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Abstract: Over the years, coronaviruses (CoV) have posed a severe public health threat, causing
an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel
coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the
current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with
over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the
absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19
medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19
drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional
receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells,
binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of
the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme
inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is
being postulated that these flavonoids might also interact with ACE2. This postulation might be of
interest because these compounds also show antiviral activity in vitro. This article summarizes the
natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent
of Coronavirus Disease 2019 or COVID-19, triggered a pandemic affecting over 215 countries and
territories around the world [1,2]. As of August 2020, there are more than 23 million cases worldwide
with over 800,000 deaths, indicating that the virus is highly infectious with its pathogenicity being a
global health threat [3–5]. The number of positive cases and deaths due to COVID-19 continues to
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increase rapidly and, due to the unavailability of effective drugs, recovery is lagging (Figure 1) [2,6,7].
Thus, the search for new drugs to overcome this disease needs to be urgently intensified [2,8].
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Figure 1. The rise in active cases of coronavirus [2].

SARS-CoV-2, which causes severe respiratory syndrome in humans, is a positive-strand RNA
virus. The virus replication cycle begins with the entry of the virus into the human body by attaching
to the host cellular receptor angiotensin-converting enzyme 2 (ACE2), assisted by a protein spike
(S), followed by the release of the virus genome material into the host cell [9]. The viral genome
contains two overlapping polyproteins (polyprotein 1a and polyprotein 1ab), which are cleaved by
Mpro (the main protease) into 16 non-structural proteins, which are then translated into structural
(STR proteins) and non-structural proteins (non-STRs). This is followed by virus assembly, which
releases virions from the infected cells through exocytosis [10,11].

The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE2, is a type I integral
membrane protein of 805 amino acids containing one HEXXH-E zinc-binding consensus sequence [12].
ACE2 is involved in regulating cardiac function and is also a functional receptor for the coronavirus that
causes acute respiratory syndrome (SARS). ACE2 receptors are the largest target of SARS-CoV-2 because
they play an important role in the transmission of viruses to alveolar cells [13]. Inhibition or regulation of
ACE2 receptors may potentially be effective in the treatment of COVID-19. COVID-19 is currently being
treated with anti-infective drugs such as antimalarial drugs (chloroquine, hydroxychloroquine [14–17],
antiviral drugs (remdesivir [18], saquinavir [19], favipiravir [20], lopinavir [21], ribavirin [22],
and oseltamivir), and certain immunosuppressive drugs such as tocilizumab [23]. Tocilizumab was
approved by the Food and Drug Administration (FDA) to manage cytokine release syndrome (CRS) in
patients receiving chimeric antigen receptor T-cell therapy. This drug was shown to reduce toxicity
and improve immune-related toxicity [24,25]. Tocilizumab can block the activity of proinflammatory
interleukin-6 (IL-6), which is involved in the pathogenesis of pneumonia that causes death in
COVID-19 patients [26]. However, to date, we are still waiting for the results of the ongoing phase 3
clinical trial that might support and prove the effectiveness of these drugs in treating patients with
SARS-CoV-2 infection. For example, Wang et al. (2020) conducted a randomized study on the use
of placebo-controlled and intravenous remdesivir in 10 hospitals in Hubei, China [27]. The study
found that intravenous remdesivir did not significantly increase the time for clinical improvement,
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the mortality, or the time for virus clearance in patients with serious SARS-CoV-2 compared to placebo.
However, hydroxychloroquine or chloroquine with or without azithromycin did not enhance clinical
status at 15 days [28]. In an effort to find new therapies for COVID-19, natural product sources are also
being explored and re-evaluated for their activity against this deadly virus [24].

Natural compounds with high bioavailability and low cytotoxicity are the most efficient
candidates [29]. Flavonoids are structurally heterogeneous, polyphenolic compounds present in
high concentrations. Flavonoids are natural products found in many plants, and they play an important
role in plant physiology; they were intensively investigated for having bioactivity beneficial to health,
such as anti-inflammatory [30], anticancer [31], antioxidant [32], anti-lipogenic [33], metal-chelating [34],
antimicrobial [35], and antiviral [36] properties. More than 2000 plant-derived flavonoids have been
identified. Bioactive compounds from flavonoid derivatives are valuable for the development of drugs
and as additional therapies for these infections. Other flavonoids including flavones and flavonoids were
investigated for having antiviral potential, and many of them showed significant antiviral responses
in both in vitro and in vivo studies. Naringenin and hesperetin (flavanon), hesperidin (flavanonone
glycoside), baicalin and neohesperidin (flavone glycoside), nobiletin (O-methylation), scutellarin
(flavone), nicotinamin (nonproteinogenic amino acids), and glycyrinodin (methylated-eminin-1,3,8-
trihydroxyanthraquinone)are amongst natural ACE2 inhibitors [37–39]. This review focuses on the
prospect of utilizing flavonoids as potential treatment for SARS-CoV-2 infection.

2. Methods

This review was based on the literature obtained from PubMed and Google Scholar using
15 keywords. The results of the initial search strategy were firstly filtered by title and abstract. The full
text of the relevant articles was examined for inclusion and exclusion criteria. When an article reported
duplicate information from the same source, the information of the two reports was combined to
obtain the complete data but was only counted as one case. A list of selected references from papers
taken was used to further identify relevant citations. For the purpose of this review, the research
focused on seven key words, namely, “coronavirus”, “angiotensin-converting enzyme”, “angiotensin
converting enzyme II of coronavirus”, “angiotensin-converting enzyme II inhibitor CoV”, “natural
compounds ACE and ACEII inhibitors enzyme II of coronavirus”, “flavonoid as antiviral, antioxidant,
antiinflammation”, and “flavonoid as ACE2 inhibitor

3. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

SARS-CoV-2 initially appeared as part of a major outbreak of respiratory disease centered in
Hubei Province, China. It was identified as a novel type of coronavirus. Coronaviruses belong to the
large and enveloped Coronaviridae family under the Nidovirales order of viruses with positive-stranded
crown-like RNA [40,41]. The viral genome is 27 to 32 kb in size and is the largest virus among all RNA
viruses [6,42]. There are six types of coronaviruses, namely, alphacoronavirus 229E, alphacoronavirus
NL63, betacoronavirus OC43, HKU1 betacoronavirus, severe acute respiratory illness coronavirus
(SARS-CoV-1), and Middle East respiratory syndrome coronavirus (MERS-CoV). CoV belongs to
the betacoronavirus class [37,43]. Phylogenetic analysis shows that SARS-CoV-2 belongs to the
same subgenus as CoVs that caused the outbreak of severe acute respiratory syndrome (SARS)
in 2002–2004 [44] addition, the SARS-CoV-2 sequence is similar to CoVs isolated from bats [45].
The SARS-CoV-2 genome has an 89% similarity in homology compared to the ZXC21 bat coronavirus
and an 82% similarity to SARS-CoV-1 [6,46]. Thus, a hypothesis was deduced that SARS-CoV-2
originated from bats, which mutated and became infectious to humans [39,47].

The genome of SARS-CoV-2 contains 14 open reading frames (ORFs) encoding 27 proteins (Figure 2).
The 5′ terminus encodes for 15 nonstructural proteins collectively involved in virus replication and
possibly in immune evasion, while the 3′ terminus encodes for structural and accessory proteins [42,48].
The presence of a spike protein (S protein), which resembles a nail or an arrow on the surface of this virus,
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makes the structure even more unique than others. This S protein attaches to the angiotensin-converting
enzyme (ACE) 2 receptors on the surface of host respiratory cells [49,50].
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4. Angiotensin-Converting Enzyme 2 (ACE2)

SARS-CoV-2 uses the angiotensin-converting enzyme (ACE) 2 receptor for entry into target cells.
ACE2 is largely expressed by epithelial cells of the lung, kidney, heart, blood vessels, and intestine.
ACE and ACE2 belong to the ACE family of dipeptidyl carboxydipeptidases, and they have distinct
functions. ACE converts angiotensin I into angiotensin II, which in turn binds and activates angiotensin
II receptor type 1 (AT1R). This activation leads to vasoconstrictive, pro-inflammatory, and pro-oxidative
effects [52]. ACE2 exists in two forms: a soluble form that represents the circulating ACE2, and a
structural transmembrane protein with extracellular domain that serves as a receptor for the spike
protein of SARS-CoV-2. The latter is a polypeptide composed of 805 amino acids [53]. This molecule
is an inseparable part of a type 1 membrane protein that breaks down the main residue (a single
hydrophobic molecule) on the carboxy C-terminal of any bound substrate [54]. ACE2 hydrolyzes
the C-terminal domain of leucine from Ang I to produce non-peptides angiotensins 1–9 that can
be converted into heptapeptides by ACE and other peptidases. Furthermore, ACE2 can directly
reduce angiotensin II to angiotensins 1–7 [55]. Angiotensins 1–7 work on the Mas receptors to relax
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blood vessels and exhibit anti-proliferation and anti-oxidative activities. ACE2/angiotensins 1–7/Mas
formed by the participation of angiotensins 1–7 can attack certain parts of ACE–angiotensin II–AT1R,
with functions in maintaining the balance of the body [55,56].

The binding of SARS-CoV to the ACE2 receptor regulates the cellular expression of the receptor,
and the binding process induces internalization, which depends on clathrin [57]. ACE2 not only
facilitates the invasion and rapid replication of SARS-CoV, but it is also used by the cell membrane,
thus damaging angiontensin II, which results in acute damage of lung tissues [58]. Because the lungs
are the main target organs for COVID-19 infection, early onset of respiratory symptoms is common
among patients [59]. The results of the study conducted by Imai et al. [60] showed that blocking the
renin–angiotensin signaling pathway could relieve severe acute lung injury caused by SARS-CoV-2.

SARS-CoV-2 attaches to human ACE2 through the binding of spike (S) proteins, as shown in
Figure 3 [61]. The S protein of SARS-CoV-2 contains S1 and S2 subunits. The S1 subunit (Figure 4)
consists of a receptor-binding domain (RBD) that is responsible for binding with the host ACE2, and the
S2 subunit facilitates membrane fusion in the host cells [62,63]. The RBD contains a loop-binding pocket
(residue 424–494 or 438–506), which is called the receptor-binding motif (RBM) [62,64]. The RBM
cleaves the ACE2 receptor so that SARS-CoV can enter the host cells. After SARS-CoV binds to
ACE2, the S2 subunit facilitates membrane fusion in the endosomal plasma through conformational
change, thereby releasing the RNA genome into the target cells. After transcription and translation,
the structural and nonstructural proteins of CoV and the RNA genome are further assembled into
virions, which are transported through vesicles and released from target cells.
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are released from target cells.
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Figure 4. (a) Structure of the receptor-binding domain (RBD) of the S protein in SARS-CoV-2 (blue
and green ribbons) complexed with human ACE2. The green ribbon denotes the receptor-binding
motif (RBM) within amino-acid residues 424–494 or 438–504 [62,64]. (b) The active site of ACE2 (yellow
color) that directly interacts with the RBD of the S protein of SARS-CoV-2. The interaction between the
S protein of SARS-CoV-2 and hACE2 is stabilized by a hydrogen bond (green lines) between Arg439
(S protein SARS-CoV-2) and Glu329 (hACE2). The figure was created using Discovery Studio Biovia
through visualization of the Protein Data Bank (PDB) structure 6VW1 [65].

The Active Site of hACE2 as the Therapeutic Target of COVID-19

The amino-acid sequence of SARS-CoV-2 has a 76.5% similarity to that of SARS-CoV, and their S
proteins are quite homologous [66,67]. As shown in Figure 4, the RBD of the S protein of SARS-CoV-2
is located within amino-acid residues 318–510 (left side), containing the RBM (green ribbon), which is
on the surface, right in front of ACE2. Arg439 of the RBM in SARS-CoV-2 and Glu329 of ACE2 interact
and form a bridge to stabilize the complex. Based on the interaction of ACE2 with the S protein in
SARS-CoV-2, antibodies or small molecules can be used to target and inhibit SARS-CoV-2 replication
through inhibition of the ACE2 receptor. The S protein, thus, loses its partners to enter the host cell,
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as illustrated on the right side of Figure 4. ACE2 can be a target for inhibiting the entry of SARS-CoV-2
into the host cell because the binding affinity of the S protein of SARS-CoV-2 to the ACE2 receptor is
10–20-fold stronger than that of the S protein of SARS-CoV [68–70].

Han et al. identified the residues of ACE2 that directly interact with the RBD of the SARS-CoV-2 S
protein. The residues involved are Gln24, Thr27, Lys31, His34, Glu37, Asp38, Tyr41, Gln42, Leu45,
Leu79, Met82, Tyr83, Asp90, Gln325, Glu329, Asn330, Lys353, and Gly54. They also determined that
Glu22, Glu23, Lys26, Asp30, Glu35, Glu56, and Glu57 are important in the interaction. Notably, Lys26
and Asp30 play a critical role in the interaction of the RBD S protein of SARS-CoV; thus, Han et al.
concluded that these residues have the potential to be developed as a target for entry inhibitors [71].
Moreover, Gln325/Glu329 and Asp38/Gln42 of ACE2 are key binding sites that form hydrogen bonds
with Arg426 and Tyr436 of the S protein SARS-CoV-2 [72]. These critical residues are also present
in the S protein of SARS-CoV-2 with a similar sequence [73]. Therefore, the residues can be used as
primary target active sites of ACE2 inhibitors. We hypothesize that, if the inhibitors selectively bind to
this active site (shown in yellow color in Figure 2), then they might be able to inhibit the S protein of
SARS-CoV-2 from interacting with hACE2. Guy et al. [74] hypothesized that the residues of the ACE2
binding pocket differ slightly from those of the active site of ACE2 (isolated from pig kidney tissue).
However, the types of amino acids involved are nearly the same.

5. Inhibitors of ACE2

5.1. Synthetic Compounds of ACE2 Inhibitors

Research on ACE2 inhibitors or blockers is still lacking, and only very few drugs are currently
available in the clinics. However, ACE1 inhibitors, such as losartan, are widely marketed. Several
countries use ACE1/ARB, such as losartan and telmisartan, to reduce the aggressiveness and mortality
of COVID-19. Kuster et al. proposed that ACE1 therapy should be continued or initiated on patients
with a history of heart failure, hypertension, or myocardial infarction [75] Zhang et al. [76] found that,
among patients with hypertension who were hospitalized with COVID-19, inpatient treatment with
ACEI/ARB was associated with a lower risk of death from all causes compared to non ACEI/ARB users.
ARB is widely used to treat hypertension, and the use of this drug clinically provides exceptional
tolerance for several groups treated with this class of drugs. In addition, the profile of side effects is
described as “like a placebo”. ARBs are most suitable for antagonizing the proinflammatory effects of
angiotensin II in patients with a recent positive COVID-19 test; thus, this compound may have the
best pharmacological properties for this indication. From the comparative analysis of available ARBs,
telmisartan has traits that make it the best compound [77].

Angiotensin receptor blockers (ARBs) have effects similar to angiotensin-converting enzyme
(ACE) inhibitors, but ACE inhibitors act by preventing the formation of angiotensin II rather than
blocking the binding of angiotensin II to muscles in blood vessels. ARB is used to control high blood
pressure, treat heart failure, and prevent kidney failure in diabetics. Therefore, angiotensin receptor
blockers (ARBs; such as losartan, valsartan, telmisartan, etc.) can be a new therapeutic approach to
block the binding and, hence, the attachment of SARS-CoV-2 RBD to cells that express ACE2, thereby
inhibiting their infection of the host cell [78].

In the past 20 years, MLN-4760 (imidazole) [79–81], captopril derivative [82,83], DX600 and
TAPI-2 peptide [84,85], losartan and its derivatives (benzimidazole [56,82,86,87], chloroquine and
its derivatives (quinolone) [88], diminazene aceturate [89], cepharanthine (alkaloid) [75], thiorphan
(palmitoyl) [87], and N-(2-aminoethyl)-1 aziridineethanamine (amino ethyl) [90] were discovered
to have potential as ACE2 inhibitors. However, caution should be taken because, although ACE1
inhibitors (such as captopril, enalapril, and lisinopril) and angiotensin II receptor blockers (ARB) (such
as olmesartan, losartan, candesartan, and valsartan) do have inhibitory effects on ACE2 [91], several
studies showed that these drugs can increase the ACE2 blood level [86], which will likely increase
the risk of contracting SARS [92]. This drawback means that the search for new and effective drugs is
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even more pressing in order to combat the infection of this deadly virus, and we believe that natural
products should be further explored in the quest to find suitable and effective drug candidates [92].

5.2. Natural Compounds Inhibiting ACE1 and ACE2 Receptors

The discovery of novel drugs from natural products helps to improve our understanding of
diseases [93,94]. The active lead compounds from natural products can be further modified to enhance
their biological activity in order to be developed as drug candidates [95,96]. Recent progress on natural
products resulted in compounds being developed to treat viral infections [97]. Utomo et al. [98].
reported the biological activity of natural products in inhibiting SARS-CoV-2 using in silico methods.
Islam et al. comprehensively reviewed studies on natural products with inhibitory activity against CoV.

Natural products such as flavonoids, xanthones, proanthocyanidins, secoiridoids, and peptides
were reported to contain anti-ACE activity; however, further research is needed to confirm the
findings [24]. Table 1 summarizes the natural compounds that were reported to have inhibitory effects
on ACE1 and ACE2 receptors. From this table, we can conclude that flavonoids are the most researched
with regard to ACE inhibition activity.

Table 1. Bioactive compounds reported to inhibit ACE1 and ACE2 in the literature.

No Inhibitors Derivates Plants Methods Years Source

1. Luteolin

Flavonoid Ailanthus
excelsa

In vitro using ACE2 via Elbl
and Wagner methods 2007 [99]

2. Kaempferol

3. Apigenin

4. Quercetin

5. Luteolin

6. Emodin Anthraquinone
Rheum officinale

Polygonum multiflorum
In vitro using ACE2 2007 [100]7. Chrysin Flavonoid

8. Rhein Flavonoid

9. Delphinidin Flavonoid Hibiscus sabdariffa In vitro ACE Inhibition assay 2010 [101]
10. Cyanidin Flavonoid

11. Apigenin Flavonoid Apium graveolens In vitro using ACE2 isolated
from kidney 2010 [102]

12. Rhoifolin
Flavonoid

Rhus succedanea ACE activity was measured
by a fluorometric assay 2012 [103]

13. Rutin and
Quercetine Fagopyrum tataricum

14. Nicotianamine Peptide Glycine max
In vitro using internally

quenched fluorogenic (IQF)
substrate for ACE2

2015 [104]

15. Quercetin

Flavonoid

Actinidia macrosperma

In vitro using a
fluorescence-based

biochemical assay against
ACE enzyme

2018 [103,105]

16. Catechin

17. Quercetin

18. Epigallocatechin

19. Epigallocatechin
gallate

20. Ferulic acid

Phenolic acid
21. Chlorogenic acid

22. Isoferulic acid

23. Caffeic acid
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Table 1. Cont.

No Inhibitors Derivates Plants Methods Years Source

24. δ-Viniferin Flavonoid

Vitis vinifera

Virtual screening against
ACE2 using Autodock Vina 2020 [106]

25. Myritilin Flavonoid

26. Myricitrin Flavonoid

27. Taiwanhomoflavone A Flavonoid Cephalotaxus wilsoniana

28. Lactucopicrin
15-oxalate

Sesquiterpene
lactone Lactuca virosa

29. Nympholide A Flavonoid Nymphaea lotus

30. Afzelin Flavonoid Cornus macrophylla

31. Biorobin Flavonoid Acalypha indica

32. Phyllaemblicin B sesquiterpenoid Phyllanthus emblica

33. Baicalin Flavonoid Scutellaria baicalensis
Using spectroscopy method
to determine renin and ACE

activities
[107]

34. Hesperetin Flavonoid Citrus aurantium
Virtual Screening against

ACE2 using molecular
docking

2020 [108]
35. Baicalin Flavonoid Scutellaria baicalensis

36. Scutellarin Flavonoid

37. Glycyrrhizin Sesquiterpene Glycyrrhiza radix

38. Curcumin Curcuminoids Curcuma xanthoriza

Virtual Screening against
ACE2 using MOE molecular

docking
2020 [98]

39. Tangeretin

Flavonoid Citrus aurantifolia40. Nobiletin

41. Naringenin

42. Brazilein
Flavonoid Caesalpinia sappan

43. Brazilin

44. Galangin Flavonoid
Alpinia galanga

45. Acetoxychavicol
acetate (ACA) ACA derivatives

6. Flavonoids as ACE2 Inhibitors

Flavonoids are an important class of natural products with several subgroups, including chalcones,
flavones, flavonols, and isoflavones [109]. Flavonoids contain a flavan core with a 15-carbon skeleton.
There are two benzene rings (A and C rings), connected by a heterocyclic pyran ring (B ring). The three
cycles or heterocycles in the flavonoid backbone are generally called rings A, B, and C, as shown in
Figure 5. The B ring comprises a C2–C3 double bond and carbonyl groups that play an important
role in the biological activities. The hydroxyl groups (3′ and 5′ positions) of the C ring, as well as
the hydroxyl groups of the A ring (7 and 5 positions), are known to be responsible for the radical
scavenging activity of flavonoids [103]. The most important functional groups of flavonoids that might
be involved in ACE2 inhibition are illustrated in Figure 6.
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As can be seen in Figure 6, the resorcinol molecule has two hydroxyl groups in its aromatic ring
structure, and they are located at meta-positions with respect to each hydroxyl group. The high reactivity
of the resorcinol structure is primarily associated with the location of these two hydroxyl groups in
the benzene ring [110]. The resorcinol moiety of ring A might play a role in ACE2 inhibition, as this
group might disrupt hydrogen bonds between Glu329/Gln325 of ACE2 and Arg426 of the S protein of
SARS CoV-2, which form a salt bridge to stabilize their interaction [72,73].This hydrophobic interaction
occurs in ring C with some non-polar amino acid residues such as Gly354, Asp355, and Phe356 [111].

As summarized in Table 1, flavonoids have potential as ACE1 and ACE2 inhibitors. Studies
on flavonoids for anti-SARS-CoV activity were widely published. For example, myricetin inhibits
viral replication by affecting the ATPase activity of SARS-CoV [112]. Other flavonoids reported to
have anti-SARS-CoV activity include kaempferol [113], luteolin [114], quercetin, daidzein, EGCG,
GCG, and herbacetin [115,116]. Quercetin functions as an inhibitor or noncompetitive inhibitor of
3-chymotripsin-like protease (3CLpro) and papain-like protease (PLpro) [117]. Luteolin inhibits furin
proteins which are known to be some of the enzymes that break down the S protein of SARS-CoV,
as reported in the Middle East respiratory syndrome (MERS) [114]. Kaempferol functions as a
noncompetitive inhibitor of 3CLpro and PLpro [117]. Hesperidin inhibits the interaction between the
RBD of the S protein of SARS-CoV-2 and the ACE2 receptor in humans; thus, it was also predicted to
potentially inhibit the entry of SARS-CoV-2 [118].

7. Mode of Action of Flavonoids

Polyphenolic compounds, including flavonoids, terpenoids, hydrolysable tannins, xanthones,
procyanidin, and caffeoylquinic acid derivatives, were discovered to be effective natural ACE
inhibitors [119,120]. Table 2 summarizes the studies on plant extracts rich in flavonoids used as
ACE2 inhibitors.
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Table 2. Plants with potential ACE2 receptor inhibition activity.

Name Inhibition
Approach

Effective
Compound

Inhibition Potential
(IC50/EC50) * ADME Reference

Rheum
officinale (rhubarb)

Viral spike
protein and

human
ACE2

receptor
inhibitor

Emodin 1–10 µM/mL

HIA: 85.74
Caco2: 20.30
PPB: 88.75
BBB: 0.37

[119]

Reynoutria
multiflora

tuber

Viral spike
protein and

human
ACE2

receptor
inhibitor

Emodin 1–10 µM/mL

HIA: 85.74
Caco2: 20.30
PPB: 88.75
BBB: 0.37

[119]

Citrus accumulate

Viral spike
protein and

human
ACE2

receptor
inhibitor

Naringenin Not yet reported

HIA: 87.31
Caco2: 10.52

PPB: 100
BBB: 0.59

[100]

Citrus aurantium and
Citri Reticulatae

Pericarpium

Viral spike
protein and

human
ACE2

receptor
inhibitor

Hesperetin Not yet reported

HIA: 87.19
Caco2: 7.003
PPB: 96.79
BBB: 0.22

[121]

Scutellaria baicalensis
Georgi

Viral spike
protein and

human
ACE2

receptor
inhibitor

Baicalin 2.24 mM

HIA: 32.42
Caco2: 11.55
PPB: 75.69
BBB: 0.02

[108]

Citrus

Viral spike
protein and

human
ACE2

receptor
inhibitor

Neohesperidin Not yet reported

HIA: 8.80
Caco2: 7.07
PPB: 44.05
BBB: 0.02

[100]

Citrus

Viral spike
protein and

human
ACE2

receptor
inhibitor

Nobiletin Not yet reported

HIA: 98.89
Caco2: 54.05
PPB: 85.16
BBB: 0.044

[100]

Erigeron breviscapus
(Vant.)

Viral spike
protein and

human
ACE2

receptor
inhibitor

Scutellarin Not yet reported

HIA: 13.45
Caco2: 10.13
PPB: 72.90
BBB: 0.029

[121]

Soya bean
(Glycine max)

Viral spike
protein and

human
ACE2

receptor
inhibitor

Nicotinamine 84 nM

HIA: 92.94
Caco2: 20.36

PPB: 2.02
BBB: 0.33

[122]

Licorice root
(Glycyrrhiza radix)

Viral spike
protein and

human
ACE2

receptor
inhibitor

Glycyrrhizin
(saponin) Not yet reported

HIA: 38.22
Caco2: 20.37
PPB: 88.72
BBB: 0.055

[121]

* Inhibitory concentration (IC50) is an indication of the concentration (µM or ug/mL) where the activity of the
viral protein is reduced by up to 50%. Effective concentration (EC50) is the indication of the concentration (µM or
µg/mL) where the activity of the viral growth is reduced by up to 50%. Absorption, distribution, metabolism,
and excretion (ADME): human intestinal absorption (HIA) values of 20–70% indicate sufficiently absorbed
compounds, and 70–100% HIA values indicate well-absorbed compounds. Caco-2 values <4 indicate low drug
permeability, values from 4–70 indicate moderate permeability, and values >70 indicate high permeability. Plasma
protein binding (PPB) values >90% indicate strong chemical bonds, while values <90% indicate weak chemical
bonds. Blood–brain barrier (BBB) values between 2.0 and 0.1 indicate a moderate absorption rate in the central
nervous system (CNS), while BBB values <0.1 indicate a low absorption rate in the CNS [123].
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A number of epidemiological studies suggested a negative relationship between the consumption
of flavonoid drugs and the development of various diseases. Flavonoids with typical structures can
interact with enzyme systems involved in important pathways, showing effective poly-pharmacological
behavior. Thus, it is not surprising that the relationship between chemical structures and their activities
was widely studied [124]. The presence of C2=C3 double bonds in conjugation with C4 carbonyl groups
of certain groups on flavonoids, as well as hydroxylation patterns, especially the catechol portions
of ring B, methoxyl groups, and fewer saccharide bonds, provides higher antioxidant properties.
The mechanism might involve planarity, which contributes to the shifting of electrons across the next
molecule and affects the dissociation constant of the hydroxyl phenolic group, such that the whole
molecule can bind to the target molecule, similar to an enzyme that matches the pattern [125].

Guerrero et al. [103] comprehensively analyzed different flavonoids to determine the functional
groups responsible for inhibiting ACE. Quantitative structure–activity relationship (QSAR) modeling
was conducted, and the lack of the B ring in the flavonoid skeleton was shown to reduce the inhibitory
activity of ACE by up to 91%. The absence of carbonyl groups in the B ring also reduced the inhibitory
activity of ACE by 74%. The 3-OH, 3′-OH, and 5′-OH groups are important since the loss of these
groups reduced inhibitory activity by 44%, 57%, and 78% [103], respectively, as shown in Figure 6. These
groups also play an important role in inhibiting neuraminidase receptors of the influenza A viruses
(H1N1 and H3N2) [126]. Other studies also reported that losing the 3-OH group significantly reduced
flavonoid antioxidant [127] and anti-CoV activities [115]. We also observed that 3-OH and catechol of
the C ring moiety of catechin formed strong hydrogen bonds with H1N1 neuraminidase [126]. Hošek
and Šmejkal [128] reported that these functional groups play an important role in anti-inflammatory
activity against the receptor target of inflammation. Moreover, hesperidin was also reported as an
ACE2 inhibitor since it can interact with the RBD of the S protein SARS-CoV2 and hACE2 interface.
The dihydroflavone moiety of hesperidin was predicted to be parallel to the β-6 RBD S protein sheet,
while the sugar moiety fits into a shallow hole in the direction away from ACE2 [118].

The most critical mechanism of flavonoids as antioxidant, anti-inflammation, anticarcinogenic,
and antiviral compounds is the protection of the body against reactive oxygen species (ROS) [129,130].
ROS interferes with cellular function through the role of lipid peroxidation, resulting in damaged cell
membranes. An increase in ROS production during tissue injury is due to the depletion of endogenous
scavenger compounds [131,132]. Flavonoids have a role as endogenous scavenging compounds [133];
thus, flavonoids can prevent inflammation or repair cell damage by scavenging ROS. The interaction
between flavonoids and hydrophilic amino-acid residues of protein targets with strong affinity is
suggested to be a mechanism of flavonoids in repairing cell damage [130,134].

Based on these findings, we believe that there is a strong relationship among the ACE2 inhibition,
anti-inflammation, and antioxidant activities of flavonoids. However, the correlation among these
three activities needs to be clarified through comprehensive in vitro and in vivo evaluation.

8. Perspectives and Overall Conclusion

The renin–angiotensin system (RAS) controls the homeostatic function of the vascular system.
The two important enzymes involved in the RAS system, ACE1 and ACE2, function in accommodating
rapid but coordinated feedback to any specific situation in the body that may disturb the system
balance [135]. Their function is indispensable; hence, the choice to modulate these receptors for
other health conditions, such as against the current COVID-19 infection, would have to be done in a
careful manner.

Based on the information put forth in this review, it can be concluded that ACE2 could be a
key receptor to combat COVID-19 infection. The inhibition of hACE2 may prevent the S protein of
SARS-CoV-2 from fusing and entering host cells. However, as both RAS enzymes influence each other,
inhibition of ACE2 alone in this case would lead to an increase in Ang II blood levels and a parallel
reduction in the blood concentration of vasodilators angiotensins 1–7. In such a case, any disturbance
in circulation homeostasis would not be corrected rapidly due to the absence of angiotensins 1–7.
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This would be a health risk, especially to susceptible patients such as the elderly and patients with
underlying CVS-related medical conditions. Ironically, these are the group of people that would have
a higher risk of contracting severe COVID-19 infection.

The discovery of ACE2 as a part of the RAS is relatively new; however, some evidence shows
that ACE2 could be more important than ACE1 in the modulation of the whole system. Although the
morphology of ACE1 and ACE2 receptors shares huge similarities, ACE inhibitors (ACEis) cannot
inhibit ACE2 receptors. Hence, the currently available ACEis are not as useful as ACE2 inhibitors [135].
This means that the structure of ACEis cannot be used as a building block in the design of ACE2
inhibitors. A new and fresh approach should be taken, and a comprehensive study of the receptor
itself is needed.

Thus, this paper proposes to shift the focus in the design of ACE2 inhibitors toward flavonoids,
which are an abundant group of compounds that can be found in many plants. The functional groups
of flavonoids, such as the pyran moiety in the B ring and hydroxyl groups of the A ring (7- and
8-positions) and C ring (3-, 3′-, 4′-, and 5′-positions), may play an important role in their ACE2
inhibition. Preliminary research showed that Glu22, Glu23, Lys26, Asp30, Glu35, Glu56, and Glu57 of
the hACE2 could be used as primary target sites in the design of an hACE2 inhibitor.

Flavonoids are synthesized by plants in response to microbial attacks; hence, their antibacterial
and antiviral activities are expected. The wide variety of activities reported in the literature depends
on the structures and side chains available in each flavonoid [127]. Despite the available data on the
activity of certain flavonoids against ACE1 and ACE2 enzymes, as presented in Table 1, the studies
were stopped at in silico or in vitro stages, and no further detailed studies are available. This could be
due to some limitations surrounding the research on natural products, such as difficulties in obtaining
a sufficient amount of substance through plant extractions or difficulties in the chemical synthesis
of the flavonoids. However, the application of flavonoid-based scaffolds in the design of new ACE2
inhibitors could be a good approach. Based on the history of drug development, a combination between
natural-based products and chemical synthesis is able to produce potent and effective medications,
such as the anticancer drugs vincristine and vinblastine. This could be an approach to bring forward
natural-based products for human use.
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angiotensin II receptor, ORFs: open reading frames, FDA: Food and Drug Administration, CRS: cytokine release
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