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Dictyostelium discoideum is a widely studied model organism with both unicellular and multicellular forms in its
developmental cycle. The Dictyostelium genome encodes 285 predicted protein kinases, similar to the count of the
much more advanced Drosophila. It contains members of most kinase classes shared by fungi and metazoans, as well
as many previously thought to be metazoan specific, indicating that they have been secondarily lost from the fungal
lineage. This includes the entire tyrosine kinase–like (TKL) group, which is expanded in Dictyostelium and includes
several novel receptor kinases. Dictyostelium lacks tyrosine kinase group kinases, and most tyrosine phosphorylation
appears to be mediated by TKL kinases. About half of Dictyostelium kinases occur in subfamilies not present in yeast or
metazoa, suggesting that protein kinases have played key roles in the adaptation of Dictyostelium to its habitat. This
study offers insights into kinase evolution and provides a focus for signaling analysis in this system.
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Introduction

Dictyostelium discoideum amoebae thrive in moist soil, where
they consume smaller microbes. Nutritional stress drives cells
to aggregate by means of chemotactic signals, and these
aggregates then differentiate into multicellular fruiting
bodies containing spores. Thus, Dictyostelium exemplifies many
processes characteristic of complex eukaryotes, including
phagocytosis, autophagy, chemotaxis, motility, adhesion, and
cell-type differentiation. Dictyostelium branched from the
lineage that ultimately led to the metazoa before yeast but
after plants, and while many of its molecular mechanisms are
remarkably similar to those in humans, it also has a number
of unique processes that apparently evolved after it diverged
from the fungal/metazoan lineage [1,2].

As a model organism, Dictyostelium provides an appealing
balance of interesting biological problems and experimental
tractability. Dictyostelium offers both traditional and molecular
genetics, including targeted gene disruption techniques,
restriction enzyme–mediated integration mutagenesis, and
RNAi [3–5]. Although normally haploid, parasexual genetic
techniques are available for generating diploids [6]. Bio-
chemical studies are facilitated by the ability to grow cells in
large amounts. The recently published genome encodes
approximately 12,500 protein-coding genes [2], and although
this is more than twice the number of genes in yeast, it is only
about half that of humans, and the rarity of alternative
splicing further simplifies the proteome compared with those
of vertebrates. The developmental transcription profile of
more than half of these genes has been determined, providing
an estimate of their roles in developmental signaling and
vegetative growth [7]. The availability of complete genomic
data has already synergized with genetic and proteomic
approaches [8–10], and enables many other new approaches,
including genome-scale knock-out, knock-down, and over-
expression studies, as well as the rapid identification by mass
spectrometry of proteins in interaction studies.

Protein kinases are key post-transcriptional regulators of

most cellular processes, and are particularly involved in signal
transduction and coordination of complex pathways. Almost
all protein kinases have catalytic domains belonging to the
eukaryotic protein kinase (ePK) superfamily, and share a
common ancestry and fold. Despite these similarities they
interact specifically with a remarkable variety of effectors and
substrates as a result of sequence differences within and
outside of their ePK domains. A number of other unrelated
enzymes also have protein kinase activity, and are referred to
as atypical protein kinases (aPKs).
Approximately 44 Dictyostelium kinases have been the

subject of targeted gene disruption studies, and in almost
every case defects are observed, with many kinases having
important functions during development (reviewed in [11]).
Here we determine the complete kinase catalog (kinome) of
Dictyostelium, and analyze it in the context of the complete
kinomes of yeast and metazoa. Classification of kinases into
groups, families, and subfamilies reveals many kinases that
are conserved in other organisms, and many others that are
Dictyostelium specific, indicating that protein phosphorylation
pathways have important functions in unique aspects of
Dictyostelium biology. Since Dictyostelium branched from the
metazoan lineage before yeast, our analysis sheds light on the
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early evolution of metazoan kinases. Many metazoan kinases
that are missing from yeast are present in Dictyostelium,
indicating that they are more ancient than previously
thought. For some of these, such as DNAPK (see Table S1
for kinase acryonyms) and PEK, Dictyostelium provides a
unique opportunity to study important disease-related
proteins in a simple, tractable model organism.

Results/Discussion

Discovery and Overview of Dictyostelium Protein Kinases
Comprehensive searches of Dictyostelium genomic and

expressed sequences were carried out using profiles for the
conserved ePK domain, individual ePKs, and both profiles
and sequences for additional aPKs and histidine kinases
(HisKs). These searches yielded a catalog of 285 candidate
protein kinases (246 ePKs, 26 aPKs, and 14 HisKs, one of
which is also an ePK) and 15 candidate ePK pseudogenes.
Protein sequences, accession numbers, and other information
on the kinome are summarized in Table S2. This final catalog
strongly overlaps, but does differ from, the catalog of kinases
reported by Kimmel [11]. All kinase gene predictions were
inspected, and 20% were edited to give a more plausible gene
model. Eleven genes are found in an identical second copy,
owing to a recent chromosomal duplication of a portion of
Chromosome 2 in the sequenced strain of Dictyostelium, and
are not included in the count of 285. Seven sequences have
very limited similarity to known kinase domains, and may be
considered borderline members of the kinome. These are:
LvsG, DDB0230007, DDB0229337, DDB0229346, and three of
the four atypical actin-fragmin kinases (DDB0190004,
DDB0190056, and DDB0187708). Almost half of the kinase
genes (127) have been analyzed in large-scale developmental
profiling studies [12,13], and 187 have expressed sequence
tags (ESTs), with a median number of five. The 285
Dictyostelium protein kinase genes represent 2.6% of the
genome, comparable to 2.3% of yeast and human genes
([14,15]; G. Manning, unpublished data).

The Dictyostelium ePK domains were aligned (Figure S1), and

the relationship between them is shown in a tree (Figures 1
and S2, Dataset S1). The tree indicates that the AGC and
CAMK groups, named for named for protein kinases A, G,
and C, and Ca2þ/calmodulin (CaM)–activated kinases, respec-
tively, are the most closely related groups in Dictyostelium,
while the tyrosine kinase–like (TKL) and cell or casein kinase
1 (CK1) groups are the most distant from other groups.
Kinases are not a monolithic family, but rather have very

distinct functions that are often conserved across evolution.
Using pairwise and multiple sequence alignments, tree
analysis and subfamily hidden Markov models (HMMs), we
classified all Dictyostelium kinases to a hierarchical system of
groups, families, and subfamilies (Table S2) [15–17]. Classify-
ing the Dictyostelium kinases in this way enabled us to compare
orthologous sets of kinases over large evolutionary distances,
where a one-to-one orthologous relationship between pro-
teins usually does not exist. This analysis allowed us to discern
the likely evolutionary lineages of the Dictyostelium kinases and
to assign possible functions to unstudied kinase genes. At the
broadest level of kinase classification several conclusions can
be made (Figure 2). Most notably, Dictyostelium lacks kinases in
the TK group, but has an expanded TKL group, whereas yeast
lacks both these groups. The CK1 group, which is greatly
expanded in worms, is reduced in Dictyostelium, with only two
members. The receptor guanylyl cyclase (RGC) group is
absent from Dictyostelium and yeast, thereby retaining its
metazoan specificity.
A core set of 46 kinase subfamilies is conserved in

Dictyostelium, yeast, and throughout the metazoa (Table S3A).
(In counts such as this, we use the term ‘‘subfamily’’ to
indicate a set of related kinases at the deepest level of
classification. In some cases, families are not further classified
into subfamilies, and the family is counted.) The widespread
conservation of these kinases suggests that they play critical
roles in fundamental cellular processes. These ‘‘universal’’
kinases mediate functions such as lipid signaling (AKT and
PDK1), MAPK cascades (ERK, STE7, STE11, STE20), cell-cycle
control (WEE, CDC2, CDC7, CDK7, CDK8, CRK7), mitosis
(BUB, NEK, AUR, SCY1, PLK, Haspin), DNA damage control
(RAD53, ATR), and energy homeostasis (TOR, AMPK, GCN2).
The remaining Dictyostelium kinases show evolutionary

distributions reflecting scenarios of gene expansion, diver-
gence, and loss. Most dramatically, Dictyostelium has 24 kinase
subfamilies that occur in metazoan kinomes but not in yeast
(Table 1). This implies that yeast lost these kinases in pursuit
of a more specialized biological program. Noteworthy in this
set are the G11 and DNAPK aPKs, which had previously only
been observed in vertebrates. Six subfamilies are found in
yeast and metazoa, but are missing from Dictyostelium (Table
2). Some of these presumably arose later in evolution, and
others may have been lost in Dictyostelium. Many additional
families still appear to be metazoan-specific (Table S3H).
These include many well-known kinases, such as tyrosine
kinases, the stress-responsive MAPKs p38 and JNK, CAMK2,
MLCK, STKR (which includes TGFb receptors), and RAF.
Conversely, three types of kinases are found in yeast and
Dictyostelium but were lost in metazoa: the YAK subfamily of
DYRK kinases (CMGC group), IKS in the ‘‘Other’’ group, and
histidine kinases (Table S3F). A summary of kinase invention
and loss in the evolution of Dictyostelium, yeast, worms, flies,
and humans is shown in Figure 3.
About half of Dictyostelium kinases are singletons or in 25
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Synopsis

Protein kinases are eukaryotic enzymes involved in cell communi-
cation pathways, and transmit information from outside the cell or
between subcellular components within the cell. About 2.5% of
genes code for protein kinases, and mutations in many of these
cause human disease. The authors characterize the complete set of
protein kinases (kinome) from Dictyostelium discoideum, a social
amoeba that responds to starvation by forming aggregates of cells,
which then differentiate into multicellular fruiting bodies. Dictyos-
telium branched from the vertebrate lineage after plants but before
fungi, and thus illuminates an interesting period in evolutionary
history. By comparing the Dictyostelium kinome to those of other
organisms, the authors find 46 types of kinases that appear to be
conserved in all organisms, and are likely to be involved in
fundamental cellular processes. Dictyostelium is an established
model organism for studying many aspects of cell biology that are
conserved in humans, and this exposition of conserved kinases will
help to guide future studies. The Dictyostelium kinome also contains
an impressive degree of creativity—almost half of the kinases are
unique to Dictyostelium. Many of these Dictyostelium-specific kinases
may be related to this organism’s distinctive mechanism for coping
with starvation.



subfamilies not found in yeast or metazoa (Figures 2 and 3;
Table S3G). Orthologs for some of these ‘‘Dictyostelium-
specific’’ kinases may be found as more kinomes are analyzed.
Many of the Dictyostelium-specific kinases appear to be
involved in unique aspects of Dictyostelium biology; for
example, SplA and ZakA are involved in spore differ-
entiation, and Gdt1 and 2 are involved in the growth-to-
development transition [18–21]. All but 5 of the 140
Dictyostelium-specific kinases are in the TKL, STE, and Other
groups. It is possible that members of these groups tended to
be less involved in fundamental biological functions, com-
pared to the AGC, CAMK, CK1, and CMGC groups. As a

result, new genes in the former groups might have been less
likely to have detrimental dominant-negative effects.

Group-by-Group Analysis
The AGC group, named for protein kinases A, G, and C,

consists of small, cytoplasmic kinases that mediate many
aspects of phospholipid, cyclic nucleotide, and calcium
signaling in eukaryotic cells. Dictyostelium has 21 AGC kinases,
only two of which have been studied (PKA and AKT). We
found two additional members of the PKA family, as well as
members of the PDK1 and NDR families, which are broadly
conserved, and SGK and MAST members, which were
previously only found in metazoa. No protein kinase C

Figure 1. Tree of the Dictyostelium Kinome

A tree of 248 Dictyostelium ePK domains is presented. Pseudogenes, Chromosome 2 duplications, and sequences with very divergent ePK domains were
omitted. The N- and C-terminus domains of dual-domain kinases, respectively designated by an ‘‘-a’’ or ‘‘-b’’ extension, were analyzed independently.
Group and family names are shown in bold type, subfamily names in plain type, and Dictyostelium-specific families and subfamilies in italic. Selected
protein names are shown in red. Branch lengths reflect relative distances between ePK domains. A branching order could not be assigned in the region
indicated by the small gray circle because of the diversity of the sequences.
DOI: 10.1371/journal.pgen.0020038.g001
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(PKC) was found, but C1 domains, which are commonly found
on PKC kinases, are present in three Dictyostelium kinases
from the TKL (DDB0231197 and ARCK-1) and STE (PakD)
groups, suggesting that DAG-regulated kinase signaling may
exist in Dictyostelium. PKC is also absent from Plasmodium and
Arabidopsis, but is found in yeast, suggesting that it evolved
later. Conversely, p70 S6K is absent from Dictyostelium but
present in yeast and Arabidopsis, and was presumably lost from
the Dictyostelium lineage [22,23]. Several other families (PKG,
GRK, YANK, DMPK, and PKN) remain metazoan-specific.

The CAMK group consists of Ca2þ/CaM-activated kinases
(CAMK1, CAMK2, DAPK, CASK, MLCK, and PHK families),
and related kinases that are not CaM regulated, including the
CAMK-like (CAMKL) and RAD53 families. Dictyostelium has 21
members of the CAMK group, and like yeast, all members are
in the CAMK1, CAMKL, and RAD53 families. The CAMK1
family is expanded, with eight genes, compared to one to five
in other organisms. The RAD53 family is also expanded, with

five members, compared to one or two in other kinomes. One
MLCK has been identified biochemically in Dictyostelium [24],
but it is in the CAMK1 family, not the MLCK family. This may
indicate that an early CAMK acted on myosin light chain, and
different families kept that specificity in the two lineages. Of
the four CAMKL subfamilies conserved in yeast, flies, worms,
and humans, Dictyostelium has AMPK and MARK, but lacks
CHK1 (whose function may be replaced by the expanded
RAD53 family), and PASK. Dictyostelium also has three CAMKL
subfamilies (BRSK, LKB, and QIK) found in all metazoan
kinomes but absent from yeast.
The CK1 group consists in Dictyostelium of two proteins.

CK1 is from the ubiquitous CK1 family, and DDB0216336 is
from the previously metazoan-specific TTBK family. Like
other CK1-group kinases, the Dictyostelium members have no
additional domains. CK1 appears to be essential, and may
play a role in DNA repair [25].
The CMGC group is named for the CDK, MAPK, GSK, and

CLK families, and also includes DYRK, SRPK, CDKL, RCK,
and CK2. Six CMGC subfamilies are found in Dictyostelium and
metazoans, but not yeast. These are DYRK1, DYRK2, PRP4,
ERK7, PITSLRE, and CDK5. Metazoan Dyrk1A, PRP4, and
PITSLRE are linked to cyclinL2 and splicing, and their
absence in yeast may reflect the rarity of splicing in yeast,
whereas introns are common in Dictyostelium genes. The
metazoan-specific subfamilies that are lacking in Dictyostelium
include several involved in the cell cycle: CDK4, CDK9, and
TAIRE, as well as the CDKL (CDK-like) family and the HIPK
subfamily of DYRK. Yeast and Dictyostelium have a new DYRK
subfamily, comprised of Yak1 in yeast and YakA in
Dictyostelium. One Dictyostelium-specific family is found
(Dicty1), as well as a Dictyostelium-specific subfamily of CDK
(CDK-DD1).
The STE group is named for yeast sterile-phenotype

kinases, and consists of kinases involved in MAPK activation
and related kinases, many involved in regulation of the
cytoskeleton. Dictyostelium has 43 STE kinases. It has just single
members of the STE7/MAP2K and STE11/MAP3K families
(Mek1 and Mekka, respectively), but has 23 STE20/MAP4K
kinases, 14 kinases in two Dictyostelium-specific families
(Dicty2 and Dicty3), and four unique group members. The
Dictyostelium STE20s include members from the widely
conserved PAKA, MST, and YSK subfamilies, the previously
metazoan-specific FRAY subfamily, the Dictyostelium-specific
PAKL, MKC, and STE20-DD1 subfamilies, and two unique
STE20 family members. The lone Dictyostelium YSK phosphor-
ylates the gelsolin-like protein severin, in keeping with actin-
related functions in the fly homolog [26,27]. The two
members of the FRAY subfamily are uncharacterized, but
metazoan FRAYs may couple osmotic or other stresses to
PAK kinase activation [28]. The Dictyostelium-specific MKC
subfamily kinases are most similar to PAKs in kinase sequence
(Figure 1) and C-terminal placement of the domain (Figure
S3), but lack PBD/CRIB domains (see the legend of Figure S3
for domain acronyms), which mediate binding and activation
by small GTPases. MkcA mutants have a defect in sporulation,
but the other five MKC members have not been biologically
characterized [29]. All four Dictyostelium PAKA kinases have a
PBD/CRIB domain, and the three that have been studied
induce cytoskeletal changes [30–34]. PAKc contains a PH
domain also seen in yeast PAKs, where the PBD/CRIB and PH
domains are thought to integrate Cdc42 and PI4P signaling

Figure 2. Group-Level Comparison of the Dictyostelium and Other

Kinomes

Pie charts depict the proportion of the kinome that is devoted to the
major groups in Dictyostelium, yeast, worm, flies, and humans. The size of
the pie is proportional to the number of kinase domains in each
organism, and the total number of kinases in each group is shown in the
slice. Data for other organisms are from KinBase (http://kinase.com). The
portion of each group that is in families or subfamilies not found in the
other four kinomes is indicated with a black arc drawn outside the slice
for that group.
DOI: 10.1371/journal.pgen.0020038.g002
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[35]. This structure found in primitive organisms may be
analogous—but not homologous—to the metazoan-specific
DMPK kinases (AGC group), which also have both domains
and signal from small GTPases to myosin [36]. In addition to
the PAKA subfamily kinases, Dictyostelium has four kinases
with divergent but functional PBD/CRIB domains (F. J. Rivero
Crespo, personal communication). These PAKs comprise the
PAK-like (PAKL) subfamily, which is evolutionarily more
similar to the MST and YSK subfamilies than to PAKA
(Figures 1 and S2).

The TKL group kinases have sequences reminiscent of both
tyrosine and ser/thr kinases, though they are known to act
biochemically as ser/thr kinases. In metazoa, they include
MAP3Ks (MLKs and RAF), ser/thr receptor kinases, and
kinases involved in immunity (RIPK, IRAK) and cytoskeletal

regulation. Dictyostelium has 66 TKLs, almost twice the
proportion of the kinome compared to metazoa (Figure 2).
The presence of TKLs in Dictyostelium (and plants; [37])
indicates that this group is ancient, and was lost in budding
yeast. Dictyostelium has members of the LISK, MLK, and ROCO
families, but lacks orthologs of RAF, STKR, IRAK, and RIPK.
The nine LISK members comprise a Dictyostelium-specific
subfamily, and the one MLK is in the HH498 subfamily found
in vertebrates and worms. Dictyostelium has nine members of
the ROCO family, which are homologous to the previously
described metazoan LRRK family, as both contain a ras-like
domain, and a domain C-terminal of the ras-like domain, and
an array of leucine-rich repeats [38]. Curiously, the kinase
domains are divergent enough to not be sufficient to unite
the two families on their own. Mutations in LRRK2 were
recently found to be associated with Parkinson’s disease
[39,40]. Dictyostelium is the only organism for which the
molecular role of ROCO/LRRK kinases has been extensively
investigated. Pats1 plays a role in cytokinesis, GbpC mediates
cGMP signaling during chemotaxis, and QkgA is involved in
growth and aggregation [41–43]. Of the remaining 45 TKLs
six are unclassified (TKL-Unique), and the rest are in six
Dictyostelium-specific families (ARMK, ARK, Dicty4, Dicty5,
CZAK, and GDT).
The Other group contains all ePKs that do not otherwise fit

into a group. For the most part, families of the Other group
are either unrelated or weakly related to each other or to the
major ePK groups, although strong intrafamily similarity is
common (Figures 1, S1, and S2). Three families are closely
related to a major kinase group: the Dictyostelium-specific
SAMK family is related to the STE group, aurora kinase in the
AUR family branches near the AGC group, and DDB0220010
in the CAMKK family branches near the CAMK group. Many
(18) of the families in the Other group are broadly conserved,
being found in Dictyostelium and most other kinomes. Among
these are kinases involved in cell division (AUR, PLK, BUB,
NEK, CDC7, and WEE), the unfolded protein response (IRE),
amino-acid starvation (GCN2), Ca2þ signaling (CAMKK),
autophagy (ULK), protein sorting (VPS15), and actin regu-
lation (NAK). The overall high frequency of divergent kinases
in Dictyostelium is reflected in the Other group; Dictyostelium
has 15 kinases in six Dictyostelium-specific families, and 13

Table 1. Kinases That Appear to Have Been Secondarily Lost
from Yeast

Classification Number of Genes per Organism

Group Family Subfamily Dicty Yeast Worm Fly Human

AGC MAST — 5 0 1 2 5

AGC SGK — 2 0 1 0 3

Atypical BRD — 2 0 3 1 4

Atypical G11 — 1 0 0 0 1

Atypical PIKK DNAPK 1 0 0 0 1

Atypical PIKK SMG1 1 0 1 1 1

Atypical TIF — 1 0 0 1 3

CAMK CAMKL BRSK 1 0 1 1 2

CAMK CAMKL LKB 1 0 1 1 1

CAMK CAMKL QIK 1 0 1 2 3

CK1 TTBK — 1 0 1 1 2

CMGC CDK CDK5 1 0 1 1 1

CMGC CDK PITSLRE 2 0 2 1 1

CMGC DYRK DYRK1 1 0 1 1 2

CMGC DYRK DYRK2 1 0 3 2 3

CMGC DYRK PRP4 1 0 1 1 1

CMGC MAPK ERK7 1 0 1 1 1

Other CAMKK Meta 1 0 1 1 2

Other PEK PEK 2 0 2 1 1

Other SLOB — 2 0 0 2 1

Other TBCK — 1 0 1 1 1

STE STE20 FRAY 2 0 1 1 2

TKL ROCO — 11 0 1 1 2

TKL MLK HH498 1 0 1 0 1

DOI: 10.1371/journal.pgen.0020038.t001

Table 2. Broadly Conserved Kinases That Are Missing from
Dictyostelium

Classification Number of Genes per Organism

Group Family Subfamily Dicty Yeast Worm Fly Human

AGC RSK P70 0 1 2 1 2

Atypical PDHK — 0 2 2 1 5

Atypical PIKK ATM 0 1 1 1 1

CAMK CAMKL CHK1 0 1 7 1 1

CAMK CAMKL PASK 0 2 0 1 1

CK1 CK1 CK1-G 0 3 1 1 3

DOI: 10.1371/journal.pgen.0020038.t002

Figure 3. Summary of Kinase Subfamily Invention and Loss

Comparison of Dictyostelium with four other kinomes suggests that 75
distinct subfamilies existed in their common ancestor, and that new
subfamilies were born (positive numbers) and lost (negative numbers) in
most lineages. Numbers in parenthesis indicate ‘‘unique’’ kinases within
each lineage that may be classified as novel subfamilies when more
kinomes are analyzed. Most notably, S. cerevisiae has lost 24 subfamilies
present in the common ancestor, while metazoans invented an
additional 80 conserved subfamilies.
DOI: 10.1371/journal.pgen.0020038.g003
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Other-Unique kinases, with little similarity to any other
kinase.

Atypical Protein Kinases
While the ePK domain has been tremendously successful

throughout eukaryotic evolution, several other smaller
families have also been shown to have protein kinase activity
(reviewed in [15]). These aPKs are a diverse assortment of
proteins. Some have structural or residual sequence similarity
to ePKs, while others have distinct structures and catalytic
mechanisms. In many cases, biochemical data are scant, and
reported kinase activity may even be the result of biochemical
contaminants.

Dictyostelium has 26 aPKs, among which are representatives
of the evolutionarily highly conserved ABC1, PIKK, RIO, and
TAF families. Dictyostelium also has representatives of the
Alpha, G11, TIF, and BRD kinase families; their presence
indicates that they were lost in yeast. Several aPK families are
absent from Dictyostelium and yeast, reinforcing the conclu-
sion that they are specific to vertebrates (BCR, FASTK, and
H11). Dictyostelium also lacks pyruvate dehydrogenase kinase
(PDHK), a mitochondrial aPK that is otherwise broadly
conserved. PDHK inhibits pyruvate dehydrogenase in re-
sponse to insulin and fasting (reviewed in [44]). Since PDHK
orthologs are found in plants, it appears that Dictyostelium lost
the PDHK gene, perhaps in favor of its own unique program
of coping with starvation conditions by forming fruiting
bodies. Dictyostelium also has four homologs of actin-fragmin
kinase, though only one conserves all the putative catalytic
residues. This type of aPK has been observed to date only in
Physarum [45].

Alpha kinases were discovered in Dictyostelium [46], and are
found in vertebrates and worms, but not flies or budding
yeast. Four of the six Dictyostelium alpha kinases contain WD40
repeats, and are implicated in myosin II heavy-chain
phosphorylation (MHCK A-D [47]). Another Dictyostelium
alpha kinase (VwkA) has an upstream von Willebrand factor
type A (VWA) domain, and appears orthologous to two
Neurospora crassa proteins [48]. ak1 is a unique alpha kinase,
and has an ArfGAP domain not found in any other alpha
kinases described to date.

PIKKs have catalytic domains related to phosphatidyl
inositol 3949 kinases, but phosphorylate proteins rather than
lipids, and have structural similarity to ePKs [49]. ATM, ATR,
TOR, and TRRAP are well conserved in other kinomes, and
Dictyostelium has orthologs of each of these except the DNA
damage response kinase ATM. The lack of ATM correlates
with the absence of a homolog of the ATM-binding DNA
repair protein NBS1 (G. Manning, unpublished data; [50]).
SMG1 is found in Dictyostelium and metazoa but not yeast; its
presence in Dictyostelium may indicate the existence of an
RNA surveillance mechanism in primitive organisms. DNAPK
is implicated in maintaining chromosomal stability, and had
previously been observed only in vertebrates, but Dictyostelium
has a well-conserved ortholog which has provided the first
opportunity to study DNAPK function in an invertebrate
model [51].

HisKs use a phosphorelay between aspartate and histidine
residues to modulate downstream targets. HisKs autophos-
phorylate a conserved histidine residue, and then transfer the
phosphate to an aspartate residue in the receiver domain,
which can be located either on the HisK itself or on a

separate polypeptide. In some instances, the phosphate is
further relayed to another histidine–aspartate pair on addi-
tional polypeptides. HisKs are found in bacteria, fungi,
plants, and Dictyostelium. Mammals appear to have phosphory-
lated histidine, but lack detectable HisK homologs (reviewed
in [52]).
Dictyostelium has 14 putative HisKs (DokA and DhkA-M). All

contain a C-terminal receiver domain, and five have trans-
membrane helices, suggesting a role in extracellular signal
transduction. DhkG contains an ePK domain, and has
orthologs in cyanobacteria and fungi [53,54]. DokA is
involved in osmosensitivity and spore maturation, and
DhkA-C are implicated in various aspects of development
and spore germination (reviewed in [55]). To date the only
known downstream target of HisK signaling in Dictyostelium is
the cAMP phosphodiesterase RegA. Signaling from HisKs to
RegA is mediated by RdeA, which accepts a phosphate group
and relays it to the receiver domain on RegA. Five additional
proteins have receiver domains (unpublished data), suggest-
ing that there are additional HisK targets.

Tyrosine Phosphorylation
Tyrosine phosphorylation is well documented in Dictyoste-

lium, despite its lack of TK group kinases. The Dictyostelium
orthologs of STAT and GSK3 are regulated by tyrosine
phosphorylation, as in metazoans, and phosphotyrosine
western blots show that many additional proteins are
phosphorylated, including actin [19,56–59]. Dictyostelium also
has 12 phosphotyrosine-binding SH2-domain proteins: the
Shk1–5 protein kinases in the TKL group, four STATs, an
ortholog of the Cbl proto-oncogene, and two others [2]. The
SH2 domain of Shk1 is required for localization of the
protein to the plasma membrane, suggesting that there is
membrane-localized phosphotyrosine in Dictyostelium [60].
Dictyostelium Mek1 is a member of the dual-specificity STE7

family, and Dictyostelium also has three WEE family members,
which are predicted to phosphorylate Cdk kinases on tyrosine
or tyrosine and threonine residues. In addition, two kinases
(SplA and Shk1) have dual-specificity, and four more (Dpyk2–
4 and ZakA) have tyrosine kinase activity [18,19,60–62].
Except for ZakA, which phosphorylates GSK3, specific
substrates for these kinases are unknown. All six are in
Dictyostelium-specific families of the TKL group. This finding is
consistent with a scenario where TKLs are the ancestors of
the TK group, especially since TKLs have sequences that are a
hybrid between ser/thr and tyrosine kinases.
Conventional ser/thr protein kinases almost universally

have a serine or threonine residue at a position correspond-
ing with Thr201 of PKA; mutation of this residue inactivates
PKA [63]. This residue is in the GTPxYxAPE motif, which
corresponds to subdomain VIII as described by Hanks and
Hunter [64]. TK group members rarely, if ever, have serine or
threonine here. Alignments of Dictyostelium, yeast, worm, fly,
and human protein kinases from outside the TK group, but
that are either known to accept tyrosine substrates, or that
belong to the WEE and STE7 families, for which the members
that have been characterized phosphorylate tyrosine, reveal a
great deal of variability in this region. The 12 WEE family
kinases all have aspartate here. Ten of the 26 STE7 family
members have a threonine at this position; the others have
cysteine. Three of the six Dictyostelium TKL group members
that have been shown to phosphorylate tyrosine have serine
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or threonine at this position, but the others have cysteine or
asparagine. Overall, 61% of non-TK group kinases that
accept tyrosine substrates lack serine or threonine at the
position corresponding with T201 of PKA. These data suggest
that the presence of serine or threonine at position 201 is
required for conventional ser/thr protein kinase activity, but
optional or disfavored, respectively, for dual-specificity or
tyrosine specific activity. We infer from the absence of serine
or threonine at this position (Figure S1) that the following
kinases from the TKL group may phosphorylate tyrosine:
7TMK1, HH498, DDB0220138, and all members of the ROCO
family. In the Other group this criterion suggests that
DDB0231179, SAMK-A and B, Vps15, members of the IRE
family (except IreA), and members of the Dicty10 family are
the most likely to accept tyrosine substrates.

Receptor Kinases in Dictyostelium
A major characteristic of metazoan kinomes is the use of

receptor kinases to transduce signals between cells in multi-
cellular organisms. These are found in the TK group
(receptor tyrosine kinases) and the TKL group (ser/thr
receptor kinases, from the STKR/TGFb family). The Dictyos-
telium TKL group contains nine kinases with classic receptor
kinase domain architectures, consisting of a signal peptide
and a single transmembrane domain (TMD) flanking an
extracellular region, and a C-terminal intracellular portion
containing an ePK domain (Figure 4). Six of these are from
the GDT family, and share a highly conserved extracellular
domain that presumably detects ligands signaling the onset of
starvation [20,21]. The other three receptor kinases in the
TKL group are unstudied, and are from the DRK family. rk1
and rk2 have closely related extracellular domains that are
unique to Dictyostelium, whereas rk3 has an extracellular TIG
domain, which is found in receptors from higher eukaryotes,
including the MET kinase family.

Dictyostelium also has two proteins with kinase domains
fused to seven TMDs. This domain architecture has not been
observed in other organisms. 7TMK1 is in the TKL group, and
is closely related to the nonreceptor, dual-specificity kinase
SplA, whereas 7TMK2 has no close homologs. IreA, from the
broadly conserved IRE family, has predicted signal peptide
and TM domains. Based on studies of orthologs, IreA is likely
to localize to the ER membrane and function in the unfolded
protein response. Curiously, the IRE family is expanded in
Dictyostelium, with seven members, compared to one or two in
other organisms. All have RNase(L) domains implicated in
cleaving a nonclassical intron, but none of the other

Dictyostelium members appear to be membrane bound. Several
other kinases have weakly predicted TMDs, of which the best
is SLOB2. SLOB2 contains a predicted N-terminal membrane
anchor, and dileucine ER-retention motifs in the C-terminus,
and may be secreted to the ER membrane, though all SLOB
orthologs appear to be cytoplasmic.
Receptor HisKs are central in an ancient mechanism for

the transduction of extracellular signals. In Dictyostelium
DhkB, E, K, and M have multiple predicted TMDs, and are
therefore likely to sense extracellular primary messengers.
DhkA has two transmembrane helices flanking a CHASE
domain, which is implicated in hormone binding in plant
histidine kinases [65].

MAPK Signaling
MAP kinase phosphorylation cascades consist of MAPKs

from the CMGC group, and kinases from the three major
families that constitute the STE group: STE7 (MEK, MAP2K),
STE11 (MEKK, MAP3K) and STE20 (MEKKK, MAP4K). These
pathways typically link extracellular signals and receptors to
transcriptional activation of growth and stress-response
programs. Dictyostelium has single STE7 (Mek1) and STE11
(Mekk) genes, and two MAPKs (Erk1 and Erk2). While
Dictyostelium has 24 members in the STE20 family, its paucity
of MAPK, STE7, and STE11 kinases is striking: yeast and
metazoans have six or more MAPKs, and multiple STE7 and
STE11 members. Metazoans additionally have a structurally
distinct set of MAP3K genes in the TKL group, including
RAFs and some MLKs, none of which have clear Dictyostelium
homologs. Thus Dictyostelium offers a simplified system to
study MAPK signaling in what may resemble its primordial
state.
Like yeast, Dictyostelium lacks the stress-responsive Jnk and

p38 cascades, having one MAPK in the ubiquitous ERK
subfamily (Erk1), and one in the ERK7 subfamily. ERK7s are
found in metazoa but not yeast, and the Dictyostelium ortholog
(Erk2) is involved in oscillatory cAMP signaling during
development [66,67]. Its activation is independent of Mek1,
which is consistent with findings that the vertebrate Erk7 is
regulated by ubiquitination and degradation, rather than
phosphorylation [66,68].

CaM Regulation
CaM-activated kinases occur in plants, yeast, and metazoa,

suggesting that this is an ancient regulatory mechanism. Only
one Dictyostelium kinase, the alpha kinase VwkA, has been
shown to be activated by Ca2þ/CaM, although the binding site

Figure 4. Receptor Kinases

The 17 Dictyostelium kinases that are strongly predicted to have TMDs are depicted. The drawings are approximately to scale.
DOI: 10.1371/journal.pgen.0020038.g004
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has not been mapped [48]. One kinase (DDB0229867, in the
LISK family) has an IQ motif, which mediates Ca2þ-
independent CaM binding. This motif is located next to a
RhoGEF domain, a pairing that is seen in many metazoan
RhoGEFs, indicating that the IQ motif probably regulates the
RhoGEF rather than the kinase domain.

Ca2þ-dependent CaM binding sites are very difficult to
predict de novo, so we specifically examined Dictyostelium
kinases that are orthologs of known CaM-regulated kinases
for conservation in the Ca2þ/CaM-binding sites. We see
suggestive conservation of these sites in five Dictyostelium
CAMK1 kinases—DDB0229351, DDB0216307, DDB0216308,
DDB0216312, and pXi—but were not able to detect signifi-
cant conservation in CaM-binding sites of the CAMKK family.

Predicted Catalytic Activity of the ePKs
For the human kinome, tentative predictions were made

regarding the catalytic activity of ePK domains based on the
presence of conserved active site residues [15]. The residues
used corresponded to K72 (subdomain II), D166 (subdomain
VIB), and D184 (subdomain VII) of cAMP-dependent protein
kinase (1ATP.pdb numbering [69]). With alignment uncer-
tainties, and the potential for alternate active site geometries
in mind, this approach provides an educated guess as to the
catalytic activity of kinases in the absence of biochemical
data. By these criteria 29 Dictyostelium ePK domains are
predicted to be inactive, corresponding to 11% of the
kinome, similar to that of humans (Table S2). Structural
and mutagenesis studies suggest that conserved residues G52,
E91, N171, and D220 (subdomains I, III, VIB, and IX,
respectively) also play important catalytic or structural roles
[69–71]. There are 22 Dictyostelium ePK domains that lack
identity at these sites but do have residues corresponding to
K72, D166, and D184. Most are missing not only the residue
itself, but also the entire conserved motif containing the
residue (see sequence alignment in Figure S1, and the
‘‘Quality of KD’’ column in Table S2). The ‘‘active’’
designations of this set of domains are thus qualified, and
its members are identified in the ‘‘Predicted Activity’’ column
of Table S2.

The lion’s share of the Dictyostelium inactive ePK domains
(22 of 29) occurs in families without yeast or metazoan
counterparts, and none are from the AGC, CAMK, or CK1
groups. Those conserved in distantly related organisms
include members of the BUB, SCY1, SLOB, and TBCK
families. Representatives of the BUB, SCY1, and possibly
the SLOB families from other species display catalytic activity
in spite of their divergent sequences, while no orthologs from
the TBCK family are known to be active [72–75]. A single
kinase (roco10) from the expanded ROCO family also
appears catalytically inert, while other family members from
Dictyostelium and metazoa appear active. Important scaffold-
ing and regulatory functions, and kinases with alternate
active geometries, are likely to be found among this collection
of predicted inactive kinases.

Dual-Domain Kinases
Dictyostelium has nine proteins with two ePK domains and

one with an ePK and a HisK domain—proportionally more
than the 13 dual-domain kinases found in humans (Figure 5).
The human kinases are in the Jak, RSK, Trio, and GCN2
families, of which only GCN2 (IfkA) is found in Dictyostelium.

IfkA differs from its yeast and metazoan counterparts in that
its N-terminal domain is predicted to be active, suggesting
possible differences in how Dictyostelium and the later-
diverging eukaryotes respond to amino acid starvation. The
combination of active and inactive domains, as seen in other
GCN2 homologs and Jaks, recurs in four apparently unrelated
dual-domain kinases in Dictyostelium. In all but DDB0229871
the N-terminus domain is predicted to be inactive, and in
DhkG an inactive ePK domain occurs with a HisK domain.
This variability indicates that kinases combining active and
inactive domains have evolved on multiple occasions.
Except for IfkA and DhkG, all the dual-domain ePKs are

from Dictyostelium-specific families from the STE, TKL, and
Other groups. ZakA, DPYK3, and DPYK4, which all have one
or both domains from the TKL group, have tyrosine kinase
activity [19,62]. The Dictyostelium dual-domain kinases appear
to have arisen by two distinct mechanisms: by tandem
duplication of the same class of kinase domain, as seen in
the Other/Dicty9 family, or by fusion of two distinct kinase
domains, such as the STE and TKL kinase domains of ZakA
and DPYK4.

Protein Kinase Pseudogenes
Dictyostelium pseudogenes are not well documented, with

only two reported to date [21,76]. We identified 15 likely ePK
pseudogenes, based on the presence of frameshifts and/or
nonsense codons within otherwise conserved regions (Figure
6). These loci had all been annotated as genes by automated
gene prediction programs, with the disabling mutations
masked, either by introducing introns, or by truncating the
ORF. Three have a single EST, and six more gave positive RT-
PCR reactions, indicating a residual level of gene tran-
scription. In these cases, RT-PCR and EST data were used to
disprove introns that had been introduced by the automated
gene prediction algorithms.
Putative parental genes were identified for 13 of 15

pseudogenes. In general, pseudogenes share intron location
with their parent, suggesting that they arose by gene
duplication followed by inactivation of one of the copies,
rather than by reverse transcription. The clearest exception is
akt2_ps, which has no introns, whereas akt1 has two. Three
pseudogenes lack one intron but conserve one or two others,
compared with their parents, and may reflect retrotranspo-
sition of immature transcripts. The degree of similarity
between the pseudogenes and their proposed donor gene
varies from 27%–89% amino acid identity, and often
localized regions with .90% identity are found. As in other
species, the family distribution of pseudogenes is highly
skewed, with eight pseudogenes arising from just three
parents, and all but akt2_ps arising from families that are
unique to Dictyostelium.

Domain Architecture of Dictyostelium Kinases
The majority of Dictyostelium kinases contain additional

motifs and domains that act to localize, modulate or interact
with the kinase domain. Figure S3 shows the extensive variety
of domain architectures observed. Predicted domains, TMDs,
and signal peptides are illustrated, as well as polyN and polyQ
tracts, which are very common in Dictyostelium proteins,
although their function is not known [2]. Notes on each
domain are given in the legend to Figure S3. Other signaling
domains are frequently seen in the Dictyostelium kinases.
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Several small G-protein GAPs and GEFs occur: a LISK and a
ROCO have RasGEFs, another LISK and a unique kinase in
the STE group have RhoGEF domains, two ROCO family
members and another unique kinase in the STE group have
RhoGAPs, and an alpha kinase has an ArfGAP domain. WD40
repeats were found in 14 kinases from the STE11, CMGC-
unique, CZAK, VPS15, Other-Unique, and Alpha families,

suggesting that these proteins are involved in myosin II
regulation and/or heterotrimeric G-protein signaling. An
association with heterotrimeric G-protein signaling is also
suggested for Rck1 (in the TKL/Dicty5 subfamily) and ARCK-
1 (in the TKL/ARK family), based on the presence of RGS
domains in these polypeptides. One ROCO has a myotubu-
larin (lipid phosphatase) domain, and a novel kinase has a

Figure 5. Dual-Domain Kinases

The Dictyostelium dual-domain kinases are drawn to scale. The kinase domains are shown in blue, broken by a dashed line in instances where there is a
large insert in the kinase domains. The classification (group/family/subfamily) of each kinase domain is indicated above each domain. An X through the
kinase domain indicates that it is predicted to be catalytically inactive.
DOI: 10.1371/journal.pgen.0020038.g005

Figure 6. Protein Kinase Pseudogenes

The genomic loci for putative pseudogenes, together with their most likely parental genes, are shown. Pseudogene exons are shaded yellow, and
parental gene exons are shaded orange. Stop codons are indicated with an asterisk, and frameshifts by ‘‘fs.’’ The percentage identity in amino acid
sequence between pairs of sequences is shown to the right of the drawings. The number of ESTs, as reported at http://www.dictybase.org, is shown.
The results of RT-PCR experiments are shown.þ, a product was obtained;�, no product was obtained; ND, not determined. All are drawn to the scale
shown in the bottom right of the figure, except Gdt3_ps, which has a condensed scale. For DDB0187382_ps and DDB0204419_ps, no putative parental
gene could be identified.
DOI: 10.1371/journal.pgen.0020038.g006
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dual-specificity protein phosphatase domain. In general,
these domains are either not found on orthologs of the
kinases from metazoa, or they are on kinases from Dictyoste-
lium-specific classes.

Kinases and Human Disease
More than 150 human kinases are currently known to be

associated with disease [77], and of these, 30 are in 22
subfamilies found in Dictyostelium (Table 3). Most of these
subfamilies are found not only in Dictyostelium, but are also
conserved in yeast, flies, and worms, suggesting that they play
important roles in fundamental cellular processes, and that
studies in a variety of model organisms will be useful in
elucidating roles and developing therapies. However, yeast
lacks five of these subfamilies (LKB1, DYRK1, ROCO, PEK,
and BRD), one is missing from yeast and flies (SGK), and
DNAPK is found only in Dictyostelium and vertebrates. In these
instances, Dictyostelium is uniquely situated as a tractable
unicellular model organism. The ability to quickly generate
gene disruptions in Dictyostelium makes it particularly useful
for understanding the cellular functions of disease-associated
kinases. In addition, Dictyostelium may prove useful for kinase
drug screens, and for understanding resistance to and side
effects of drugs [78,79].

Conclusions
The comprehensive catalog of Dictyostelium kinases pre-

sented here provides insights into the early evolution of
protein kinases, and a resource for future signaling research
in this organism. Since kinases frequently act in concert, and
are key modulators of most cellular pathways, experimental
whole-kinome approaches may be fruitful in dissecting
Dictyostelium signaling and cell biology. In other kinomes,

large scale knockouts, RNAi, and protein chips have been
employed successfully, and such technologies may now also be
applied to Dictyostelium [80–84]. These may be integrated with
global protein interaction maps and expression profiles, and
correlated with the emerging data from other species to
understand both conserved and Dictyostelium-specific variants
in kinase signaling pathways.
While conservation of function is a major theme, this study

also indicates plasticity and variation. For instance, metazoan
BRSK and CDK5 kinases function predominantly in neurite
outgrowth and neurotransmitter release in the brain, yet
these functions must have evolved from a non-neuronal one
in their common ancestor with Dictyostelium. There are also
cases of possible functional displacement. For example, the
myosin light-chain kinase activity in Dictyostelium is carried
out by a related CAMK1 kinase (MLCK-A), and signaling from
lipids and small GTPases to myosin is mediated through the
PH and CRIB domains of DMPK kinases in metazoans, but
the PH and CRIB domains of a PAK kinase in Dictyostelium.
The unique absence of PKC isozymes in Dictyostelium, coupled
with the Dictyostelium-specific presence of C1 domains on
other kinases is also an intriguing structural shift that may
indicate displacement of function.
Our understanding of the structure and evolution of

Dictyostelium kinases will be enhanced by additional genome
sequences. Preliminary evidence (J. L. Smith, unpublished
data) indicates that several Dictyostelium-specific families have
close homologs in the Entamoeba genome, providing a resource
to understand their evolution, and possible models to develop
drugs against such apicomplexan parasites. The sequencing of
Dictyostelium sibling species will also greatly aid in modeling
gene structure and looking at close-range gene evolution.

Table 3. Human Kinases Implicated in Disease That Are Conserved in Dictyostelium

Human Kinase(s) Dictyostelium Kinase(s) Classification Phylogenetic Distribution Disease

Group/Family/Subfamily

Akt1,2 Akt1 AGC/AKT/— All Cancer, diabetes

LATS1,2 NdrA-D, DDB0231558, DDB0216387 AGC/NDR/— All Cancer

SGK1 pk2, DDB0220702 AGC/SGK/— Not in Sc, Dm Diabetes, cancer, cognition

Chk2 FHAK-A,B,C,D,E CAMK/RAD53/— All Cancer

LKB1 Lkb1 CAMK/CAMKL/LKB1 Not in Sc Cancer

cdc2 cdc2 CMGC/CDK/CDC2 All Cancer

Erk5 Erk1 CMGC/MAPK/ERK All Cancer, CV

GSK3a,b Gsk-3, GlkA CMGC/GSK/— All ND, diabetes, CV, CNS

Dyrk1A Dyrk1 CMGC/DYRK/DYRK1 Not in Sc Cognition

CK1d,a CK1 CK1/CK1/— All Cancer, ND

MEK1,2, MKK3,4 Mek1 STE/STE7/— All Cancer, virology

Mst4 DDB0216375, Krs1 STE/STE20/MST All Cancer

LRRK2 Pats1, GbpC, Roco4–11, QkgA TKL/LRRK-ROCO/— Not in Sc ND

AurA,B Aurora Other/Aur/— All Cancer

BUB1; BUBR1 Bub1 Other/BUB/— All Cancer

NEK1,2,8 Nek2,3, DDB0229345 Other/NEK/— All Development, renal, cancer

PEK DDB0229432 Other/PEK/PEK Not in Sc Diabetes

PLK1 PLK Other/PLK/— All Cancer

BRD4 DDB0220693, DDB0220694 Atyp./BRD/— Not in Sc Cancer, virology

ATR ATR Atyp./PIKK/ATR All Cancer, development, virology

DNAPK DNAPK Atyp./PIKK/DNAPK Not in Sc, Dm, Ce Cancer

FRAP Tor Atyp./PIKK/FRAP All Cancer

Sc, Saccharomyces cerevisiae; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans; CV, cardiovascular; ND neurodegeneration; CNS, central nervous system.
DOI: 10.1371/journal.pgen.0020038.t003
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Materials and Methods

Discovery of Dictyostelium protein kinase genes. Sequence databases
consisted of version 2 of the Dictyostelium genome and its ORF
predictions (http://www.dictybase.org), and Dictyostelium EST sequen-
ces from GenBank. Kinase genes were detected using HMMs built on
known ePKs. For the final catalog, an in-house HMM with a cut-off of
e ¼ 0.04 was used. One sequence, encoding polyA ribonuclease
(DDB0218147), was removed from this catalog; polyA ribonucleases
have residual sequence homology to ePKs, sometimes leading to their
misannotation. The Dictyostelium Bub1 ortholog was not found in
these HMM searches, but was recovered using BLAST searches. For
the various aPK families, in-house HMMs were used, as well as BLAST
queries. All genomic and EST hits overlapped with predicted proteins
from the genome annotation effort.

All automated gene predictions were inspected, and 20% were
edited to give a more plausible gene model. Most of these findings
were incorporated into the curated models presented at dictyBase. In
instances where frameshifts or stop codons prevented formation of
the best gene model, individual reads from the genome sequencing
project (http://dicty.sdsc.edu) and EST sequences were examined to
determine whether these were errors in the genome sequence. The
sequences of four genes (pXi, PakC, DNAPK, and TRRAP) were
corrected using this approach. We could not find a plausible start
codon for SplA, and as a result, it has incomplete protein sequence
information. Nek4 and pk4 abut gaps in DNA sequence data, and as a
result our current protein sequence version for these is truncated.
Two other genes (DDB0218878 and DDB0219793) span gaps in the
genomic sequence data, and the halves were manually joined. For
Gdt9, in-house sequencing was used to correct an ambiguous region,
resulting in an improved gene model.

The quality of each ePK domain was evaluated based on the
presence of known protein kinase subdomains [64] and kinase HMM
scores. The results of this evaluation are given in the ‘‘Quality of KD’’
and ‘‘Notes’’ columns of Table S2, and details of the evaluation are
given in the table footnote.

Identification of pseudogenes. The initial collection of ePK gene
predictions was screened for pseudogenes as follows. Several were
identified because the predicted protein had a deletion in an
otherwise well-conserved region; upon inspection, the deletion was
found to correspond to a bogus intron that encoded the missing
homologous sequence, but interrupted by a stop codon or frameshift.
Similarly, we inspected kinases that were expected to have additional
conserved sequences upstream or downstream of the gene predic-
tion; in some instances the conserved sequences were found,
separated from the main ORF by stop codons or frameshifts. We
also evaluated all of the introns in the gene models for plausibility,
and flagged those that had an intron that appeared coding, rather
than intronic (typically, Dictyostelium introns are ,15% GC, and 60–
250 nt in size). We also screened translated genomic DNA for ePK-
like sequences in order to identify more cryptic pseudogenes, but all
hits had already been predicted into genes.

Identification of additional domains in kinases. Sequences were
analyzed for the presence of additional domains using InterPro [85].
Additional domains were detected using profiles derived from
publications (cor and roc domains [38]) or generated in-house (PH
domains found in Pdk1 enzymes, extracellular gdt domain, extrac-
ellular drk domain, and mob-binding domain). Potential coiled-coil
regions were predicted using paircoil ([86]; http://paircoil.lcs.mit.edu).
Transmembrane helices were predicted using TMHMM [87], and
signal peptides were predicted using the Sigcleave module at the
SMART website (http://smart.embl-heidelberg.de). Regions of poly-
asparagine or poly-glutamine were detected using Prosite [88],
modified to return segments of at least 19 residues containing 90%
or more N/Q.

Classification. Dictyostelium kinases were mapped to the classifica-
tion of Manning et al. ([15]; http://kinase.com). Criteria included
BLAST scores to previously classified kinases, using both kinase
domains and full-length proteins, family- and subfamily-specific
HMMs, relationship trees built from kinase domains from Dictyoste-
lium and other species, and inspection of the proteins for features
outside of the kinase domain that are characteristic of a particular
family or subfamily. Where necessary, new families and subfamilies
were created.

Relationship tree. The alignments underlying the tree were made
using MUSCLE [89] and hmmalign [90], and were optimized by hand.
Flanking sequences and internal insertions were removed by
excluding residues not matching the HMMs. Group-specific HMMs
based on yeast, metazoan and Dictyostelium ePK sequences were used

to align ePK domains from the Dictyostelium AGC, CAMK, CMGC, STE,
and TKL groups, and to generate group-representative sequences
consisting of the top-scoring residues for each position. A Dictyoste-
lium-specific ePK HMM was used to align members of the Other and
CK1 groups, together with the representative sequences for the AGC,
CAMK, CMGC, STE, and TKL groups.

Consensus trees based on 100 bootstrap samples from each
alignment were made using the neighbor-joining method of Phylip
v3.63 [91]. The group-specific trees were grafted onto the Other/CK1
tree at the sites held by their representative sequences. Branch
lengths were reintroduced to the combined consensus tree using
ProML, a maximum-likelihood algorithm, with a Dictyostelium HMM
alignment as input.

Supporting Information

Dataset S1. The Tree in PHYLIP Format

‘‘DDB0’’ is substituted with ‘‘k’’ to satisfy format constraints. While
the trees given here and in Figure 1 are topologically identical, they
differ by topologically neutral rotations about nodes in few regions.

Found at DOI: 10.1371/journal.pgen.0020038.sd001 (5 KB TXT).

Figure S1. Sequence Alignment of Dictyostelium ePK Domains

An alignment of all Dictyostelium ePK kinase domains (except
pseudogenes and Chromosome 2 duplicates) is shown. For proteins
with two kinase domains, the domains are distinguished with an ‘‘a’’
or ‘‘b’’ suffix. The amino acid position of the first residue in the
kinase domain is given. For deletions within the alignment, the
number of residues that were removed is indicated in parentheses.
The kinases names are shaded by group: yellow, AGC; purple, CAMK;
pink, CMGC; blue, STE; green, TKL; orange, CK1; and gray, OTHER.
The alignment is shaded to depict regions of similarity on a group-by-
group basis. Some kinases from the Other group were shaded with the
group they are most closely related to. Subdomain designations
correspond to those used in [64].

Found at DOI: 10.1371/journal.pgen.0020038.sg001 (864 KB PDF).

Figure S2. Dictyostelium Text Tree

The tree shown in Figure 1 is shown here in text format with
bootstrap values indicated at the nodes. Nodes at which group
specific trees were grafted to the main tree are designated by the
word ‘‘fixed.’’

Found at DOI: 10.1371/journal.pgen.0020038.sg002 (140 KB PDF).

Figure S3. Domain Drawing of the Dictyostelium Kinases

Matches to PFAM, SMART, and in-house HMMs, polyN and polyQ
stretches (common in Dictyostelium proteins), transmembrane helices
(TMDs), and signal peptides are shown. Motifs are labeled the first
time they appear in each group, and the first time they appear on
each page. All proteins are drawn to scale, and the vertical lines
represent 100 aa intervals. A brief description of each of the motifs is
given in the legend.

Found at DOI: 10.1371/journal.pgen.0020038.sg003 (210 KB PDF).

Table S1. Group, Family, and Subfamily Abbreviations

Found at DOI: 10.1371/journal.pgen.0020038.st001 (33 KB XLS).

Table S2. Summary of Dictyostelium Protein Kinases

The protein sequences used in the analyses for this paper are
presented. In most instances they correspond to a curated model at
dictyBase, and their accession number (DDB#) is given. In cases where
our version differs from the current dictyBase model, the relevant
DDB# is italicized and appended with a one-letter code. A ‘‘p’’
indicates a pseudogene; these proteins contain internal asterisks to
indicate stop codons, and Xs to indicate frameshifts. An ‘‘e’’ indicates
an edited gene model (i.e., our interpretation of the genomic data
differs from the model presented at dictyBase). A ‘‘c’’ indicates a
model that is based on corrected genomic DNA; these corrections
were made based on inspection of EST sequence data, genomic reads,
or our own sequence data.
A rating for each ePK domain is given in the ‘‘Quality of KD’’ column.
The rating reflects the degree of similarity to a canonical ePK, and is
largely based on conservation around and including the following
motifs: gxGxxg in subdomain I; vaiK in subdomain II; rEi in
subdomain III; HRDxxxxN in subdomain VI; DFG in subdomain
VII; and Diws in subdomain IX (subdomain nomenclature of [64]).
Sequences containing all of these motifs are rated ‘‘kd’’ (kinase
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domain); sequences lacking from one or two are rated ‘‘partial_kd,’’
while sequences with at least one clearly recognizable kinase motif
but lacking three or more others were designated ‘‘kmc’’ (kinase
motif-containing).
In a few cases sequences failing to match three conserved motifs were
admitted as partial_kds because of good alignment elsewhere or a
good kinase HMM score. Specific rationales for the ratings are given
in the ‘‘Notes’’ column. Of the 255 nonpseudogene ePK domains in
Dictyostelium (nine proteins have dual ePK domains), 210 are
designated ‘‘kd,’’ 37 as ‘‘partial_kd,’’ and three as ‘‘kmc.’’ Five
sequences were given special designations, because they are in the
BUB, SCY, or SLOB families, which diverge strongly from the ePK
consensus, but are well conserved across species.
In the ‘‘Predicted Activity’’ column, ‘‘a’’ (active) and ‘‘i’’ (inactive)
refer to the catalytic activity predicted as described in the text. The
portions of the alignment used to make these predictions (the VAIK,
HRD, and DFG motifs) are shown. If the entry is blank, the ePK
domain starts (or ends) after (or before) that motif. If the entry
contains only periods, the ePK flanks the domain, but does not match
that particular motif. In several cases the activity prediction is
qualified because of the lack of conserved residues G52, E91, N171, or
D220, as discussed in the text. In these cases ‘‘q’’ is appended to the
activity flag and the qualification is described in the ‘‘Notes’’ column.
For dual-domain kinases the properties of the individual ePK
domains are separated by a slash.

Found at DOI: 10.1371/journal.pgen.0020038.st002 (401 KB XLS).

Table S3. Species Distribution of Protein Kinase Families and
Subfamilies

The number of kinases in each group, family, and subfamily in
Dictyostelium, yeast, flies, worms, and humans are summarized. The
current classification from http://kinase.com is used. Pseudogenes and
copies found on the Chromosome 2 duplication are not counted in
the Dictyostelium numbers. Unique kinases in each group are not
related to kinases from other organisms, and are therefore tabulated
under Sections G, H, and I.

Found at DOI: 10.1371/journal.pgen.0020038.st003 (57 KB XLS).
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