be an initial learning rate and St

i be the estimated structure from the set of distances D at
time t. At each iteration t, we compute the gradient of log(L(St

i )) with respect to each x, y,
and z coordinate in D (see Appendix A.1 for the full computation). That is, we compute

∇ log(L(St
i )) = gi,t,

and we update St
i according to

St+1
i = St

i +
λ√

Gt,i + ε
· gi,t,

where Gt,i is the sum of the squared gradients of component i up to time t and λ is the
learning rate. That is,

Gi,t =
t

∑
k=1

(gi,k)
2.

Here, ε is a small term meant to prevent division by zero. In our experiments, we used
ε = 0.0001. This choice was guided by the findings in [11].

Like AdaGrad, Adam is an adaptive, iterative optimization technique. Adam, how-
ever, relies on the estimated first and second moments of component-wise gradients to
adapt the learning rate to the data [22]. This second moment estimator prevents the learn-
ing rate λ from decreasing too quickly. We utilized Adam to optimize the parameter α
during training. In order to do this, we first compute the gradient of the log likelihood
with respect to α (see Appendix A.2 for the full computation). That is, we compute

∂

∂α
log(L(St

i )) = gi,t.

We then update the biased first, mi,t+1, and second, vi,t+1 moment estimators using

mi,t+1 = γ1mi,t + (1− γ1)gi,t

vi,t+1 = γ2vi,t + (1− γ2)g2
i,t,

where we initialize the first and second moments at time t = 1 using mi,1 = vi,1 = 0. Here,
γ1, γ2 ∈ [0, 1] are hyperparameters that change the bias of the first and second moment
estimates. Following this computation, we find the bias-adjusted first and second moment
estimates using

m̂i,t+1 =
mi,t

(1− γt
1)

v̂i,t+1 =
vi,t

(1− γt
2)
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Finally, we update αt according to

αt+1 = αt + λ
m̂i,t+1√
v̂i,t+1 + ε

.

In this work, we use γ1 = 0.9 and γ2 = 0.999 as recommended in [22]. Moreover, we chose
a learning rate of 0.2 for all trials. This choice was guided by the findings in [11].

The advantages to using Adagrad and Adam as optimizers is that the distance-restraint
algorithm is less dependent on the initial choice of learning rate. Since each optimizer
decreases the learning rate according to the changes in gradients over time, we are less
likely to run into convergence issues due to a high learning rate. One drawback of the
Adagrad optimizer, however, is that the learning rate can decrease too quickly, thereby
leading to sub-optimal convergence; a problem that is less likely to occur with Adam [22].
For this reason, we initially attempted to optimize both the distance data and α using Adam
as an optimizer. Unfortunately, this led to unstable convergence. Thus, we chose to use
Adagrad for the distance optimizer and Adam for the α optimizer.

2.5. Early Stopping Criteria

To bound the run time for CBCR, we utilize early stopping criteria, the first of which
is a maximum number of iterations. This is a value set by the user that determines how
many parameter updates will take place before CBCR is stopped. We will refer to this
value by max_iter0. This value also determines the number of iterations per curriculum.
See Appendix B for a detailed procedure of how we find the number of iterations per
curriculum from max_iter0. The second stopping criterion is a convergence threshold
between the sub-curricula. This threshold is measured by the absolute difference of the
dSCC (see Section 2.7) between two consecutive sub-curricula. If the absolute difference
is less than the threshold for two consecutive curricula, then all of the remaining data
is lumped together with the previously seen data and optimized for a final maximum
number of iterations. Formally, let dSCCi be the dSCC value for sub-curriculum i and
convg0 be a user-set convergence threshold. Then if |dSCCi−1 − dSCCi| < convg0, we set
Ci+1 = ∪n

j=i+1Cj and we proceed to iterate over D(i + 1) and Dt(i + 1) accordingly for a
final number of iterations determined by the user. We will hereon refer to this final number
of iterations by max_iter1.

It is unnecessary to calculate the dSCC for every sub-curriculum for two reasons.
Firstly, the first few curricula do not contain enough data for the generated structure to
converge (see Figure 2). Secondly, for larger values for the total number of curricula, there
is not enough data added to each curriculum to change the dSCC significantly, so the
absolute difference between the dSCC of two consecutive sub-curricula may be below the
convergence threshold even though the generated structure has not converged. To resolve
these issues, we only evaluate sub-curricula dSCC after half of the data has been previously
seen. Moreover, we only allow CBCR to evaluate sub-curricula dSCC for a maximum
of 20 times and allocate the frequency of this evaluation with respect to the number of
curricula accordingly.

Finally, we utilize an intra-curriculum convergence threshold based upon the changes
in gradient for a given curriculum. Specifically, we would like to stop iteration in a given
curriculum if the gradient and loss are no longer changing significantly. To do this, we
evaluate the l2 norm of the gradients at each time iteration and compare it with a proportion

of the loss. That is, we calculate ||Gt||l2 =
√

∑r+s
i=1 g2

i,t and if ||Gt||l2 < convg1 · loss(t), we
know that that the gradients are no longer changing significantly, so we stop iterating
over the current curriculum and move to the next. Here, convg1 is another convergence
threshold and loss(t) is the loss at iteration t.
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2.6. Data
2.6.1. Simulated Hi-C Data

We evaluated the performance of CBCR on simulated Hi-C contact maps generated by
Zou et al. [23]. The contact maps are based on a regular helical structure. Specifically, we
assessed the performance on the helical structures at 90% signal coverage. Here, the signal
coverage refers to the percentage of non-zero entries in the contact map. Also, we evaluated
the performance of CBCR on a simulated yeast chromosome developed by Duan et al. [24].
The simulated yeast chromosome is represented by 610 contact points at 50 kb resolution
and no noise. The advantage to evaluating on a simulated dataset is that the underlying
structure that we wish to predict is known. This allows for direct comparison between the
predicted structure and the actual structure which is not possible when testing on Hi-C data
generated from actual chromosomes since their underlying structure is usually unknown.

2.6.2. Real Hi-C Data

In addition to evaluation on the synthetic data sets, we also analyzed the performance
of CBCR on real Hi-C data. The benefit of evaluating the performance on real Hi-C data is
that the real data allows us to test how the algorithm responds to features that are inherent
in actual Hi-C data, such as excessive noise, biases, and complicated structures, that may not
be present in the synthetic data. Also, by comparing the algorithm at different resolutions,
we can see how performance is affected by the amount of available data. We used the
GM12878 cell line from [25] downloaded from the Genome Structure Database (GSDB)
repository [26] under the GSDB ID OO7429SF. To reduce the effects of noise in the Hi-C data,
each cell line was normalized using the Knight-Ruiz normalization technique [27]. There
are three Hi-C maps from [25] for the GM12878 line: primary, replicate, and combined.
The primary and replicate maps were acquired from two separate experiments, and the
combined (primary + replicate) map was generated from the combination of the two
experiments. We first tested the performance of CBCR on all 23 chromosomes at four
coverage levels utilizing the combined mappings: 1 mb, 500 kb, 250 kb, and 100 kb. Unlike
the simulated data, there is no known structure associated with the real Hi-C data. For
this reason, the generated structures were compared to the wish distances generated by
the corresponding interaction frequency contact matrix. We also generated structures
using CBCR with the primary and replicate maps separately for each chromosome at 1 mb
resolution. We then compared the outputs from the primary mappings to the outputs from
the secondary mappings in order to test for reproducibility of the biological replicates.

For our main experiments, we used data acquired using the Mbol restriction enzyme.
The Mbol is a 4-cutter restriction enzyme, cutting a 4 bp long sequence: GATC. Hence,
to evaluate the CBCR’s reproducibility, we also compared the output generated for Hi-
C data for the same cell type but with different restriction enzymes. We compared the
generated structures from contact matrices generated from Mbol based Hi-C protocol with
output structures from contact matrices generated from Dpn-II restriction enzyme, a 4-bp
cutter–based Hi-C protocol [25].

2.6.3. ChIA-PET and HiChIP Data

Chromatin immunoprecipitation (ChIP) is a technique to investigate protein specific
interactions in chromosomes. ChIP relies on antibodies to precipitate specific proteins,
histones, or transcription factors from cell populations [28]. ChIP can also be combined with
sequencing technologies to quantify these interactions. Chromosome Interaction Analysis
by Paired-End Sequencing (ChIA-PET) [29] and HiChIP [30] are two ChIP sequencing
techniques. ChIA-PET and HiChIP both utilize antibodies to enrich chromatin that are
bounded by a specific protein. The main difference between HiChIP and ChIA-PET is
that the antibodies in HiChIP are introduced following an in situ preparation of a Hi-C
contact library in order to reduce the chance of false-positive interactions generated by
the ChIP step. Following the enrichment steps of HiChIP and ChIA-PET, chromosomes
are cut using a restriction enzyme, re-ligated, and sequenced just as in Hi-C experiments.
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The chromatin enrichment step ensures that only regions of the genome that possess the
binding-site associated with the protein of interest may be cross-linked so that only protein-
specific interactions are measured. Thus, ChIA-PET and HiChIP can identify loops in the
3D structure of a chromosome that may be especially pertinent to genome function by
choosing to precipitate proteins that are known to be important in gene regulation.

For additional validation of our results, we used the H3K27ac loop calls from GM12878 cell
HiChip dataset from Mumbach et al., 2017 [31] also used in study by Bhattacharyya et al. [32].
The H3K27ac is a histone post-translational modification enriched in cis-regulatory regions,
in particular promoters, and is regarded as an active enhancer mark [33]. We also utilized
ChIA-PET data from the NCBI GEO database (GEO accession: GSE72816) for the RNAPII
ChIA-PET data from human GM12878 cells [34].

2.6.4. FISH Data

Fluorescent in situ hybridization (FISH) is a technique for directly observing chromo-
some structure. In FISH, specific DNA fragments are colored using a fluorescent dye and
are then attached to a chromosome using in situ hybridization [35,36]. The chromosome is
then observed microscopically. The fluorescent dye allows for the specific DNA fragments
to be identified and analyzed. To further validate our results, we used the FISH data
provided by Rao et al. [25]. This particular FISH data measures the distance between three
peaks called from their Hi-C maps of chromosomes 11, 13, 14, and 17 of the GM12878
cell line.

2.7. Evaluation

In order to evaluate the performance of CBCR, we used two metrics: time performance
and reconstruction accuracy. Reconstruction accuracy refers to how accurately the pairwise
distances between each chromosome locus corresponding to the structure generated by
CBCR match the actual pairwise distance of the underlying chromosome from which the
input Hi-C data was generated. To measure this similarity, we use the distance Spearman
Correlation Coefficient (dSCC), the distance Pearson Correlation Coefficient (dPCC), and
the distance Root Mean Square Error (dRMSE). These metrics were shown by [13] to be
valid benchmarks for the accuracy of distance-restraint based chromosome reconstruction
methods. These three formulae are given by

dPCC =
∑d′i∈D′(d

′
i − d′)∑di∈D(di − d)√

∑d′i∈D′(d′i − d′)2 ∑di∈D(di − d)2
(6)

dSCC =
∑d′i∈D′(rank(d′i)− rank(d′))∑di∈D(rank(di)− rank(d))√
∑d′i∈D′(rank(d′i)− rank(d′))2 ∑di∈D(rank(di)− rank(d))2

(7)

dRMSE =

√√√√ 1
|D| ∑

di∈D,d′i∈D′
(d′i − di)2, (8)

where D′ is the set of pairwise distances between all loci derived from the final output
structure of CBCR and D is the set of the wish distances between chromosomal loci. Here,
d and d′ are the means of and D′, respectively. In the dSCC formula, rank(·) denotes the
rank of a distance, and rank(d) and rank(d′) denote mean rank of D and D′ respectively.

In general, the closer the dPCC and dSCC values are to one, the more similar the
recreated model is to the actual chromosome. Also, the closer the dRMSE between the
actual and recreated chromosome is to zero, the more similar the two structures are. In some
instances, such as when the Hi-C data is generated through simulations, these pairwise
distances in D are known explicitly. In other instances, such as when the Hi-C data is
collected from real chromosomes, the actual distances are unknown. In this case, we let D
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be the set of wish distances converted from the input contact frequencies found by (1) and
compare these values to D′.

2.8. Hyperparameters

Here, we give a concise list of each hyperparameters used in the evaluation of CBCR.
We detail their meaning, their default value (if applicable), and the rational for this choice
of default.

• convg0: A convergence threshold for inter-curricula dSCC. If the absolute difference
between two consecutive sub-curricula dSCC is less than this value, then all of the
remaining data is merged together and utilized for one final training. The default
value for this hyperparameter is 10−6 as guided by the findings in [11].

• convg1: A convergence threshold for intra-curriculum optimization. If the l2 norm of
the distance gradients at iteration t is less than conv1 times the loss at iteration t, then
we stop optimizing over the current currriculum and move to the next curriculum.
The default value for this hyperparameter is 10−6 as guided by the findings in [11].

• max_iter0: The maximum total number of iterations over all sub-curricula combined.
This value bounds the number of iterations that CBCR may run during training. This
value is set by the user and should be guided by the size of the input data. If the
input data is large, then more iterations will be necessary to optimize sufficiently. Our
analysis shows that a value of 4500 is sufficiently large for 100 kb resolution Hi-C data
(see Section 3.3).

• max_iter1: The maximum total number of iterations over the final training of CBCR.
Recall that if convg0 is met, we lump all of the remaining data and use it for one final
training. The hyperparameter max_iter1 dictates how many iterations we allow over
this final, lump-sum curriculum. This value is separate from max_iter0 in order to
ensure that if convergence is met, we do not excessively iterate over the remaining
data. For example, if one sets max_iter0 to 10, 000, but convg0 is met at iteration 1000,
the remaining 9000 iterations may be needlessly excessive to meet convergence over
the remaining data. Thus, by allowing max_iter0 to a lower, pre-set number, we ensure
that the remaining data is still optimized with a reasonable bound of iterations. Like
max_iter0, this value is set by the user and should be guided by the size of the input
data. Our analysis shows that a value of 500 is sufficiently large for 100 kb resolution
Hi-C data (see Section 3.3).

• λ: The learning rate. As we utilize adaptive optimizers, the convergence of CBCR is
less sensitive to the initial choice of λ. So long as we choose a value that is sufficiently
large, the optimizers will reduce λ as time progresses to ensure convergence. The
default value for this hyperparameter is 0.2 as guided by the findings in [11].

• γ: The conversion factor that dictates the relationship between interaction frequency
and wish distance given by Equation (2). This can either be a single value, or a
range set by the user. For our experiments, we run CBCR for each γ in the set
{0.1, 0.2, · · · , 2.0} and choose the value that maximizes dSCC as the optimal conver-
sion factor. The choice to do this was guided by the findings in [11,37].

• γ1: The bias parameter for the first moment estimator in the Adam optimizer. The
default value for this hyperparameter is 0.9 as recommended in [22].

• γ2: The bias parameter for the second moment estimator in the Adam optimizer. The
default value for this hyperparameter is 0.999 as recommended in [22].

• α: The scaling parameter for the previously seen data in each curriculum. This
hyperparameter dictates how much probabilistic mass we assign to the previously
seen data in each curriculum. As α is optimized during the training process, its initial
value changes during training. The default value for this hyperparameter is 0.5.

• β: The scaling parameter for the new, untrained data in each curriculum. This value is
defined to be β := 1− α throughout training. Thus, the default initial value of β is
also 0.5.
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• Number of Curricula: The total number of curricula. This value dictates how many
curricula we divide our data into. This hyperparameter is the central hyperparameter
in CBCR. We show that the reconstruction accuracy of CBCR is robust to the choice of
this hyperparameter. We also show that setting the number of curricula to be one fifth
of the total number of contacts yields an approximate minimization of the run-time of
CBCR. See Section 3.1 for details of these findings. According to these findings, the
default value for the number of curricula is

⌈
1
5 N
⌉

where N is the number of contact
sites corresponding to the input data.

3. Results
3.1. Finding the Optimal Number of Curricula

One advantage provided by the curriculum learning strategy we adopt is a reduction
in the number of computations required during training. For example, assume we would
like to generate a structure from a chromosome with 10,000 contact values. If we restrict
our maximum number of iterations to 1000, then an ordinary distance-restraint algorithm
would need to do a total of 10,000× 1000 = 109 parameter updates. If we divide the contacts
into 100 curricula, however, then we would need to do ∑100

i=1 i× 10× 100 = 5050× 1000 =
5.05× 106 parameter updates.

This relationship may seem to imply that the optimal number of curricula is the total
number of contacts as this value minimizes the area under the curve. This is not the case
due to the relationship between the number of curricula and the rate of convergence of the
distance-restraint algorithm which we will now describe. Figure 2 displays the evolution
of dSCC over the number of parameter updates (iterations) to elucidate the convergence
patterns of CBCR under different values for the number of curricula when evaluated on
the yeast data. From this figure, it is clear that the addition of curricula increases the rate
of convergence of the distance-restraint algorithm. This relationship likely holds because
CBCR retrains previously trained structures as more data is introduced to the training
set. This retraining refines the most important components of the structure multiple times,
thereby increasing the rate of convergence to the true structure.

Figure 2. Evolution of distance Spearman Correlation Coefficient (dSCC) over number of iterations
for 20, 30, 100, and 600 curricula.

Note that, from this figure, it may seem that the rate of convergence is maximized for
600 curricula due to the fact that the dSCC associated with this value begins to increase
before the other values. Although this is true, the overall rate of this increase is slower
than the value for 100 curricula. This is displayed by the fact that the curve associated with
100 curricula increases sharply after 2000 iterations followed by a sharp flattening shortly
thereafter, whereas the curve associated with 600 curricula increases steadily and flattens
steadily as well. Thus, although dSCC increases sooner for the 600 curricula trial, the fact
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that this increase is slower than that of the 100 curricula trial results in the 600 curricula
trial reaching the maximum dSCC after the 100 curricula trial. Thus, the convergence of
the 600 begins before the 100 curricula trial but reaches convergence slower.

The sooner but slower convergence of the 600 trial can likely be explained by the
relationship between the rate at which previously seen data is utilized for retraining and
the rate at which we introduce new, unseen data to the training set. For higher values of
the number of curricula, the amount of data being introduced per curriculum is smaller
than that of lower curriculum values, but the frequency of retraining using previously seen
data is higher. This higher rate of retraining using previously seen data leads to a sooner
increase in dSCC. The fact that new data is introduced at a lesser rate, however, leads to the
slower rate of convergence relative to lower curricula. This relationship implies that there
is some optimal choice for the number of curricula that balances the rate of retraining using
previously seen data with the rate of introducing new data to the training set. In order to
find the approximate optimal choice of the number of curricula, we evaluated the time
performance of CBCR on the 90% coverage helical data and the artificially generated yeast
data for several values for the number of curricula while measuring the time performance
as well as the final dSCC for each trial.

The helical and yeast data have a total of 100 and 610 loci, respectively. To test the
time performance of CBCR at various curricula numbers, we evaluated the average time
duration and dSCC for both data sets over 30 trials. We divided the helical data into
curricula numbers beginning at 5 and increasing to 100 by increments of 5. We divided
the yeast data beginning at 10 and increasing by 10 up to 400, and then increasing by 50
up to 600. To maintain experimental consistency, we fixed the maximum total number of
iterations to 4500 and the final convergence iteration number to 500. Moreover, we let the
maximum number of sub-curricula SCC evaluations be 20 for each run of CBCR.

Figure 3 depicts the run time of CBCR for various numbers of curricula. There is a
notable decrease in the run time for initial increases in the number of curricula, but the
run time begins to increase again after a certain number of curricula. This is due to the
sooner but slower convergence relationship described above. According to these trials, it
seems that this optimal value is about one fifth of the total number of genomic loci being
evaluated ( 1

5 N).

(a) (b)

Figure 3. (a) Average run time of CBCR for various numbers of curricula evaluated on the yeast
data over 30 trials. (b) Average run time of CBCR for various numbers of curricula evaluated on the
helical data over 30 trials.

It is also important to validate whether the decreased run time of CBCR caused by
alterations of the number of curricula comes at the cost of decreased reconstruction accuracy.
Figure 4 shows how the average dSCC varies over the number of curricula for 30 trial runs
of CBCR. Although there is some variation to the dSCC, the maximum difference for the
yeast data is within 10−7 and the maximum difference for the helix data is within 10−4.
This suggests that, although there is some variation in the dSCC when different numbers
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of curricula are utilized, the reconstructive performance of CBCR is somewhat robust to
this specific hyperparameter, especially when evaluated on larger inputs.

(a) (b)

Figure 4. (a) Variation in average dSCC for various numbers of curricula evaluated on the yeast
data over 30 trials. (b) Variation in average dSCC for various numbers of curricula evaluated on the
helical data over 30 trials.

3.2. Time Performance

To test whether the decrease in run time associated with the addition of curricula
is substantial, we compared the time performance of CBCR with 3DMax [11]. We chose
3DMax in this comparison due to the fact that both 3DMax and CBCR are distance-restraint
algorithms that rely on gradient ascent using Adagrad and similar, likelihood-based ob-
jective functions that were both implemented in MATLAB. We tested both CBCR and
3DMax on several chromosomes in the GM12878 cell line using the same learning rate,
convergence thresholds, and maximum number of iterations. For CBCR, we chose the
number of curricula to be one fifth of the number contacts for each chromosome. Figure 5
shows the relationship between run-time and number of loci in the interaction frequency
matrix for 3DMax and CBCR. Specifically, each data point corresponds to the average time
duration of 15 runs for each algorithm. From this figure, it is clear that the addition of
curricula does not lead to a substantial increase in time performance for low loci values,
but there is a significant increase in time performance for larger loci values. This suggests
that the addition of curricula decreases the computational load of our distance-restraint
algorithm and that this decrease is larger for higher dimensional data. All tests were run
on an HP Pavillion x360 with an Intel Core i7-8550U CPU at 1.99 GHz and 8 gb of RAM.

Figure 5. Time comparison between CBCR and 3DMax for various numbers of loci.

3.3. Reconstruction Accuracy: Real Data

To test the reconstructive performance of CBCR on real data, we evaluated the dSCC,
dPCC, and dRMSE of our outputs when evaluated on the GM12878 cell line with the
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Mbol restriction enzyme. For the following experiments, we utilized the primary-replicate
combined mappings as the input. In order to account for the variation in size of the Hi-C
matrices in this data set, we once again chose the number of curricula to be one fifth of
the total number of loci for every chromosome. We also utilized a maximum number of
iterations of 10,000. Specifically, we used max_iter0 = 9000 and max_iter1 = 1000. We
evaluated the performance of CBCR at four different resolutions: 1 mb, 500 kb, 250 kb, and
100 kb on all 23 chromosomes. Figures 6–8 show the effect of the resolution of the input on
the reconstructive performance of CBCR.

Figure 6. Comparison of distance Pearson Correlation Coefficient (dPCC) for CBCR on all 23
chromosomes at four different resolutions: 1 mb, 500 kb, 250 kb, and 100 kb.

Figure 7. Comparison of dSCC for CBCR on all 23 chromosomes at the four different resolutions.
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Figure 8. Comparison of dRMSE for CBCR on all 23 chromosomes at the four different resolutions.

From these figures, one can tell that the performance of CBCR reduces with an increase
in resolution. This is typical for most algorithms due to the fact that more data results in a
higher accumulation of error, thereby reducing reconstruction accuracy.

To further evaluate the reconstructive accuracy of CBCR, the dSCC of the generated
structures from each chromosome were compared to the dSCC of structures generated
by seven other methods—Shrec3D [10], 3DMax [11], Chromosome3D [13], LorDG [20],
ChromSDE [12], HSA [23], Pastis [38]. The models from the methods with which CBCR was
compared came from the GSDB database [26]. The models from the GSDB database were
fit using multiple hyperparameters, and the best models were selected for publication. The
results of this comparison are shown in Figures 9–12. Note that several values for existing
methods are absent, especially in the high resolution data. This is due to the fact that most
methods do not perform on higher resolution data due to computational constraints.

Figure 9. Comparison of dSCC between CBCR and 7 other methods on chromosomes 1–23 at
1 mb resolution.
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Figure 10. Comparison of dSCC between CBCR and 7 other methods on chromosomes 1–23 at
500 kb resolution.

Figure 11. Comparison of dSCC between CBCR and other methods on chromosomes 1–23 at
250 kb resolution.

Figure 12. Comparison of dSCC between CBCR and other methods on chromosomes 1–23 at
100 kb resolution.
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From these figures, one can see that a drop in reconstruction accuracy with an increase
in resolution is common amongst all algorithms in comparison. This drop for CBCR, how-
ever, is less when compared to all other algorithms. Due to this fact, CBCR outperforms all
other algorithms in the comparison for the 100 kb resolution data in terms of reconstruction
accuracy. This suggests that the use of curricula increases the robustness of CBCR to
increases in resolution.

4. Validation

Although CBCR can reproduce wish distances with a high degree of accuracy, these
wish distances are merely an estimate of the actual distances associated with the 3D
structure of the input chromosome. In order to verify that the outputs of CBCR reflect the
true 3D structure of the input chromosome, we validated our results with data obtained
from independent biochemical assays such as the ChIA-PET, HiChIP, and FISH data.

4.1. Reproducibility Across Hi-C Experiments: Primary vs. Replicate

To ensure the reproducibility of CBCR across different Hi-C experiments, we also ran
the same experiments as above on the primary and replicate mappings at 1mb resolution
separately and computed the dSCC between their respective outputs. Figure 13 shows
the results of this test. From this figure, it is clear the the dSCC between the primary and
replicate structures is close to one for all chromosomes, thereby implying that CBCR can
replicate results across separate Hi-C experiments. We also computed the dSCC between
the outputs of CBCR and the wish distances of the corresponding input for the primary
and replicate mappings in order to ensure that CBCR maintains the same reconstructive
accuracy regardless of the mapping choice. Indeed, Figure 14 shows that the reconstructive
accuracy of CBCR is similar across each of these mappings. We provide visualizations of
these structures in Appendix C (Figure A1) to exhibit the qualitative comparability between
the primary and replicate results as well.

Figure 13. dSCC computed between the outputs of CBCR from the primary and replicate mappings
with the Mbol restriction enzyme at 1mb resolution.
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Figure 14. Comparison of the output dSCC for CBCR utilizing the primary and replicate mappings
with the Mbol restriction enzyme at 1mb resolution.

4.2. Reproducibility Across Restriction Enzymes: Mbol vs. DPnII

The choice of restriction enzyme may influence the results of a Hi-C experiment. So
far, our analysis of the performance of CBCR on real data has been restricted to Hi-C exper-
iments performed utilizing the Mbol restriction enzyme. To ensure that CBCR reproduces
similar outputs regardless of the choice of restriction enzyme, we generated structures
utilizing inputs from Mbol restricted experiments and DpnII restricted experiments sepa-
rately. All models were generated using 1mb resolution of the primary-replicate combined
maps. We then calculated the dSCC between the Mbol and DpnII outputs. Figure 15 shows
the results of this test. The majority of the correlation values are greater than 0.95, thereby
implying that CBCR produces similar structures regardless of the choice of restriction
enzyme. We also computed the dSCC between the outputs of CBCR and the wish distances
of the corresponding input for the Mbol and DpnII inputs in order to ensure that CBCR
maintains the same reconstructive accuracy regardless of the restriction enzyme choice.
Figure 16 shows that, with the exception of chromosome 3, the reconstructive accuracy of
CBCR is similar regardless of the choice of restriction enzyme. We provide visualizations of
these structures in Appendix C (Figure A2) to exhibit the qualitative comparability between
the primary and replicate results as well.

Figure 15. dSCC computed between the outputs of CBCR from the Mbol and DpnII restriction
enzymes at 1mb resolution.
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Figure 16. Comparison of the output dSCC for CBCR utilizing the Mbol and DpnII restriction
enzymes at 1mb resolution.

4.3. Validation on FISH Data

To further validate the outputs of CBCR, we compared the distances associated with
models generated by CBCR to the actual distances in the underlying chromosome measured
using FISH. To do this, we used the FISH distance data from the GM12878 cell line provided
by Rao et al. [25]. In the study conducted by Rao et al. two peaked regions, L1 and L2,
were selected from chromosomes 11, 13, 14, and 17 using their HiCCUPS loop detection
algorithm. A third, control region, L3, was also selected from each of these chromosomes
as well. The authors then found the distances between regions L1 and L2 as well as the
distances between L2 and L3 using 3D FISH for each chromosome. For each chromosome,
the distance between L1 and L2 was shorter than the distance between L2 and L3. Thus,
we would like to confirm that this relationship holds for the outputs of CBCR as well.

To validate CBCR on this FISH data, we first identified the loci that exist in regions
L1, L2 and L3 for the 250 kb and 100 kb resolution Hi-C data. We chose these resolu-
tions because the 500 kb and 1 mb resolutions are not fine enough to accurately fit within
the regions evaluated in the FISH data. Once these loci were identified, we then com-
puted the distance between these regions using the outputs of CBCR at these resolutions.
Tables 1 and 2 show the distances between these regions for the outputs of CBCR for 250 kb
and 100 kb resolution data. From these tables, it is clear that the distance between the
L1 and L2 regions is shorter than the distance between the L2 and L3 regions for each
chromosome at both resolutions as desired.

Table 1. Distances between fluorescent in situ hybridization (FISH) regions computed from CBCR
models at 250 kb resolution.

Chromosome L1-L2 Distance L2-L3 Distance

11 15.8 17.2
13 5.7 21.5
14 15.7 27.5
17 7 40.2

Table 2. Distances between FISH regions computed from CBCR models at 100 kb resolution.

Chromosome L1-L2 Distance L2-L3 Distance
11 13.7 29.5
13 8 31
14 28.9 33.4
17 16.2 42.2
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4.4. Valitation on ChIA-PET and HiChIP Data

ChIA-PET and HiChIP data measure interaction frequencies between specific proteins
in the chromosome. From these interaction frequencies, it is possible to identify loops in the
structure of the chromosome that are created by these protein specific interactions. In this
study, we used publicly available HiChIP data that measures genome wide interactions
mediated by the H3K27ac protein [30–32], and publicly available ChIA-PET data mediated
by the RNAPolII protein from the NCBI GEO database (GEO accession: GSE72816) [39].
Both of these data sets were derived from the GM12878 cell line. We utilized both of
these data sets to validate the outputs of CBCR. Since CBCR relies on cis-chromosomal
contacts, we only considered the cis-chromosomal interactions from these data sets. Our
validation relied on splitting both data sets into two groups: loops and non-loops. Loops
were identified from the ChIA-PET data by considering genomic regions that had a PET
interaction frequency greater than or equal to three. Loops were identified from the HiChIP
data using the peak calling algorithm, HiCCUPS, introduced in Rao et al. [25]. Once these
looped and non-looped regions were identified and separated, we computed the distance
between the corresponding loci from the models generated by CBCR at 100 kb resolution
in both the looped and non-looped sets. If the models generated by CBCR are indeed
representative of the true chromosome structure, the distances between looped regions
should be lower than the distances between non-looped regions.

Figure 17 shows the box plots for the distances calculated from CBCR’s outputs
at 100 kb resolution between looped and non-looped regions across all chromosomes
combined for the ChIA-PET and HiChIP data. From these plots, it is clear that looped
regions do indeed have shorter distances than non-looped in the models generated by
CBCR. Moreover, this relationship holds across all chromosomes individually as well. See
Appendix C for the figures illustrating these comparisons.

Figure 17. (a) Box plots comparing distances within looped regions to distances within non-looped
regions for all chromosomes combined identified by the ChIA-PET data. (b) Box plots comparing dis-
tances within looped regions to distances within non-looped regions for all chromosomes combined
identified by the HiChIP data.

4.5. Comparison of Outputs Between CBCR and 3DMax

Although CBCR is a specific algorithm, curriculum learning is a very general training
strategy. CBCR is a particular application of curriculum learning to a distance restraint
training algorithm that was inspired by 3DMax [11]. For this reason, the output struc-
tures of CBCR are similar to the output structures of 3DMax. Figure 18 shows the dSCC
values between the outputs of CBCR and the outputs of 3DMax on GM12878 at 100 kb
resolution. Since the correlation values are all above 0.95, it is clear that the structures are
indeed similar.
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Figure 18. dSCC calculated between the outputs of CBCR and the outputs of 3DMax on GM12878 at
100 kb resolution.

We have seen that the use of curricula increases the time performance of our training
algorithm and also increases the algorithm’s robustness to increases in resolution of the
input data. Thus, the similarity between the outputs of CBCR and the outputs of 3DMax
seems to imply that the adaptation of distant restraint algorithms to a curriculum-tailored
learning strategy may be an effective way to increase the performance of the method while
preserving the general nature of its outputs. This preservation of the general nature of the
output structures is important because distant-restraint algorithms often rely on heuristics
guided by the assumed behavior of the input chromosomes [9]. Thus, if curriculum
learning does indeed preserve the nature of the outputs of distance-restraint algorithms,
then distance-restraint algorithms may be adapted to a curriculum-tailored approach in
order to increase their performance without altering the general behavior of the non-
adapted distance-restraint algorithm. To further justify that this is likely the case in the
context of CBCR and 3DMax, we compared their validations on HiChIP and ChIA-PET
data as performed in Section 4.4.

Figure 19 shows the comparison of looped and non-lopped distances between the four
least similar outputs of CBCR and 3DMax on GM12878 at 100 kb resolution using the same
data in Section 4.4. We consider the least similar structures to be those who have the lowest
dSCC in Figure 16: chromosomes 13, 15, 18, 20. Note that due to variability in the 3D
outputs between CBCR and 3DMax, the structures must first be scaled to each other before
making meaningful comparisons between their output structure distances. This scaling
was performed using standard procrustes analysis. From these figures, it is clear that CBCR
and 3DMax have similar performance on both the ChIA-PET and HiChIP data. The loops
plots for both methods show that the 3D distances across the loop positions are consistently
closer to each other compared to those on the non-loops. Also, that the non-loops plots is
much higher than the loop plots for both methods suggests the differences between the
two groups.
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(a) Chromosome 13: ChIA-PET (b) Chromosome 13: HiChIP

(c) Chromosome 15: ChIA-PET (d) Chromosome 15: HiChIP

(e) Chromosome 18: ChIA-PET (f) Chromosome 18: HiChIP

(g) Chromosome 20: ChIA-PET (h) Chromosome 20: HiChIP

Figure 19. Comparison of the loop and non-loop model distances between CBCR and 3DMax at 100
kb for the HiChIP and ChIA-PET data. The first and third boxes in each plot correspond to CBCR
and the second and fourth boxes correspond to 3DMax.

5. Discussion

In this paper, we presented a novel technique for chromosome structure reconstruction
based on curriculum learning called CBCR. CBCR is a distance-restraint method that trains
on subsets of Hi-C data that increase in difficulty in order maximize a scaled log likelihood
objective function utilizing gradient ascent. The results of CBCR on real Hi-C data show
that CBCR performs better than most existing methods. In addition to these findings, we
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show that the use of curricula aids in the time performance of CBCR by both reducing the
computational cost and accelerating the convergence of the distance-restraint algorithm.
Also, CBCR is more robust to increases in Hi-C resolution when compared with other
similar methods. This increased robustness yields a superior reconstruction accuracy of
CBCR for higher resolution Hi-C data compared to these other methods. Finally, we showed
that CBCR produces accurate results when validated on FISH, HiChIP, and ChIA-PET data
as well.

The increases in reconstructive performance of CBCR are attributed to the continual
retraining of the predicted structure using the most important contacts underlying the 3D
structure of the chromosome. The increase in the time performance is due to the fact that
data is iteratively added to prevent redundant iterations over data that is not relevant to
the structure of the chromosome. Although we utilize an objective function that is tailored
to curriculum learning, the basic idea of curriculum learning can be applied on top of any
distance-restraint algorithm. Curriculum training may prove to be an effective way to
increase the rate of convergence of standard distance-restraint algorithms while decreasing
their total computational load, thereby allowing distance-restraint algorithms to be imple-
mented on higher resolution input data while maintaining reconstructive performance and
decreasing run time. Moreover, the curriculum approach opens opportunities to modify
hyperparameters in the objective function, such as α, pk, and qk, that allow for scaling of
certain data. These aspects of curriculum learning are very general and can potentially be
applied to many distance-restraint based algorithms. Moreover, it may be possible for the
curricula to be divided based upon a different metric than contact frequency. These are all
potential ways in which curriculum learning may continue to improve the performance of
chromosome reconstruction algorithms.
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Appendix A

Appendix A.1

To calculate the derivative of log(L(S)) with respect to the x, y, and z coordinates, we
utilize the chain rule. If we set

V = αpk

r

∑
i=1

(dt′i(k)− dti(k))
2 + βqk

s

∑
i=1

(d′i(k)− di(k))
2 (A1)

W =

√
V

r + s
(A2)

E = −(αr + βs) log(W) (A3)

then we have

log(L(S)) = E− r + s
2

(A4)

Therefore, by the chain rule, for some distance d′ ∈ Dt′(k) ∪ D′(k), using the chain
rule, we have

∂ log(L(S))
∂d′

=
∂E
∂W
· ∂W

∂V
· ∂V

∂d′
. (A5)

Taking the respective partial derivatives yields

∂E
∂W

=
−(αr + βs)

W
(A6)

∂W
∂V

=
1

2
√
(r + s)V

(A7)

∂V
∂d′

=

{
2αpk(d′(k)− d(k)) if d′ ∈ D′(k)
2βqk(dt′(k)− dt(k)) if d′ ∈ Dt′(k)

(A8)

where d′(k) or dt′(k) are the wish distances corresponding to d′ depending on whether

d′ is in D′(k) or Dt′(k) respectively. Well, d′ =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 where

(xi, yi, zi) and (xj, yj, zj) are the 3D coordinates of locus i and j respectively that uniquely
determine d′. Therefore, using the chain rule again, the partial derivative of d′ with respect
to a coordinate ci ∈ {xi, yi, zi} is given by

∂d′

∂ci
=

ci − cj√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

(A9)

where cj ∈ {xj, yj, zj} is the corresponding element to ci (i.e., if ci = xi, then cj = xj).
Similarly, for cj ∈ {xj, yj, zj}, we have

∂d′

∂cj
=

cj − ci√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

. (A10)

We use these equations to calculate the derivative of log(L(S)) with respect to a given
spatial parameter c corresponding to the distance d′ given by

∂ log(L(S))
∂c

=
∂E
∂W
· ∂W

∂V
· ∂V

∂d′
· ∂d′

∂c
(A11)
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Appendix A.2

To calculate the derivative of log(L(S)) with respect to α and β we again utilize the
chain rule. Since β = 1− α, we only need to derive with respect to α. Utilizing the same
Equations (A1)–(A3), we have

∂ log(L(S))
∂α

=
∂E
∂W
· ∂W

∂V
· ∂V

∂α
. (A12)

Well, ∂E
∂W and ∂W

∂V are still given by Equations (A6) and (A7). Since V = αpk ∑r
i=1

(dt′i(k)− dti(k))
2 +(1− α)qk ∑s

i=1(d′i(k)− di(k))
2, the partial derivative of V with respect

to α is given by

∂V
∂α

= pk

r

∑
i=1

(dt′i(k)− dti(k))
2 − qk

s

∑
i=1

(d′i(k)− di(k))
2 (A13)

Appendix B

We use the number of curricula and max_iter0 to determine the number of iterations
per curricula. Assume we have C curricula and set max_iter0 = I. Denote the number
of iterations per curriculum by curric_iter. Due to potential uneven division, we cannot
simply set curric_iter = max_iter0

C . For this reason, we set an iteration scheme

iter_vec =
[⌊

max_iter0

C

⌋
,
⌊

max_iter0

C

⌋
, · · · ,

⌊
max_iter0

C

⌋]
where iter_vec has length C. To ensure that the sum of iter_vec is equal to max_iter0, we
compute m = mod (max_iter0, C) and randomly select m elements of iter_vec. We then
add one iteration to each selected element. The random selection ensures that there is no
bias introduced by this uneven division and the addition of one to m elements of iter_vec
ensures that the elements of iter_vec sum to C.

Appendix C

Figure A1 shows the 3D structures from CBCR trained on the primary and secondary
GM12878 mappings separately for chromosomes 2, 14, and 21 at 1 mb resolution. Figure A2
shows the 3D structures from CBCR trained on the Mbol and DpnII restriction enzyme
Hi-C data from GM12878 for chromosomes 2, 14, and 21 at 1 mb resolution. From these
figures, one can see that the output for CBCR is qualitatively similar across all chromosomes
regardless of the mapping or restriction enzyme.

(a) Chromosome 2: Primary (b) Chromosome 2: Replicate

(c) Chromosome 14: Primary (d) Chromosome 14: Replicate

Figure A1. Cont.
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(e) Chromosome 21: Primary (f) Chromosome 21: Replicate

Figure A1. 3D structures produced by CBCR on the primary and replicate maps of GM12878 at 1 mb.

(a) Chromosome 2: DpnII (b) Chromosome 2: Mbol

(c) Chromosome 14: DpnII (d) Chromosome 14: Mbol

(e) Chromosome 21: DpnII (f) Chromosome 21: Mbol

Figure A2. 3D structures produced by CBCR on the DpbII and Mbol restricted maps of GM12878 at
1 mb.

Figures A3 and A4 show the comparison between the distances associated with
looped and non-looped regions in individual chromosomes from the outputs of CBCR
from GM12878 at 100kb resolution for the ChIA-PET and HiChIP data respectively.
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(a) Chromosome 1 (b) Chromosome 2

(c) Chromosome 3 (d) Chromosome 4

(e) Chromosome 5 (f) Chromosome 6

(g) Chromosome 7 (h) Chromosome 8

Figure A3. Cont.
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(i) Chromosome 9 (j) Chromosome 10

(k) Chromosome 11 (l) Chromosome 12

(m) Chromosome 13 (n) Chromosome 14

(o) Chromosome 15 (p) Chromosome 16

Figure A3. Cont.
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(q) Chromosome 17 (r) Chromosome 18

(s) Chromosome 19 (t) Chromosome 20

(u) Chromosome 21 (v) Chromosome 22

(w) Chromosome 23

Figure A3. Comparisons of the looped and non-looped distances of CBCR’s outputs at 100kb
resolution for the ChIA-PET data.
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(a) Chromosome 1 (b) Chromosome 2

(c) Chromosome 3 (d) Chromosome 4

(e) Chromosome 5 (f) Chromosome 6

(g) Chromosome 7 (h) Chromosome 8

Figure A4. Cont.
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(i) Chromosome 9 (j) Chromosome 10

(k) Chromosome 11 (l) Chromosome 12

(m) Chromosome 13 (n) Chromosome 14

(o) Chromosome 15 (p) Chromosome 16

Figure A4. Cont.
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(q) Chromosome 17 (r) Chromosome 18

(s) Chromosome 19 (t) Chromosome 20

(u) Chromosome 21 (v) Chromosome 22

(w) Chromosome 23

Figure A4. Comparisons of the looped and non-looped distances of CBCR’s outputs at 100kb
resolution for the HiChIP Data.
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