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INTRODUCTION 
 

Acute liver injury (ALI) is a life-threatening disease, if 

not treated in time, it will eventually lead to acute liver 

failure when the extent of hepatocyte death exceeds the 

liver's regenerative capacity, and its pathogenesis 

involves direct damage and immune-mediated injury 

[1]. Oxidative stress plays a key role in hepatocyte 

injury because the liver is a major organ invaded by 

reactive oxygen species and reactive nitrogen species  

 

(RNS) [2–4]. Additionally, acute hepatic damage is 

closely related to inflammation, as inflammatory 

immune responses characterized by the expression of 

proinflammatory mediators such as TNF-α and 

extensive immune cell infiltration in the liver, 

eventually result in hepatic apoptosis [5]. Although the 
pathogenic mechanism and factors associated with ALI 

have been widely reported, the details of liver injury 

and the drugs effective for treating liver injury remain 

poorly understood. 
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ABSTRACT 
 

Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a 
serious threat to people's life and health. But there are few effective treatments for acute liver injury. 
Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. 
Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver 
disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, 
zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against 
lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We 
found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the 
infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol 
could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating 
Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-
GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were 
largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1. 
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Oxidative stress refers to the imbalance between ROS / 

RNS production from aerobic metabolism and the 

elimination of antioxidant defense [6]. The antioxidant 

defense system consists of glutathione (GSH) and its 

synthesis, phase II detoxification enzyme and active 

oxygen deactivation enzyme, which play a key role in 

protecting cells from oxidative damage [7]. Nrf2, the 

transcription factor nuclear factor-erythroid 2 related 

factor 2, plays a protective role in GSH synthesis, 

antioxidant stress system, conjugation, transport and 

excretion of the metabolites and serves as a pleiotropic 

target resistant to hepatic damage [8]. It has been 

reported that Nrf2 induced glutamic acid cysteine ligase 

gene expression contributes to GSH synthesis and 

meliorates NAPQI induced hepatotoxicity [9]. 

Furthermore, activation of Nrf2 decreases acetami-

nophen (AA) - sulfate formation and enhances 

elimination of AA- glucuronide due to increased 

expression of Mrp3 in Keap1-kd mice [10]. Another 

study finds that transforming growth factor β1 (TGFβ1) 

induces HO-1 protein expression and enhanced nuclear 

accumulation of Nrf2 in Human aortic smooth muscle 

cells (HAoSMC), which also demonstrates that Nrf2-

ARE pathway represents a novel target for TGF-β1 in 

human vascular smooth muscle cells (SMC) [11]. 

However, the relationship between Nrf2 and TGFβ1 in 

the regulation of liver diseases is rarely reported. 

 

TGFβ1, a member of the TGFβ family of growth and 

differentiation factors, controls cell differentiation and 

proliferation and plays key roles in skeletal diseases, 

fibrosis, and cancer [12]. TGFβ1 transduces its signal 

by directly binding TGFβ receptor 2 (TGFβr2) to form a 

constitutively active kinase and then recruiting TGFβ 

receptor 1 (TGFβr1) into a heterotetramer receptor 

complex, ultimately resulting in the phosphorylation of 

SMAD2 and SMAD3 [13]. Previous studies have 

shown that TGFβ1 increased in the liver and serum of 

mice or rats during liver failure [14, 15]. TGFβ1 was 

markedly elevated in both the liver tissue and the 

plasma in patients with acute liver failure [16, 17], 

indicating that TGFβ1 may play a vital role in the 

regulation of ALI. Upon this, candidate compounds 

with multi-effects on anti-inflammation, anti-oxidative 

stress and TGFβr1 and Nrf2 signaling pathway 

regulation seem to be a more suitable treatment strategy 

for ALI. 

 

Lupeol, as a natural triterpenoid, is widely found in 

fruits such as strawberry, mango, grape and olive and 

vegetables such as white cabbage and green pepper 

[18]. As a pentacyclic triterpene, lupeol has been proven 

to have antioxidative, anti-inflammatory, and skin 
healing-promoting functions and to have inhibitory 

effects on breast cancer, prostate cancer and mouse 

melanoma [19, 20]. Besides, lupeol possesses many 

potential liver-protective effects. A previous study 

showed that lupeol has a protective effect on aflatoxin 

B1-induced peroxidative hepatic damage in rats and is 

as effective as silymarin [21]. Furthermore, other 

studies have found that lupeol is effective in combating 

oxidative stress-induced liver injury [22–24]. Thus, in 

view of the anti-oxidative and anti-inflammatory effects 

of lupeol, it may be an effective therapy for acute 

hepatic damage. 

 

Therefore, we investigated the effects of lupeol on ALI 

in mice and zebrafish, as well as the related 

mechanisms. We found that lupeol relieved LPS/D-

GalN-induced ALI by inhibiting hepatocyte inflam-

mation, hepatic apoptosis and oxidative stress in the 

liver. Moreover, lupeol cured ALI by decreasing the 

expression of TGFβr1 and increasing the expression of 

Nrf2.  

 

RESULTS 
 

Lupeol alleviates LPS-induced liver injury in 

zebrafish 

 

First, we used the survival rate, body length, heart rate 

and morphological changes of zebrafish embryos to 

investigate the toxicology of lupeol. Zebrafish embryos 

(3 dpf) were treated with lupeol for 72 h. At 400 µM 

lupeol, the zebrafish larvae had abdominal swelling and 

a shorter body length (Figure 1A and Supplementary 

Figure 1A), indicating that 400 µM lupeol did have 

toxic effects on the developmental stages of zebrafish. 

Notably, 400 µM lupeol caused approximately 100% 

larval mortality after 72 h, and EC50=328.3μM (Figure 

1B). In the body length test, compared with the control 

group, the 400 µM lupeol group showed decreased body 

length (Figure 1C). In the heart rate test, the heart rate 

was decreased in the 200 µM lupeol group (Figure 1D). 

Based on the results, we found that lupeol was toxic to 

zebrafish larvae at concentrations of more than 200 µM. 

Thus, we selected lupeol concentrations of 25, 50, and 

100 µM for further zebrafish experimentation. 

 

Previous studies have shown that zebrafish larvae grown 

in 10 μg/mL LPS until 3 dpf exhibit an obvious systemic 

inflammatory response and oxidative stress [25, 26]. In 

this study, we exposed 9-10 hpf zebrafish larvae to 10 

μg/mL LPS until 3 dpf as a liver injury model (Figure 

1E). Liver injury is the pathological basis of various 

hepatic diseases, including liver cell degeneration, 

necrosis and inflammatory cell infiltration. We examined 

the hepatoprotective effects of lupeol on LPS-induced 

ALI in zebrafish. H&E staining of liver sections revealed 

that LPS caused hepatocyte degeneration, and lupeol 

ameliorated the restoration of liver tissue structures in 

zebrafish larvae (Figure 1F).  
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These results suggested that lupeol antagonized liver 

injury by attenuating hepatic apoptosis. Moreover, the 

effective concentrations of lupeol were in the range of 

25-100 μM, among which 100 μM was the most 

effective. 

 

Lupeol inhibits liver damage caused induced by 

LPS/D-GalN in mice 

 

LPS/D-GalN coinjection is a common method to 

establish an ALI model in mice, as D-GalN increases 

the sensitivity of rodents to LPS-induced hepatotoxicity 

[27]. To further verify the role of lupeol in ALI, an 

LPS/D-GalN-induced liver injury model was used 

(Figure 2A). As demonstrated by H&E staining, we 

found that the livers of the model groups exhibited 

diffuse necrosis, swollen hepatocytes and severe 

hemorrhage compared to those of the control group, 

while lupeol reduced liver necrosis (Figure 2D). In 

addition, serum ALT/AST levels were significantly 

increased in mice under LPS/D-Gal coinjection, while 

the levels were similar to those of the control group 

after lupeol treatment (Figure 2B, 2C). 

 

Caspase 9, the initiator of apoptosis, activates the 

mitochondrial apoptosis pathway. Caspase 9 can 

combine with cytochrome c and the signal connector 

molecule Apaf-1 to form a complex after mitochondria 

release cytochrome c [28]. At the same time, it is cut 

into cleaved caspase 9. Cleaved caspase 9 further 

activates the downstream apoptosis executor caspase 3 

to carry out a series of cascade reactions, which leads to 

apoptosis. In our study, the expression of caspase 9 was 

decreased, while cleaved caspase 9 was increased after 

LPS/D-GalN administration. After lupeol treatment, the 

expression of caspase-9 was increased, but the 

expression of cleaved caspase 9 was decreased (Figure 

2E, 2F). Moreover, we used TUNEL staining to detect 

hepatocyte apoptosis in liver tissues and found that a 

large area of hepatocyte apoptosis occurred in the liver 

with LPS/D-GalN coinjection, while a significant 

reduction in hepatocyte apoptosis appeared with lupeol 

pretreatment (Figure 2G Supplementary Figure 1B). 

 

These data showed that administration of LPS/D-GalN 

induced fatal ALI in mice. Lupeol inhibited aggravated 

liver injury by reducing hepatocyte apoptosis and 

decreasing the expression of cleaved caspase 9. 

 

Lupeol restrains LPS/D-GalN-induced inflammatory 

responses in zebrafish and in mice 

 

LPS/D-GalN induces liver injury mainly through 

inflammation. Generally, inflammation is caused by the 

release of TNF-α from natural killer cells, T 

lymphocytes and macrophages [29]. Vascular cell 

adhesion molecule-1 (VCAM-1), an adhesion molecule 

activated by TNF-α, recruits leukocytes to injury sites to

 

 
 

Figure 1. Lupeol attenuates liver injury induced by LPS in zebrafish. (A–D) Zebrafish larvae were treated with different 

concentrations of lupeol (0, 3.125, 6.25,12.5,25,50,100,200, and 400μmol) to observe changes in zebrafish morphology, survival rate, body 
length and heart rate. N=20, data are expressed as the mean ± SEM, *P<0.05, **P<0.01, ***P<0.001, control group vs administration group. 
(E) Schematic diagram of treatment on zebrafish. (F) H&E staining of the liver in zebrafish larva. Magnification, 400×, bar=200μm. 
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initiate inflammatory responses [30, 31]. We found that 

lupeol treatment effectively reduced the expression of 

VCAM-1 in zebrafish (Figure 3A, 3B). Similarly, we 

also found that lupeol reduced VCAM-1 in mice (Figure 

3C, 3D). Furthermore, we found that administration of 

lupeol significantly decreased the protein expression of 

TNF-α (Figure 3C–3F). 

 

F4/80, a marker of macrophages, Ly-6G, a marker of 

neutrophils, and CD3, a marker of T cells, were 

detected by immunochemical staining in the livers of 

the mice. We found that compared with those in the 

control group, the numbers of cells with positive F4/80, 

Ly-6G and CD3 staining in the liver of the LPS/D-

GalN-treated group were significantly increased, while 

pretreatment with lupeol inhibited the significant 

increase in immune cell infiltration (Figure 3G–3J). 

Collectively, these data indicated that lupeol reduced 

inflammatory responses in ALI. 

 

Lupeol attenuates LPS/D-GalN-induced oxidative 

stress in zebrafish and in mice  

 

Peroxynitrite (ONOO-) is a highly reactive oxygen 

species. Abnormal regulation of ONOO- in living 

systems is associated with diseases such as 

inflammatory conditions, auto-immune, and neuro-

degenerative diseases [32]. To detect the distribution 

and levels of reactive nitrogen species, we used liver-

specific EGFP transgenic zebrafish and NP3, a 

fluorescent dye that can penetrate the cell membrane 

and blood-brain barrier, is suitable for detecting the 

level of ONOO- in living cells. After the larvae were 

incubated with the NP3 fluorescent probes for 10 min, 

 

 
 

Figure 2. Lupeol alleviates LPS/GalN-induced liver injury in mice. (A) Diagrammatic sketch mice modeling and lupeol administration. 
(B, C) Changes in serum ALT and AST. (D) H&E staining was used to detect the liver histopathological changes. (E, F) Expression of caspase 9 
and cleaved-caspase 9 protein in mice. (G) TUNEL staining of paraffin liver sections in control mice and mice treated with LPS/GalN or lupeol. 
Data are expressed as the mean ± SEM, n=3-6 per group, *P<0.05, **P<0.01, ***P<0.001, control group vs other groups. #P<0.05, ##P<0.01, 
### P<0.001. Figures are magnified as 200x, bar=50μm. 
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we collected and photographed the larvae. When the 

level of ONOO- in the cell is higher, the blue 

fluorescence is stronger. We found that the level of 

RNS in zebrafish livers increased notably with LPS 

administration but decreased with treatment with 100 

μM lupeol (Figure 4A, 4B). 

 

Nitrotyrosine (NT) is an important tool for the detection 

of newly nitrosylated proteins, the determination of 

protein nitrosylation, and the measurement of nitrosylated 

protein levels in tissues and samples. Nitrated proteins 

were found to be significantly elevated in the livers of 

mice with LPS/D-GalN-induced injury. However, nitrated 

proteins decreased after lupeol treatment (Figure 4C, 4D). 

INOS levels increased in the livers of mice after LPS/D-

GalN coinjection but decreased in the livers of mice 

pretreated with lupeol (Figure 4E–4H). 

 

Generally, these results showed that lupeol could 

alleviate LPS/D-GalN-induced liver injury by inhibiting 

oxidative stress and partially by improving the 

antioxidant capacity in vivo.  

 

 
 

Figure 3. Lupeol restrains LPS/GalN-induced liver inflammation. (A) Immunohistochemistry staining of VCAM-1 in zebrafish, n=20, 
figures are magnified as 400x, bar=200μm. (B) Quantitative analysis of VCAM-1, data are represented as mean ± SEM. (C) Expression of TNF-α 
and VCAM-1 in mice. (D) Quantitative analysis of TNF-α and VCAM-1 protein. (E, F) Immunohistochemistry analysis for TNF-α location and 
expression in mice. (G, H) Immunofluorescence analysis for CD3 expression in mice. (I, J) Immunohistochemistry staining of F4/80 and LY-6G 
in mice and quantification of F4/80 and LY-6G expression. Data are shown as the mean ± SEM, n=3-4 group, *P<0.05, **P<0.01, ***P<0.001, 
control group vs other groups. #P<0.05, ##P<0.01, ### P<0.001. Figures are magnified as 200x, bar=50μm. 
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Lupeol ameliorates LPS/D-GalN-induced liver 

injury through the TGFβ1 and Nrf2 pathway  

 

Due to the pivotal role of the TGFβ1 pathway in the 

regulation of numerous cell processes, including 

extracellular matrix formation, cell proliferation, growth 

development, inhibition, and cell death [33], we 

detected whether lupeol treatment could affect the 

TGFβ1 pathway. Herein, lupeol efficiently repressed the 

protein expression of TGFβ1 in mice with LPS/D-

GalN-induced ALI (Figure 5A, 5B). 

 

Additionally, TGFβ1 transduces its signal by binding a 

heterotetramer receptor complex made up of TGF-β 

receptor 1 (TGFβr1) and TGF-β receptor 2 (TGFβr2). 

We found that lupeol could obviously decrease the 

protein expression of TGFβr1 in mice coinjected with 

LPS/D-GalN (Figure 5C–5F). 

 

Moreover, the Nrf2 pathway plays a major role in 

regulating the expression of numerous antioxidant 

enzymes [34]. In our research, we found that lupeol 

promoted the expression of Nrf2, which was inhibited 

by LPS/D-GalN-induced liver injury (Figure 5G, 5H). 

In conclusion, lupeol could cure ALI by inhibiting 

TGFβ1 expression and promoting Nrf2 expression. 

 

DISCUSSION 
 

ALI, a common disease that has high mortality, a poor 

prognosis, and no effective treatment, is associated with 

increased oxidative stress and inflammatory responses [5].

 

 
 

Figure 4. Lupeol reduces oxidative stress in zebrafish and in mice with ALI. (A) Fluorescence micrographs of ONOO- generation in 
the control zebrafish larvae and the zebrafish larvae treated with LPS or lupeol. N=3-5, figures are magnified as 400x, bar=200 μm. (B) 
Quantification of the amounts and distribution of ONOO-. Data are exhibited as mean ± SEM. (C, D) NT immunohistochemical staining of mice 
livers and its quantitative analysis. (E, F) Western blots and quantitative results for iNOS. (G, H) Immunofluorescence staining and 
quantification for iNOS. All data are shown as the mean ± SEM, n=3-4 group, *P<0.05 vs control group, #P<0.05 vs model group. Figures are 
magnified as 200x, bar=50μm. 
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In this study, the principal findings obtained from 

histological and molecular studies are as follows. We 

found that lupeol could alleviate LPS/D-GalN-induced 

ALI by inhibiting inflammation caused by immune cell 

infiltration and oxidative stress resulting from 

RNS/ROS accumulation. Moreover, lupeol could 

protect the liver from LPS/D-GalN-induced injury by 

reducing the expression of TGFβr1 and increasing Nrf2, 

indicating that the TGFβr1-Nrf2 pathway was a possible 

target of lupeol. 

 

Lupeol, which is present in diverse species of the plant 

kingdom, exhibits a spectrum of pharmacological 

activities against various diseases, such as cancer, 

microbial infections, arthritis, cardiovascular disease, 

diabetes, renal disease and liver disease [35–40]. A recent 

study demonstrated that lupeol ameliorated LPS/D-GalN-

induced liver injury by inhibiting IRAK-mediated TLR 

inflammatory signaling [41]. In our study, we found that 

lupeol restored LPS/D-GalN -induced liver injury by 

repressing RNS/ROS accumulation and immune cell 

infiltration and that lupeol relieved ALI by regulating the 

TGFβ1 signaling pathway.  

 

TGFβ1, which is involved in various stages of liver 

disease progression, plays a significant role in initial 

liver injury, liver inflammation, fibrosis and liver cancer 

[42, 43]. A previous study observed that Kupffer cells 

expressed high steady-state levels of TGFβ mRNA in 

CCl4-injured rat livers and that antisense 

 

 
 

Figure 5. Lupeol downregulates TGFβr1 and upregulates Nrf2 pathway in mice with ALI. (A, B) Immunohistochemistry staining 

and quantitative analysis of TGFβ1. (C) Western blot analysis for the expressions of TGFβr1. (D) Quantitative analysis of TGFβr1 protein. (E, F) 
Immunohistochemistry analysis and quantification for detecting the expressions of TGFβr1. (G, H) Western blots and quantitative results for 
Nrf2. All data are shown as the mean ± SEM, n=3-4 group, *P<0.05 vs control group, #P<0.05 vs model group. Figures are magnified as 200x, 
bar=50μm. 
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S-oligodeoxynucleotides can restore CCL4-induced 

liver injury by downregulating TGFβ production [44]. 

As TGFβ plays a major role in liver regeneration, a 

recent study found that inhibition of TGFβR1 activity 

alleviated CCL4-induced intoxication by facilitating 

liver regeneration [45]. Moreover, a current study 

discovered that TGFβ signaling was activated in acute 

injury and that inhibition of TGFβR1 signaling 

reduced hepatocellular senescence by improving liver 

regeneration, function and outcome in acute liver 

injury [46]. In the present study, we further confirmed 

that TGFβ signaling was activated by LPS/GalN-

induced liver injury. In addition, clinical trials of 

TGFβR1 or TGFβ inhibitors in human tumors are 

underway [46, 47]. Thus, our experiments provide a 

theoretical basis for the application of TGFβR1 or 

TGFβ inhibitors in acute liver damage and liver failure 

in humans. 

 

Nrf2, considered a potential therapeutic target for 

preventing liver injury, plays an important role in the 

regulation of inflammation and oxidative stress [34, 48]. 

A recent study demonstrated that Nrf2 pathway was 

inhibited by a hepatotoxic drug matrine and 

accompanied with the activation of the ROS-mediated 

mitochondrial apoptosis pathway [49]. Moreover, 

another study showed that Licochalcone A has a 

hepatoprotective effect during LPS/GalN-induced liver 

injury by inducing the activation of Nrf2 and 

QSTM1(p62) signals and promoting autophagy via 

AMP-activated protein kinase (AMPK) signaling [50].  

Furthermore, Nrf2 plays a major role in ameliorating 

various oxidative stress-associated diseases and exerts 

significant function in the antioxidant system, a recent 

study demonstrated that adropin reduced liver injury in 

nonalcoholic steatohepatitis by upregulating the 

expression of glutamate-cysteine ligase catalytic 

subunit(GCLC), glutamate-cysteine ligase regulatory 

subunit(GCLM) and glutathione peroxidase 1(Gpx1), 

dependent on Nrf2 transcriptional activity and 

increasing GSH levels [51]. Former study demonstrated 

that TGFβ1 induces Nrf2 mediated HO-1 expression 

and antioxidant response element activity in human 

aortic smooth muscle cells [11]. In this study, our 

results shown that lupeol administration improved 

hepatic antioxidant capacity to alleviate acute liver 

injury associated with Nrf2 up-regulation. 

 

In summary, our results demonstrate that lupeol 

attenuates LPS/GalN-induced ALI by restraining 

hepatic inflammatory and oxidative stress and inhibits 

activation of TGFβ1 induced by LPS/GalN 

administration (Figure 6). However, our study does  

not address whether lupeol is effective for acute liver 

injury and failure in humans, and further human safety 

and efficacy studies are required. Furthermore, but there 

is no further experimental study on the effect of TGFβ1 

on acute liver disease. Therefore, we will further clarify 

the signal transduction relationship between TGFβR1 

and Nrf2 in our future research. 

 

 
 

Figure 6. Graphical abstract: A schematic diagram describing the protective mechanisms of lupeol against LPS/GalN-induced 
acute liver injury.  
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MATERIALS AND METHODS 
 

Animals and ethics statement 

 

Wild-type (WT) mice with a C57BL/6 background 

between 9 and 12 weeks of age were genotyped, housed 

in a temperature-controlled animal facility with 

alternating 12:12 h light-dark cycles and fasted overnight 

before surgery but allowed to drink water ad libitum. All 

the procedures used in the animal studies were approved 

by the National Institutional Animal Care and Ethical 

Committee of Southern Medical University. All the 

experimental methods performed in this study were in 

accordance with the approved guidelines. 

 

ALI model and lupeol intervention 

 

LPS (E. coli, L2630) and D-GalN (G0500) were 

purchased from Sigma (St. Louis, MO), and lupeol 

(B21602) was obtained from Shanghai Yuanye Bio-

Technology. For the ALI model, male mice were 

intraperitoneally (i.p.) injected with LPS (20 μg/kg) 15 

min before injection of D-GalN (700 mg/kg). Mice in 

drug treatment group was taken Lupeol (80 mg/kg each 

mouse) by intragastric administration 1 h before LPS 

and D-GalN treatment. Mice were sacrificed 6 h after 

LPS and D-GalN administration. 

 

Zebrafish maintenance and treatment 

 

WT and Tg(lfabp10α–EGFP) adults and larvae were 

maintained with a light: dark period of 14:10 h at 28° C. 

Embryos were gathered and developed in chorion water 

(0.5 mg/L methylene blue) for up to 5 days post 

fertilization (dpf) at 28.5° C. All zebrafish procedures 

were approved by the Institutional Animal Care and Use 

Committee of Southern Medical University. 

 

Zebrafish larvae at 9-10 hpf were stochastically divided 

into six groups: the control group, the 0.1% DMSO 

group, the model group, and 3 therapy groups. In the 

control group, embryos were raised in fish water. In the 

0.1% DMSO group, embryos were raised in 10 μg/mL 

LPS with 0.1% DMSO. In the model group, embryos 

were incubated in 10 μg/mL LPS until 3 dpf. In the 

therapy groups, lupeol was made soluble in dimethyl 

sulfoxide (DMSO) and diluted to 25 μM, 50 μM, and 

100 μM with fish water. In addition, lupeol was added 

to the fish water 1 h before incubation in 10 μg/mL 

LPS. The larvae were raised in 6-well plates at a density 

of 30 larvae per well for approximately 61-62 h. 

 

Histological analysis 

 

Liver tissues or zebrafish larvae were fixed in 4% PFA 

overnight at 4° C, dehydrated, soaked in xylene, and 

embedded in paraffin in sequence and then sliced into 4 

μm sections. Paraffin sections were dewaxed with 

xylene, dehydrated with different concentrations of 

ethanol, stained with hematoxylin and eosin, 

dehydrated, cleared, sealed, and finally imaged under a 

light microscope (Nikon Eclipse Ni-U; Nikon, Tokyo, 

Japan). 

 

Serum alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) measurements 

 

Serum was acquired by centrifugation of blood samples 

at 3000 g for 15 min, and AST and ALT activities were 

measured using an Alanine Aminotransferase Assay Kit 

(Nanjing Jiancheng Bioengineering Institute, C009-2-1) 

and an Aspartate Aminotransferase Assay Kit (Nanjing 

Jiancheng Bioengineering Institute, C010-2-1) 

according to the manufacturer’s instructions on a 

microplate reader at 510 nm. 

 

Immunofluorescence and immunochemical staining 

 

Liver tissues were collected and routinely embedded in 

OCT. Frozen liver samples were sliced into 14 μm 

sections. For immunofluorescence staining, after being 

washed with PBS 3 times, the sections were penetrated 

with methanol at -20° C for 10 min and sealed with 5% 

goat serum at room temperature for 1 h. Finally, frozen 

liver sections were stained with CD3 (Affinity, 

AF5405) and INOS (Abcam, ab178945) overnight at  

4° C. After extensive washing, the frozen sections were 

incubated with the respective fluorescent secondary 

antibodies. Finally, the nucleus was stained with DAPI 

for 10 min. 

 

For immunochemical staining, paraffin sections (4 µm) 

were first dewaxed in xylene I, II, and III and then 

rehydrated in 100%, 95%, 90%, 80%, and 70% ethanol. 

Then, the samples were boiled in 1X sodium citrate, 

maintained at a sub-boiling temperature for 10 min to 

repair antigen and cooled to room temperature. 

Afterwards, endogenous peroxidase enzyme was 

inactivated using 3% H2O2 in methanol for 10 min in 

the dark at room temperature. After blocking 

nonspecific binding with 5% goat serum at room 

temperature, the sections were stained with antibodies 

against F4/80 (Affinity, DF2789), NT (Cell Signaling 

Technology, 9691S), TNF-α (Abcam, ab1793), TGFβr1 

(Abcam, ab31013), and TGFβ1 (HuaAn, H1113) 

overnight at 4° C. The next day, sections were 

incubated with the respective biotinylated secondary 

antibodies. Positive staining was visualized using DAB. 

The reaction was stopped in ice water. Then, the 
samples were counterstained with hematoxylin, 

dehydrated, paraffinized and finally mounted and sealed 

with neutral gum. The dyed sections were photographed 



 

www.aging-us.com 6601 AGING 

with an optical microscope (Nikon Eclipse Ni-U; 

Nikon, Tokyo, Japan). 

 

TUNEL assay 

 

The TUNEL reaction was used to detect hepatocyte 

apoptosis in liver tissue by using frozen sections and the 

In Situ Cell Death Detection Kit (Roche). The 

cryosections were immersed in 0.01% Triton X-100 

diluted in PBS for 10 min, washed with PBS, incubated 

with a 1:10 TUNEL working solution in a dark 

environment at 37° C for 1 h and washed 3 times with 

PBS. Then, DAPI was used to stain nuclei in the dark at 

room temperature for 5 min, and the samples were 

washed 3 times with PBS. The dyed cryosections were 

immediately photographed with an optical microscope 

(Nikon Eclipse Ni-U; Nikon, Tokyo, Japan). 

 

Fluorescent probe detection 

 

The fluorescent probe NP3 (FYRK-FP-01-001KY) was 

used to detect ONOO-. NP3 was used to measure RNS. 

At 3 dpf, live larvae were immediately transferred into 

24-well plates and incubated with a 10 μM solution at 

28° C in the dark for 10 min. Then, the fluorescence 

distribution of NP3 was visualized with a bright-field 

dissecting microscope (Nikon Eclipse Ni-U; Nikon, 

Tokyo, Japan). 

 

Western blot analysis 

 

Liver tissues were sonicated in ice-cold RIPA lysis buffer 

cell lysis buffer (Sigma) containing a phosphatase 

inhibitor cocktail (Sigma) and a protease inhibitor cocktail 

(Sigma). Protein concentrations were determined by a 

quantitative BCA assay. A total of 50 μg of protein was 

used for immunoblotting. Primary antibodies against 

INOS (1:1000, Abcam, ab178945), Nrf2 (1:1000, 

Proteintech, 16396-1AP), TGFβr1 (1:1000, Abcam, 

ab31013), caspase 9 (1:1000, Cell Signaling Technology, 

9504P), cleaved caspase 9 (1:1000, Cell Signaling 

Technology, 9509P), TNF-α (1:1000, Abcam, ab1973), 

VCAM-1 (1:1000, HuaAn, HK0612), β-actin (1:2000, 

Affinity, T0022) and GAPDH (1:2000, Cell Signaling 

Technology, 2118S) were applied in the study. 

 

Statistical analysis 

 

The numerical results are shown as the mean ± standard 

deviation (SD). All statistical analyses were carried out 

with GraphPad Prism version 5.01 software and SPSS 

20.0. One-way ANOVA or an unpaired t-test was used 

for statistical analysis, and Tukey’s multiple 
comparison test was used for the appropriate 

experiments. P-values less than 0.05 were considered 

statistically significant. 
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Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Quantification of yolk sac, TUNEL staining, and detection GSH and MDA Level. (A)Quantitative analysis 

of yolk sac, n=10, data are represented as mean ± SEM. (B)Quantitative analysis of TUNEL staining of the control, LPS+D-GalN and Lupeol 
treatment group. (C and D) Changes in serum GSH and MDA. Data are shown as the mean ± SEM, n=3-4 group, *P<0.05, **P<0.01, 
***P<0.001, control group vs other groups. #P<0.05, ##P<0.01, ### P<0.001. 


