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Abstract Pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SST), and

vasoactive intestinal peptide (VIP) show cell-type-specific connectivity patterns leading to a

canonical microcircuit across cortex. Experiments recording from this circuit often report

counterintuitive and seemingly contradictory findings. For example, the response of SST cells in

mouse V1 to top-down behavioral modulation can change its sign when the visual input changes, a

phenomenon that we call response reversal. We developed a theoretical framework to explain

these seemingly contradictory effects as emerging phenomena in circuits with two key features:

interactions between multiple neural populations and a nonlinear neuronal input-output

relationship. Furthermore, we built a cortical circuit model which reproduces counterintuitive

dynamics observed in mouse V1. Our analytical calculations pinpoint connection properties critical

to response reversal, and predict additional novel types of complex dynamics that could be tested

in future experiments.

Introduction
Three major non-overlapping classes of interneurons expressing parvalbumin, somatostatin and

vasoactive intestinal peptide (henceforth denoted PV, SST and VIP respectively) make up more than

80% of GABAergic cells of mouse cortex (Rudy et al., 2011). These neurons show cell-type-specific

connectivity among themselves and with excitatory (E) neurons (Pfeffer et al., 2013; Jiang et al.,

2015) forming a canonical microcircuit in the cortex. This microcircuit motif, initially proposed theo-

retically (Wang et al., 2004), has been the subject of numerous recent experimental studies using

optogenetic tools applied to behaving mice (Lee et al., 2012; Saleem et al., 2013; Kepecs and

Fishell, 2014; Hawrylycz et al., 2016) as well as computational studies (Lee and Mihalas, 2015;

Lee and Mihalas, 2017; Lee et al., 2017; Yang et al., 2016; Yang and Wang, 2017). However, we

still do not fully understand the mechanisms that underlie the behavior of this microcircuit which are

often complex and counterintuitive.

A notable observation was that pyramidal neurons and VIP interneurons concomitantly increase

their activities in the primary visual cortex V1 during locomotion in comparison with immobility

(Niell and Stryker, 2010), even in the complete absence of visual input (Keller et al., 2012). More-

over, optogenetically activating (respectively inactivating) VIP interneurons mimics (respectively elim-

inates) the effect of running (Fu et al., 2014). Since VIP cells primarily target SST cells, a natural

explanation for this phenomenon is disinhibition (Wang et al., 2004; Lee et al., 2013): activation of

VIP cells suppresses SST cells, therefore neurons targeted by the SST population are disinhibited,

enhancing the overall activity of excitatory neurons. However, recent experiments show that the net-

work behavior might be more complex. Namely, in darkness the activation of VIP cells results in an

average decrease of SST population activity (Fu et al., 2014), whereas in the presence of visual stim-

ulation the response of SST cells is reversed and its firing rate increases during locomotion
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compared to immobility (Pakan et al., 2016). These findings, which have been further confirmed in

a recent preprint (Dipoppa et al., 2017), appear to challenge the disinhibition hypothesis, suggest-

ing that the nature of the interaction between VIP and SST could be stimulus dependent.

These experimental results raise two questions: First, the external activation of a population that

directly inhibits a second population can trigger a positive response of the latter. What is the mecha-

nism behind this apparently paradoxical behavior? Second, the same top-down modulation can trig-

ger both a positive response and a negative response of certain populations of the circuit

depending on the sensory input. Under which conditions can we expect one response or the other?

In this study, we model cortical activity and provide a comprehensive answers to these two ques-

tions. We show that these counterintuitive phenomena rely on two basic features of cortical net-

works: (i) the presence of multiple populations of interneurons and (ii) nonlinear responses to input.

Finally, we use our model to predict complex behaviors that have not yet been experimentally

tested. Beyond the mechanistic explanation for the observed behavior in mice V1, our work provides

a very general and powerful framework to explain the dynamics of neural networks with multiple

interneuron types, their context-dependent interactions, and the emsergence of counterintuitive

effects that may occur across different cortical structures and animals.

Results
We simulate microcircuit activity using a four population firing rate model. The average rate of each

population is given by a nonlinear function of its input that we refer to as the f-I curve (Abbott and

Chance, 2005). The f-I curve is such that when the input is low (below threshold), cells are little

responsive to changes in external input. Instead for high input (above threshold) small changes in

the input can drive substantial changes in the response (Miller and Troyer, 2002) (see Figure 1b).

This nonlinearity has been analyzed experimentally and theoretically (Murphy and Miller, 2003;

Phillips and Hasenstaub, 2016) and as we will show later, it is a key feature of the model.

Populations are connected according to the microcircuit scheme in Figure 1a which contains the

connections reported in both Jiang et al., 2015 and Pfeffer et al. (2013). We also consider three

sources of input: (i) top-down modulation that targets VIP cells (ii) local recurrent input and (iii) con-

stant background input set so that the populations have some fixed baseline activity (see

Materials and methods for details).

Figure 1. Response to top-down modulation depends on baseline activity. (a) Microcircuit connectivity and top-

down modulatory input. (b) f-I curve. When input is low changes in input have almost no effect on the output rate,

instead, when input is high changes in input have a big effect on output rate. (c, d) Transient dynamics upon the

onset of the top-down modulatory current for low baseline activity (i.e. when the rates are low before top-down

modulation) and high baseline activity (i.e. when the rates are high before top-down modulation). Under a low

baseline activity condition, SST is inhibited and E and PV are slightly disinhibited. The high baseline activity

condition shows an example of response reversal in SST activity: it initially goes below the baseline rate but due to

significant change in E activity and to the recurrent excitation it eventually reverses to a rate higher than baseline.
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Response to top-down modulation depends on baseline activity
To illustrate possible complex behaviors displayed by the network, we first focused on the circuit

responses to top-down modulation. The simulation results from our model allow us to identify two

qualitatively different scenarios depending on the baseline activity of the network (the baseline activ-

ity is the activity before the onset of top-down modulation and we control it by changing the con-

stant background input, see Materials and methods for details). On the one hand, when the baseline

activity is low, top-down modulation will result in a decrease of the rate of the SST population and

an increase of the rates of the other populations (E, PV and VIP) (see Figure 1c). On the other hand,

when baseline activity is high, the rate of all populations increases with top-down modulation (see

Figure 1d). These simulations reveal that population responses to top-down modulation depend in

a complex way on the initial state of the network.

The striking behavior exhibited by the SST population can be explained heuristically by analyzing

the response of the different populations to external excitatory input targeting VIP cells. When the

top-down modulation starts, the rate of the VIP population increases. By calculating the time deriva-

tives of the rates right after the onset of the top-down modulation (see Materials and methods) one

can see that this effect always results in a transient reduction of SST activity and therefore a reduc-

tion of inhibition to VIP, PV and E cells. When baseline activity is low the E population is below

threshold and this change in net input has a small effect in the output. In that situation, all popula-

tions quickly reach a stationary state. However, when the baseline activity is high, the E population is

above threshold and a small change in input from SST cells has a big effect on the rate of the E pop-

ulation. If the recurrent excitation in the microcircuit is strong enough, it can reverse the initial

response of the SST population making it increase its activity to a higher rate than the baseline.

Circuit behavior explained by response matrix
In order to formally characterize the steady state response of a population to external input we intro-

duce the response matrix M. The intuition behind the response matrix is that if we change the input

to population j (where j ¼ E;P; S;V for excitatory, PV, SST and VIP populations respectively) by a

small amount dIj, then the change in rate of the population i will be dri ¼ dIjMij. If Mij is positive (neg-

ative), an increase of the external excitation to j will result in an increase (decrease) of the rate of

population i (see Materials and methods and Table 3 for details). In contrast to the connectivity

matrix, which takes into account only the direct path from population j to i, the response matrix con-

tains information about all the possible ways in which population j can affect population i, namely

through indirect connections j-h-i. Due to the complexity of these indirect pathways, for different val-

ues of the connectivity matrix (but preserving the excitatory/inhibitory structure) Mij can be positive

or negative irrespective of whether the connection from j to i is inhibitory or excitatory. Furthermore,

due to the nonlinearities in the f-I curve, the response depends on the baseline rate of each of the

populations and, as shown before, it can reverse its sign.

As an example, we analyze in detail the response of the SST population to external input to VIP

cells. As we show in the Materials and methods section, this term of the response matrix is given by:

MSV ¼CwSV ðwEE � dEÞðwPPþ dPÞ�wEPwPEð Þ;

where wij are the absolute values of the connection weights and therefore are positive by definition

and for the system to be stable C has to be positive (see Materials and methods for details). The

terms di are proportional to the inverse of the first derivative of the f-I curves and are always positive.

In particular, dE becomes arbitrarily large when the input is very low and tends monotonically to a

positive constant d¥E for high input. Therefore, if wEE � d¥E then MSV will always be negative. However,

for wEE>d
¥

E the behavior is much richer: if input is high then dE will be close to its minimum d¥E and

wEE>dE allowing for MSV to be positive (provided that the product wEPwPE is small enough). Instead if

the input is low, dE will become very large and MSV will be negative.

It is remarkable that this change in the interaction between VIP and SST populations depends on

the activation level of E: modifying the state of one population has a impact in the interactions

between other populations. The heuristic explanation is that if the recurrent excitation is strong

enough and the E population is already strongly excited (above threshold), a small decrease in the

inhibition from SST to the E population can boost its activity and therefore strongly drive the whole
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microcircuit. If instead, the E population is in a low activation state the change in inhibition will have

a weak effect that will not be able to reverse the response of SST.

This observation provides an explanation to the reversal of the response of SST to VIP activation

when the baseline activity is changed: as we show in Figure 2a and c for low baseline activity, MSV is

negative and the presence of an external excitatory current targeting VIP cells will result in a nega-

tive response of SST cells and positive response of E, PV and VIP cells, conforming to the disinhibi-

tory hypothesis. On the other hand, for high baseline activity (panels 2b and 2d), the response of the

SST population to input to VIP cells becomes positive leading to the response reversal regime.

A similar analysis can be conducted for all terms in M. For example, another case of response

reversal in this circuit is that of MEE which can have different signs for different baseline activity lev-

els, meaning that the excitatory population can have a negative response to excitatory input to itself.

Intuitively, if an external excitatory current targets the E population, its rate will increase transiently

and thus the excitation that SST and VIP receive will also increase. If this effect is stronger in SST

than in VIP the rate of the VIP population will decrease and therefore the inhibition that SST receives

will decrease as well resulting in stronger inhibition to E cells. Note that for this to happen both SST

and VIP have to be in the high activity baseline (i.e. dS, dV have to be small) and wSV , wVS have to be

Figure 2. Response matrix and disinhibition vs. response reversal regime. (a–b) Tuning curves for the different

populations and baseline activity in both scenarios (low and high). In the low baseline activity scenario (a) all

populations are below threshold (flat part of the fI curve), instead in the high baseline activity scenario (b) all

populations are above threshold, where small changes in input result in large changes in rate. (c–d) Response

matrices for the two scenarios. In (c) the response of SST to external excitation of VIP is negative, while the

responses of E and PV are positive. This corresponds to the disinhibition regime. In (d) the responses of all

populations to external excitation of VIP are positive, in particular, the response of SST is reversed with respect to

(c) corresponding to the response reversal regime.
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strong. The explicit expression of MEE (see Table 3) reveals that if the SST-VIP-SST loop is not strong

enough or if dS, dV are large MEE will always be positive.

Random network model
Experimental recordings showed a great diversity across neural responses even when recording

from the same class of cells (Pyramidal, SST, PV or VIP) (Pakan et al., 2016). Although this diversity

can have many origins, such as intrinsic heterogeneity in the cells within the same class, we proposed

that random connectivity alone is sufficient to explain it. To do so we develop an extension of our

model where each population is composed of multiple identical randomly connected rate units and

where the probability that one connection exists from one unit to another depends on the popula-

tions of the presynaptic and postsynaptic units according to data extracted from Jiang et al. (2015);

Pfeffer et al. (2013) (see Materials and methods for details).

For each unit, we measure the rate modulation (rate during top-down modulation minus baseline

activity) for the different baselines. If the rate modulation is positive it means that the neuron is more

active in the presence of the modulatory current and vice versa. In Figure 3, we show scatter plots

of the rate modulation under the low baseline condition versus the rate modulation under the high

baseline condition for each unit. These simulations reveal that the behavior of individual neurons can

be quite variable while the population average still corresponds to the behavior of the population-

based model. Since all units of each population are identical, variability in the response has to be

due to the heterogeneity in the connectivity. This variability can result in cells within the same popu-

lation having responses with opposite sign, as has been observed to be the case in mouse V1

(Reimer et al., 2014; Pakan et al., 2016) and A1 (Kuchibhotla et al., 2017). In addition, variability

might also have further implications for gating of signals, since variability in inhibitory cells has been

proposed to modulate the response gain of neural circuits (Mejias and Longtin, 2014).

Model of mouse V1 accounts for experimental measurements
Our framework allows us to easily understand the counterintuitive behavior of V1 during locomotion.

In the experiments mice with their head fixed face a screen where different visual stimuli are pre-

sented and can run freely on a treadmill (Fu et al., 2014; Pakan et al., 2016). Different visual stimuli

result in different baseline activities in V1 and top-down modulation is triggered when the mice start

running.

To model visual input we use external currents. In the case of size-varying gratings, this input has

two sources: thalamic input that targets excitatory cells and cortical input that targets SST cells. In

order to reproduce the surround suppression effect (Ozeki et al., 2009; Adesnik et al., 2012), excit-

atory cells have a small receptive field and therefore receive center input and SST cells have a large

receptive field and receive surround input (see Materials and methods for details).

Figure 3. Random network model. (a) Schematic of the model. Each population is composed of several rate units and the connectivity between units is

random with probabilities extracted from experimental data in the literature. (b) Rate modulation (rate after the onset of the modulatory current minus

baseline rate) for low and high baseline activities. Each colored point corresponds to one unit. Unit responses are very variable and, in particular within

the same population different units might have responses with different sign. White points correspond to the population average. Despite the

variability of individual responses the population average corresponds to the population responses in the single unit model in Figure 1.
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Figure 4b shows the response reversal phenomenon when a weak visual stimulus is presented.

Before the visual stimulation, the SST has higher activity for immobility than for locomotion, by con-

trast, when the visual stimulus is presented, the activity of the SST population is higher for locomo-

tion. In Figure 4c, we show the experimental data from Pakan et al. (2016) for three different

experimental conditions (darkness, gray screen and grating) and in Figure 4d our simulations of V1

under the same conditions. Figure 4—figure supplement 1 shows the experimental data from the

preprint (Dipoppa et al., 2017) for gratings of different sizes alongside with the behavior of our

model.

Figure 4. Model of mouse V1 behavior. (a) Schematic of the microcircuit. Visual input targets E and SST cells. Behavior related top-down modulation

targets VIP cells. (b) Response of E and SST populations when a weak visual stimulus (6 deg) is presented for locomotion and immobility. The E

population always shows a higher response with locomotion. On the other hand, before the visual stimulation the SST population has higher activity for

immobility than for locomotion and when the visual stimulus is presented, the activity of the SST population is higher for locomotion. (c) Relative

change in calcium fluorescence for three levels of visual stimulation (darkness, gray screen and grating) and two behavioral states: immobility (empty

bars) and locomotion (filled bars) extracted from Pakan et al. (2016). (d) Rates (in Hz) of the populations in the V1 simulation for the same conditions as

in (c). Comparison of (c) with (d) shows that our simulations reproduce qualitatively the activity of neural populations in mice V1. Namely the activity of

all populations is higher during locomotion than during immobility whenever there is visual stimulation and for E, PV and VIP also in the absence of

visual stimulation. Our model shows a decrease in activity of SST during locomotion as reported in Fu et al. (2014) (the change in activity of the SST

population in darkness in Pakan et al. (2016) is not statistically significant). The quantitative differences might be related to the fact that changes in

calcium fluorescence are not proportional to changes in rate.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Model of mouse V1 behavior with different grating sizes.

Figure supplement 2. Robustness of the behavior.

Figure supplement 3. Alternative architectures.

Garcia del Molino et al. eLife 2017;6:e29742. DOI: https://doi.org/10.7554/eLife.29742 6 of 15

Research article Neuroscience

https://doi.org/10.7554/eLife.29742


Our simulations of this V1 circuit model reproduce the phenomena described in the literature: in

the presence of visual stimulation, the activities of all populations, including SST, increase during

locomotion (Pakan et al., 2016). In darkness, the activities of excitatory, PV and VIP populations

increase during locomotion while the activity of SST decreases as reported in Fu et al. (2014) and in

the preprint (Dipoppa et al., 2017). In Pakan et al. (2016), the response of SST to locomotion in

darkness is weakly positive but this result is not statistically significant while the other two are.

To show that our results do not rely on a fine tuning of the connectivity parameters or even on

certain details of the microcircuit structure, we have run the model with several connectivity matrices

and perturbations of them (Figure 4—figure supplement 2) and we find that different connectivity

parameters can reproduce the same circuit behavior as has been shown before in other systems

(Marder et al., 2015). We have also considered other microcircuit structures to account for the dif-

ferences between studies ([Pfeffer et al., 2013] reports projections from PV to VIP and (Jiang et al.,

2015) from PV to SST) and we also consider thalamic input to PV (Figure 4—figure supplement 3).

In all these cases, the results were consistent with our original findings showing that the phenome-

non and the analysis are robust and not a peculiarity of one specific circuit.

Discussion
We have developed a theoretical model of cortical circuit with multiple interneuron types that

accounts for newly identified complex interactions between cell types. The model has been used to

reproduce and explain two counterintuitive phenomena observed in mouse cortex. First, in certain

cases the activation of VIP cells results in an overall positive response of the SST population

(Pakan et al., 2016). Second, the sign of the SST population response to excitation of VIP cells

depends on the baseline activity of the circuit (Fu et al., 2014). Two features of the system lead to

this behavior: the presence of multiple interneuron populations and the nonlinearity of f-I curves.

We explained heuristically the response reversal by closely looking at transient dynamics of the

circuit. One experimentally testable prediction of our analysis is that, as Figure 1d and our calcula-

tions of the transient behavior show, in the response reversal regime, the overall SST population

response to top-down modulation should initially decrease and later increase until reaching a higher

rate than the baseline.

Based on our model, we introduced the response matrix M, which is a comprehensive framework

to understand counterintuitive steady state responses. It provides explicit information about the con-

tribution of each individual connection. For example by looking at the elements in MSV (see Table 3),

one can readily see that if the recurrent excitation between pyramidal cells is not large enough, MSV

can only be negative and therefore response reversal of SST would not happen. This statement can

be easily tested by repeating the experiments while suppressing the activation of the E population.

As we discussed before, another example is that if both SST and VIP populations have high baseline

activities and if the SST-VIP-SST loop is strong enough, MEE can be negative, that is the excitatory

population can have a negative response to excitatory input (see Table 3 for the explicit expression

of MEE). If the connections between the SST and the VIP populations are removed (or weakened) or

if their baseline activities are sufficiently lowered MEE will always be positive. This constitutes another

interesting prediction that can be experimentally tested.

Our calculations also revealed sign correlations between entries of M, for example MSV and MSS

have opposite signs for any connectivity matrix (given the microcircuit) and for any baseline activity.

This predicts that in the regime where SST activity has a positive response to excitatory input target-

ing VIP, SST has to have a negative response to external input targeting SST. In addition, our results

are in line with experimental studies that show that VIP interneurons play an important role in corti-

cal activity modulation (Mesik et al., 2015; Ibrahim et al., 2016; Jackson et al., 2016).

Our approach constitutes a general conceptual framework in which previous work regarding com-

plex cortical interactions can be better understood (Tsodyks et al., 1997; Ozeki et al., 2009; Lit-

win-Kumar et al., 2016). The analysis of the response matrix shows that for the given microcircuit

structure all terms of the matrix can be positive or negative. This is not the case in E-I networks (net-

works with one excitatory (E) population and only one inhibitory (I) population) (Tsodyks et al.,

1997; Ozeki et al., 2009). In that case MEE and MIE are always positive, MEI is always negative and

only MII can have both signs (see Materials and methods). In this sense, having more than one inhibi-

tory population results in a much more versatile network. Another important point that can be
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derived from our calculations is the relationship between response reversal and inhibition stabilized

networks (ISN) (Ozeki et al., 2009). Looking at the terms of the response matrix for an E-I network,

we can see that the condition to have response reversal and the condition to be an ISN is the same:

WEE has to be larger than d¥E . When analysing networks with more than one inhibitory population the

relationship is not necessarily bidirectional any more. In the network that we analyzed, we found that

in the high baseline activity the network is in the ISN regime and MSV is positive (as observed in [Lit-

win-Kumar et al., 2016), whereas in the low baseline activity the network is not in the ISN regime

and MSV is negative, so in this case there is a clear relationship between being an ISN and exhibiting

response reversal. However, the condition for other cases of response reversal such as MEE do not

involve WEE and therefore do not require the network to be an ISN.

Finally, this study provides a parsimonious yet powerful explanation to striking observations of

interneuronal circuits in V1 (Fu et al., 2014; Pakan et al., 2016; Lee et al., 2017) without requiring

the assumption of top-down excitatory inputs explicitly targeting SST or PV neurons. Both our

computational neural network model and the approach presented here (the response matrix analy-

sis) go beyond circuit dynamics in mice V1 and can be easily applied to other species and cortical

areas. By extending previous works (Tsodyks et al., 1997; Ozeki et al., 2009), it naturally explains

the response reversal observed in cat visual cortex (Ozeki et al., 2009). It could also be applied to

explain similar phenomena observed in mouse primary auditory cortex (Seybold et al., 2015;

Kuchibhotla et al., 2017). In particular, in Kuchibhotla et al. (2017), the authors find that locomo-

tion reduces the activity of excitatory cells. Assuming that the main modulation in the circuit is medi-

ated by VIP cells this observation implies that MEV<0 which is the case when the connections WEP

and WPS are strong enough. In mouse somatosensory cortex, activating VIP neurons results in an

intuitive decrease in SST activity, instead of a response reversal (Lee et al., 2013). As our results sug-

gest, this qualitative difference between V1 and somatosensory cortex may be explained by the

quantitative difference between their circuit architectures: in a recent study the authors showed that

cell densities of different types of interneurons differ substantially across cortical areas resulting in

counterintuitive impacts on circuit responses (Kim et al., 2017). These responses can be readily

understood using the response matrix.

In this work, we mainly focused on steady-state responses. However, neural responses in many

cortical areas, including primary auditory cortex, are largely transient and dynamical (Wehr and

Zador, 2003). In addition, synaptic connections to and from interneurons are often subject to short-

term plasticity (Reyes et al., 1998). Understanding transient dynamics in nonlinear, multi-type inter-

neuronal circuits would be an important topic for future research.

We have shown that similar to the now well-known paradoxical effect that the presence of a sin-

gle inhibitory neuron type can cause (Tsodyks et al., 1997; Ozeki et al., 2009), the presence of mul-

tiple types of interneurons has an even stronger impact on the activity of neural circuits. We have

also exposed the effect of nonlinearity of the f-I curve. Our analysis suggests that in a circuit with

multiple populations, the most interesting circuit behavior is found when spontaneous baseline activ-

ity is close to threshold since in that regime responses will change the most with small changes in

population rates. These two features significantly broaden the richness of the dynamics of cortical

circuits and enhance their usefulness for cognitive and behavioral computations. We conclude that

computational models and mathematical analysis are critical to fully understand the dynamics of neu-

ral circuits underlying behavior (Gjorgjieva et al., 2016), especially when several types of interneur-

ons are involved as intuition alone may be misleading and provide erroneous predictions on such

circuits.

Materials and methods

Firing-rate-based population model
The state of the system is characterized by the rates ri. To model the average rate of each popula-

tion we use a function of the input Vi as the one introduced in Abbott and Chance (2005)

ri ¼ f ðViÞ ¼
Vi�Vth

tðVth �VrÞ

1

1� e�ðVi�VthÞ=v
(1)

where Vth ¼�50 mV and Vr ¼�60 mV are the threshold and reset potentials respectively, t is the
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membrane time constant and v¼ 1 mV. Vi is the average input to each of the populations and is

given by

Vi ¼ Vlþ
X

j

Wijrj þ Ii þ I ibkg

 !

=gil (2)

where Vl ¼�70 mV is the reversal potential and gil is the membrane conductance. W is the connectiv-

ity matrix and therefore
P

jWijrj is the recurrent local input. Ii is the external input current and I ibkg is

a constant current that is tuned to obtain the desired baseline activity and we find the specific values

by solving the system ri ¼ f ðVlþð
P

jWijrjþ Ii þ I ibkgÞ=g
i
lÞ. For example, for the baseline activity steady-

state the background currents needed to obtain the desired rates (1, 10, 3 and 2 Hz for pyramidal,

PV, SST and VIP, respectively) are 114.7, 233.6, 94.3 and 89.9 pA. The rate dynamics are given by

tr

dri

dt
¼�ri þ f ðViÞ (3)

where tr ¼ 2 ms (Gerstner, 2000). Since the parameters of the f-I curve are population dependent

(see Table 2), different populations will have different rates for the same input. The nonlinearity of

the f-I curve has very important consequences. Namely, for low input f ðViÞ is almost flat, and there-

fore changes in the input will have almost no effect on the rate. By contrast, for strong input f ðViÞ

tends asymptotically to a straight line with slope 1

tiðVth�VrÞ
and changes in the input will elicit a large

change in the rate. As we will show later, this feature is key to reproduce the response reversal

observed in the experiments.

The connectivity matrix W used in the simulations is generated by rejection sampling, that is by

generating random matrices that have the microcircuit structure given in Figure 1a and selecting

the ones that produce the desired responses. The simulations of Figures 1 and 2 were done with

the connectivity matrix given in Table 1.

Behavioral state is modeled with a constant top-down modulatory current of 10 pA that targets

VIP cells. The constant background inputs I ibkg are set so that in the absence of the top-down modu-

latory current, the E, PV, SST and VIP populations will have spontaneous average rates of 1, 10, 3

and 2 Hz, respectively, for the low baseline activity scenario and 30, 50, 30 and 20 Hz for the high

baseline activity.

Time derivatives of the rates after the onset of modulation
In this section, we calculate analytically the changes in rate right after the onset of the modulatory

current. The intuition behind these calculations is that the initial change in activity of a population is

driven by the fastest path from the external input to the neurons in that population.

We assume that the system is at a fixed point (therefore dri
dt
¼ 0 for all populations) and that at

time t ¼ 0 an excitatory top-down modulatory current targets the VIP population. Taking into

Table 1. Connectivity matrix (in pAs).

From

E PV SST VIP

to E 2.42 �0.33 �0.80 0

PV 2.97 �3.45 �2.13 0

SST 4.64 0 0 �2.79

VIP 0.71 0 �0.16 0

Table 2. Population-dependent parameters.

E PV SST VIP

gl 6.25 nS 10 nS five nS five nS

t 28 ms 8 ms 16 ms 16 ms
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account that the time derivatives of the rates are given by Equation (3) and since f ðVÞ is monoto-

nously increasing and the modulatory current IV>0, then
drV
dt
ð0Þ will be positive and all other deriva-

tives will still be 0. In order to estimate the behavior of the initial slope of dri
dt
, we calculate the

second derivatives at t ¼ 0:

d2ri
dt2

¼ 1

ti

d
dt

�ri þ f ðViÞð Þ

¼ 1

ti
� dri

dt
þ df

dVi

P

j
dVi

drj

drj
dt

� �

¼ 1

ti
� dri

dt
þ df

dVi

WiV

gi
l

drV
dt

� �

(4)

where in the last step we used the fact that drið0Þ
dt

¼ 0 except for VIP. Since df

dVi
, gil and

drV
dt

are positive,

the sign of d2ri
dt2

will depend on the sign of WiV . In particular, for SST we obtain

d2rS

dt2
¼

1

tS

df

dVS

WSV

gSl

drV

dt
ð0Þ<0; (5)

meaning that in all regimes the initial (transient) response of the SST population to top-down modu-

lation targeting VIP cells will be negative.

Response matrix and response reversal
In order to characterize the response of a population to external excitatory input to the network we

calculate how its rate will change for a small change in external input. We focus on stationary states

ri ¼ f ðViÞ. If we apply a small perturbation to the external input dIi, the network will reach a new sta-

tionary state

riþ dri ¼ f ðViþ dViÞ ¼ f ðViÞþ f 0ðViÞdVi þOðdV2

i Þ (6)

where f 0ðViÞ is the derivative of f with respect to V and

dVi ¼
X

j

Wijdrjþ dIi

 !

=gil: (7)

Since ri ¼ f ðViÞ, when we linearize f around V and ignore terms of order dV2 and higher we obtain

the following self-consistent equation

Table 3. Entries of the respone matrix.

MEE ¼ CðwPP þ dPÞ dSdV � wSVwVSð Þ

MPE ¼ CðwPE dSdV � wSVwVSð Þ � wPS wSEdV � wSVwVEð ÞÞ

MSE ¼ CðwPP þ dPÞ wSEdV � wSVwVEð Þ

MVE ¼ CðwPP þ dPÞ wVEdS � wSEwVSð Þ

MEP ¼ �CwEP dSdV � wSVwVSð Þ

MPP ¼ �CððwEE � dEÞ dSdV � wSVwVSð Þ þ wES wSEdV � wSVwVEð ÞÞ

MSP ¼ �CwEP wSEdV � wSVwVEð Þ

MVP ¼ �CwEP wVEdS � wSEwVSð Þ

MES ¼ �CdV ðwESðwPP þ dPÞ � wEPwPSÞ

MPS ¼ �CdV wESwPE � ðwEE � dEÞwPSð Þ

MSS ¼ �CdV ðwEE � dEÞðwPP þ dPÞ � wEPwPEð Þ

MVS ¼ �CðwVEðwESðwPP þ dPÞ � wEPwPSÞ þ wVS ðwEE � dEÞðwPP þ dPÞ � wEPwPEð ÞÞ

MEV ¼ CwSV ðwESðwPP þ dPÞ � wEPwPSÞ

MPV ¼ CwSV wESwPE � ðwEE � dEÞwPSð Þ

MSV ¼ CwSV ðwEE � dEÞðwPP þ dPÞ � wEPwPEð Þ

MVV ¼ CðwESðwESðwPP þ dPÞ � wEPwPSÞ � dS ðwEE � dEÞðwPP þ dPÞ � wEPwPEð ÞÞ
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dri ¼ f 0ðViÞ
X

j

Wijdrjþ dIi

 !

=gil: (8)

We define the entries of response matrix as the derivative Mij ¼
qri
qIj
, which can be obtained from

the limit dIj ! 0 in the system of equations given by (Equation 8) and in matrix form can be written

as

M ¼ ðD�WÞ�1 (9)

where D is a diagonal matrix with entries Dii ¼ gl;i=f
0ðViÞ. As it was explained in the results section,

the nonlinear behavior of the terms Dii is essential to explain the response reversal regime. Dii

becomes arbitrarily large as Vi !�¥ and decreases monotonically to d¥i ¼ tiðVth�VrÞ=g
i
l when

Vi !¥.

In Table 3, we give the explicit formulas to all the entries of the response matrix in terms of the

entries of the connectivity matrix W and D (we denote w ¼ jW j, di ¼ Dii and C ¼ detðD�WÞ�1). Note

that, because of the complex interactions in the network, the sign of Mij is never determined exclu-

sively by that of Wij.

Random network model
We consider a network with 800 E units, 100 PV units, 50 SST units and 50 VIP units. Each unit within

a population has the same f-I curve with the parameters in Table 2. The probabilities pij of a connec-

tion from each unit in population j to each unit in population i are estimated from data

(Pfeffer et al., 2013; Jiang et al., 2015) and are given in Table 4.

The strengths of the connections are rescaled so that the average input of a unit in population i

from all units in population j is Wij as given in Table 1. More specifically, each unit in population i will

receive in average mij ¼ pijNj projections from population j (where Nj is the number of units in popu-

lation j) and therefore the weight of these connections will be Wij=mij.

Top-down modulatory current and background input is identical to all units within the same pop-

ulation and has the same value as in the population based model.

Mouse V1 model
In the simulations of V1 activity, we use the connectivity matrix given in Table 5.

We model visual input with an external excitatory current that targets E and SST cells. In the

experiments in Pakan et al. (2016) and in the preprint (Dipoppa et al., 2017) the authors consider

Table 4. Connection probabilities for the random network model.

From

E PV SST VIP

to

E 0.02 1 1 0

PV 0.01 1 0.85 0

SST 0.01 0 0 �0.55

VIP 0.01 0 0.5 0

Table 5. Connectivity matrix for the mouse V1 model (in pAs).

From

E PV SST VIP

to E 3.30 �3.48 �2.98 0

PV 1.73 �4.25 �1.07 0

SST 3.50 0 0 �4.51

VIP 0.53 0 �0.13 0
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three levels of visual stimulation which are: darkness, gray screen and grating. To model darkness

condition, we assume a total absence of visual stimulation (therefore IE ¼ 0 pA, IS ¼ 0 pA). For gray

screen, we use a small input current to the excitatory population (IE ¼ 50 pA, IS ¼ 0 pA). Finally to

model different grating diameters the value of the input is a sigmoid function of the grating diame-

ter �:

Iið�Þ ¼
ai

1þ e��=biþ5
(10)

where bE ¼ 2, bS ¼ 6, aE ¼ 100 pA, aS ¼ 20 pA. With this parameters E cells receive center input (input

saturates for diameters ~20 deg) and SST cells receive surround input (input to SST saturates for

diameters of ~60 deg) (Dipoppa et al., 2017).

To demonstrate that our results do hold for a wide range of connectivity matrices and do not

have to be fine tuned, we simulate several different connectivity matrices that produce the same

qualitative behavior. We also make perturbations of these matrices by multiplying each entry by a

random variable uniformly distributed in the interval ½0:9; 1:1�. This amounts to randomly modifying

each connection within ±10% of its original value (see Figure 4—figure supplement 2).

In the alternative models of Figure 4—figure supplement 3 where visual stimulus input also tar-

gets PV cells, we use IP ¼ 0 pA for darkness, IP ¼ 10 pA for gray screen and bP ¼ 2, aP ¼ 20 pA for

gratings.

Response matrix for an E-I network
For the sake of completeness, here we analyze the response matrix for a fully connected E-I network

(Tsodyks et al., 1997, Ozeki et al., 2009) . The connectivity matrix is

W ¼
wEE �wEI

wIE �wII

� �

(11)

and therefore the response matrix is

M ¼ ðD�WÞ�1 ¼C
wII þ dI �wEI

wIE �wEE þ dE

� �

; (12)

where C¼ ððdE �wEEÞðwII þ dIÞþwEIwIEÞ
�1. Note that the only term that can change sign is MII so

the only population that can exhibit response reversal is the I population. Furthermore, note that

the condition for having response reversal (wEE>d
¥

E ) is the same that defines the ISN regime, so this

two properties are equivalent in the E-I network.

Acknowledgements
This work was supported by the NIH grant R01MH062349, the ONR grant N00014-17-1-2041,

STCSM grants 14JC1404900 and 15JC1400104.

Additional information

Funding

Funder Grant reference number Author

Office of Naval Research N00014-17-1-2041 Xiao-Jing Wang

Science and Technology Com-
mission of Shanghai Munici-
pality

14JC1404900 Xiao-Jing Wang

NIH Blueprint for Neu-
roscience Research

R01MH062349 Xiao-Jing Wang

Science and Technology Com-
mission of Shanghai Munici-
pality

15JC1400104 Xiao-Jing Wang

Garcia del Molino et al. eLife 2017;6:e29742. DOI: https://doi.org/10.7554/eLife.29742 12 of 15

Research article Neuroscience

https://doi.org/10.7554/eLife.29742


The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Luis Carlos Garcia del Molino, Conceptualization, Formal analysis, Investigation, Writing—original

draft, Writing—review and editing; Guangyu Robert Yang, Jorge F Mejias, Conceptualization, Writ-

ing—original draft, Writing—review and editing; Xiao-Jing Wang, Conceptualization, Funding acqui-

sition, Writing—review and editing

Author ORCIDs

Luis Carlos Garcia del Molino http://orcid.org/0000-0001-9934-9461

Guangyu Robert Yang http://orcid.org/0000-0002-8919-4248

Jorge F Mejias http://orcid.org/0000-0002-8096-4891

Xiao-Jing Wang http://orcid.org/0000-0003-3124-8474

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.29742.sa1

Author response https://doi.org/10.7554/eLife.29742.sa2

Additional files
Supplementary files
. Transparent reporting form

References
Abbott LF, Chance FS. 2005. Drivers and modulators from push-pull and balanced synaptic input. Progress in
Brain Research 149:147–155. DOI: https://doi.org/10.1016/S0079-6123(05)49011-1, PMID: 16226582

Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial summation in visual
cortex. Nature 490:226–231. DOI: https://doi.org/10.1038/nature11526, PMID: 23060193

Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD. 2017. Vision and locomotion shape the
interactions between neuron types in mouse visual cortex. bioRxiv . DOI: https://doi.org/10.1101/058396

Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP. 2014. A cortical circuit
for gain control by behavioral state. Cell 156:1139–1152. DOI: https://doi.org/10.1016/j.cell.2014.01.050,
PMID: 24630718

Gerstner W. 2000. Population dynamics of spiking neurons: fast transients, asynchronous states, and locking.
Neural Computation 12:43–89. DOI: https://doi.org/10.1162/089976600300015899, PMID: 10636933

Gjorgjieva J, Drion G, Marder E. 2016. Computational implications of biophysical diversity and multiple
timescales in neurons and synapses for circuit performance. Current Opinion in Neurobiology 37:44–52.
DOI: https://doi.org/10.1016/j.conb.2015.12.008, PMID: 26774694

Hawrylycz M, Anastassiou C, Arkhipov A, Berg J, Buice M, Cain N, Gouwens NW, Gratiy S, Iyer R, Lee JH,
Mihalas S, Mitelut C, Olsen S, Reid RC, Teeter C, de Vries S, Waters J, Zeng H, Koch C, MindScope. 2016.
Inferring cortical function in the mouse visual system through large-scale systems neuroscience. PNAS 113:
7337–7344. DOI: https://doi.org/10.1073/pnas.1512901113, PMID: 27382147

Ibrahim LA, Mesik L, Ji XY, Fang Q, Li HF, Li YT, Zingg B, Zhang LI, Tao HW. 2016. Cross-modality sharpening of
visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89:1031–1045.
DOI: https://doi.org/10.1016/j.neuron.2016.01.027, PMID: 26898778

Jackson J, Ayzenshtat I, Karnani MM, Yuste R. 2016. VIP+ interneurons control neocortical activity across brain
states. Journal of Neurophysiology 115:3008–3017. DOI: https://doi.org/10.1152/jn.01124.2015, PMID: 26
961109

Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS. 2015. Principles of connectivity
among morphologically defined cell types in adult neocortex. Science 350:aac9462. DOI: https://doi.org/10.
1126/science.aac9462
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