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Tracking the origin of two genetic components
associated with transposable element bursts
in domesticated rice
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Jason E. Stajich 1,3 & Susan R. Wessler 2,3

Transposable elements (TEs) shape genome evolution through periodic bursts of amplifi-

cation. In this study prior knowledge of the mPing/Ping/Pong TE family is exploited to

track their copy numbers and distribution in genome sequences from 3,000 accessions of

domesticated Oryza sativa (rice) and the wild progenitor Oryza rufipogon. We find that mPing

bursts are restricted to recent domestication and is likely due to the accumulation of two

TE components, Ping16A and Ping16A_Stow, that appear to be critical for mPing hyperactivity.

Ping16A is a variant of the autonomous element with reduced activity as shown in a

yeast transposition assay. Transposition of Ping16A into a Stowaway element generated

Ping16A_Stow, the only Ping locus shared by all bursting accessions, and shown here to

correlate with high mPing copies. Finally, we show that sustained activity of the mPing/Ping

family in domesticated rice produced the components necessary for mPing bursts, not the

loss of epigenetic regulation.
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Eukaryotic genomes are populated with transposable elements
(TEs), many attaining copy numbers of hundreds to thou-
sands of elements by rapid amplification, called a TE burst1.

For a TE to successfully burst, it must be able to increase its copy
number without killing its host or being silenced by host
surveillance2,3. However, because the vast majority of TE bursts
have been inferred after the fact—via computational analysis of
whole-genome sequence—the stealth features they require for
success have remained largely undiscovered2,4.

Revealing these features requires the identification of a TE in
the midst of a burst. This was accomplished for the miniature
inverted-repeat TE (MITE) mPing from rice5,6. MITEs are non-
autonomous DNA transposons that are the most common
TE associated with the noncoding regions of plant genes1. To
understand how MITEs attain high copy numbers, a computa-
tional approach was used to identify mPing, and its source of
transposase, encoded by the related autonomous Ping element
(Fig. 1a)5.

Ongoing bursts of mPing were discovered in four temperate
japonica accessions: EG4, HEG4, A119, and A123, whose gen-
omes were sequenced, and insertion sites and epigenetic land-
scape determined6–8. These analyses uncovered two features of
successful mPing bursts. First, although mPing, like other DNA
TEs, prefers genic insertions, de novo insertions in exons were
only 14% of expected for random insertions, thus minimizing
harm to the host6,8. Exon avoidance arises from mPing’s extended
9-bp adenine-thymine (AT)-rich insertion preference6,8 coupled
with rice exon sequences that are significantly more guanine-
cytosine (GC) rich than rice introns (51% vs. 37%)9. Second,
because mPing does not share coding sequences with Ping
(Fig. 1a), increases in its copy number and host recognition of its
sequences does not silence Ping genes, thus allowing the con-
tinuous production of the proteins necessary to sustain the burst
for decades7.

The contributions of two other genetic components to the
success of the bursts could not be assessed previously and are a
focus of this study. First, all Ping elements in the four bursting
accessions contain a single nucleotide polymorphism (SNP) at
position 16 (+ 16 G/A) that distinguishes mPing and Ping
sequences (Fig. 1a). The second genetic component is a single
Ping locus (called Ping16A_Stow) that is the only Ping locus
shared by all bursting accessions7. Comparative sequence analysis
of two of the four bursting accessions (A123 and A119) revealed
that they were derived by self or sibling pollination about a
century ago from a common ancestor that had not yet undergone
Ping or mPing amplification7. Significantly, this common ances-
tor had only a single Ping locus, which was Ping16A_Stow7.

To understand the origin of these genetic components and
their possible role in the burst, we analyzed the presence,
sequence, and copy numbers of Ping and mPing elements in the
genomes of 3000 domesticated rice accessions and 48 genomes of
their wild progenitor, Oryza rufipogon. Rice has been divided into
five major subgroups (indica, aus/boro, aromatic, temperate
japonica, and tropical japonica) that are thought to have origi-
nated from distinct populations of the wild progenitor O. rufi-
pogon that arose prior to domestication10,11. Rice genomes are
very stable: all analyzed genomes are composed of 12
chromosomes12,13, and rice subgroups share high sequence
identity ( > 98.9%)13. However, the genomes also exhibit exten-
sive presence–absence variation both within (5%) and between
(10%–19%) subgroups13,14, with TEs representing more than half
of this variation. In addition, significant gene flow from japonica
to indica and aus has been noted previously, reflecting the more
ancient origin of japonica10,15.

Knowledge of the relationships between the major subgroups
of rice and the populations of O. rufipogon have been utilized in

this study to better understand the identity and origin of the
components necessary for mPing bursts. Of particular interest
was whether (i) mPing bursts could be detected in other acces-
sions of wild and/or domesticated rice, (ii) the+ 16 G/A Ping
SNP and Ping16A_Stow could be detected in wild rice or first
appeared in domesticated rice, and (iii) the presence of+ 16 G/A
Ping SNP and Ping16A_Stow correlated with higher mPing copy
numbers.

Finally, another potential player that may be implicated in
mPing bursts, Pong, a related transposase-encoding element, is a
focus of this study (Fig. 1a). The Pong element is the closest
relative of Ping and there are at least five identical copies found in
the genome of all rice accessions analyzed to date7,16. Pong
encoded proteins catalyzed the transposition of mPing in rice cell
culture5 and in transposition assays in Arabidopsis thaliana and
yeast17,18. However, Pong elements do not catalyze mPing
transposition in planta because all Pong copies are effectively
silenced and its sequences are associated with heterochromatin7.
Here we are able to address questions regarding the origin and
stability of Pong silencing before and after domestication.

Our analysis show that mPing copy number has burst only in a
few domesticated accessions and is associated with the acquisition
of two variants of the transposase loci, Ping16A and Pin-
g16A_Stow. The proportion of accessions with Ping16A has
increased in domesticated rice while the original Ping (Ping16G)
has been dramatically reduced. A transposition event of Ping16A
into a Stowaway element created Ping16A_Stow whose presence
correlates with accessions that have high mPing copies. We reject
the hypothesis that a loss of global epigenetic regulation has
occurred as no other TEs have amplified, indicating that these
new Ping loci are the primary driver of the observed mPing burst
in domesticated rice.

Results
Detection of mPing, Ping, and Pong element. Insertion sites and
copy numbers for mPing, Ping, and Pong were identified from
genome sequences of 3000 rice accessions using RelocaTE219 (see
Methods). The paired-end DNA libraries had an average insert
size of ~ 500 bp and were sequenced to a depth of 14-fold genome
coverage20, which allowed clear distinction between mPing, Ping,
and Pong elements (Fig. 1a). Sequence analyses identified a total
of 27,535 mPings, 262 Pings, and 12,748 Pongs (Figs. 1b–d and
Supplementary Data 1). Copy numbers of mPing, Ping, and Pong
elements in each genome were also estimated using a read depth
method (see Methods). Outputs from the RelocaTE2 and read
depth methods were well correlated (Pearson’s correlation, R=
0.97, P < 2.2e–16 for mPing; R= 0.82, P < 2.2e–16 for Ping; R=
0.66, P < 2.2e–16 for Pong; Supplementary Figure 1) indicating
that both methods to estimate approximate mPing, Ping, and
Pong copy numbers in the 3000 rice accessions were robust.
Insertion sites and copy numbers for mPing, Ping, and Pong were
also identified for 48 O. rufipogon accessions, but only the read
depth method was used because of the limited insert size of the
libraries (Supplementary Data 2). In total, 195 mPings, 25 Pings,
and 125 Pongs were estimated to be present in the 48 O. rufipogon
accessions (Supplementary Data 2, Figs. 1e–g, and Supplementary
Figure 2).

Copy number variation of mPing and Ping elements. None of
the 3000 rice accessions analyzed in this study have more mPing
elements than the 231–503 copies found in the four temperate
japonica accessions (HEG4, EG4, A119, A123) in the midst of
mPing bursts7. Of the 3000 rice accessions, 2780 (92.7%) contain
mPing, with an average of about 9 elements per accession
(Fig. 1b). Temperate japonica accessions do, however, have
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significantly moremPing elements (~30.5/accession) than tropical
japonica (~2.6/accession), indica (~8.2/accession), or aus/boro
(~3.8/accession) (one-way analysis of variance (ANOVA) with
Tukey’s honest significant difference (HSD) test, adjusted P-value
< 2e–16; Supplementary Table 1 and Supplementary Figure 3). All

O. rufipogon accessions have mPing elements with copy numbers
ranging from 1 to 11 (mean= 4.06, standard deviation= 2.39;
Fig. 1e and Supplementary Figure 2).

Prior studies identified four subtypes of mPing elements (mPingA-
D) in domesticated rice (Supplementary Figure 4)5, representing four
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Fig. 1 Abundance of mPing, Ping, and Pong elements in rice and O. rufipogon. a Comparison of structures of mPing, Ping, and Pong. TIRs are indicated by black
triangles. Two protein-coding genes ORF1 and ORF2 (TPase) encoded by Ping or Pong are indicated by dark gray boxes. Homologous regions between
elements are connected by lines and percent identities are shown. The black star on Ping indicates the+ 16 G/A SNP that differs between mPing and
Ping16A. Copy numbers across the 3000 rice accessions of mPing (b), Ping (c), and Pong (d). The bar plot in the dashed box in b shows accessions
with >50 mPing elements. e, mPing copy number of 48 O. rufipogon accessions. f Ping copy number of 48 O. rufipogon accessions. g Pong copy number of
48 O. rufipogon accessions. Source data for Fig. 1b–g are provided in Supplementary Data 1-2
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distinct deletion derivatives of Ping. Two of the four subtypes
(mPingA,B) were previously detected in O. rufipogon accessions21,22.
Here we detected all four subtypes ofmPing elements in O. rufipogon
accessions (Supplementary Table 2) indicating that mPingA-D arose
in O. rufipogon prior to domestication.

Like mPing, none of the 3000 genomes analyzed in this study
have more Ping elements (7–10) than the four accessions
undergoing mPing bursts7. Ping elements were detected in only
199 of 3000 accessions (6.6%) (Fig. 2 and Table 1) with most of
the 199 (74.8%) having only a single copy and two accessions
having 4 Pings (Fig. 2b). In contrast, Ping elements were detected
in 21 of 48 (43.7%) of the O. rufipogon accessions analyzed
(Table 1 and Supplementary Figure 2). These data suggest that it
is likely that Ping was selected against or lost from most

accessions during the hypothesized two or more domestication
events from O. rufipogon populations10,14.

Origin of a Ping variant and its possible significance. Analysis
of the extensive collection of rice genomes revealed that a SNP
distinguishing Ping and mPing (+ 16 G/A), located adjacent to
the 15-bp terminal inverted repeat (TIR) (Fig. 3a), may be
implicated in mPing bursts. Pings having these SNPs are dis-
tinguished herein as Ping16G (identical shared sequences with
mPing) and Ping16A. First, all 21 O. rufipogon accessions with
Ping have only Ping16G, which has the same sequence at+ 16G/
A as mPing (Table 1). Thus, Ping16G is the original Ping and all
four mPing subtypes (mPingA-D, Supplementary Table 2) arose
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Fig. 2 Copy numbers of mPing, Ping, and Pong elements in rice subgroups. a mPing copy numbers in 3000 genomes and the four accessions undergoing
mPing bursts (HEG4, EG4, A119, and A123). Colors represent the five major rice subgroups: indica (IND), aus/boro (AUS), aromatic (ARO), temperate
japonica (TEJ), tropical japonica (TRJ), and admixed (ADM). b Ping copy numbers in 3000 genomes and the four accessions undergoing mPing bursts.
c Neighbor-joining tree of temperate japonica accessions using genome-wide SNPs. d mPing copy number of temperate japonica accessions. e Ping copy
number of temperate japonica accessions. Accessions that have the Ping16A_Stow locus are noted with open circles. Source data for Fig. 2a, b, d, e are
provided in Supplementary Data 1
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prior to domestication by internal deletion. Second, of the 199
domesticated rice accessions with Ping, 31 have Ping16G, whereas
154 have Ping16A (Table 1). The presence of the derived Ping16A
in both indica and japonica accessions was initially confusing as it

suggested the unlikely scenario that this variant arose indepen-
dently during or after the hypothesized two domestication events
that led to these subspecies10,14. However, closer examination
of local sequence ancestry revealed that, where a determination

Table 1 Distribution of Ping variants and Ping16A_Stow genotypes in domesticated rice and O. rufipogon

Subgroups Number of
accessions

Number of accessions
with Pinga

Ping variants:
Ping16G

Ping variants:
Ping16A

Ping16A_Stow:
Stowaway only

Ping16A_Stow:
Stowaway with Ping

O. sativa 3000 199 (6.6%) 31 154 188 11
-indica 1651 20 (1.2%) 8 9b 10 0
-aus/boro 189 28 (14.8%) 19 0 0 0
-temperate japonica 250 61 (24.4%) 1 61 121 8
-tropical japonica 335 51 (15.2%) 0 51 2 0
-aromatic 65 0 (0%) 0 0 0 0
-admixed 510 39 (7.6%) 3 33c 55 3
O. rufipogon 48 21 (43.7%) 21 0 4 0
-Or-I 13 7 (53.8%) 7 0 0 0
-Or-II 23 10 (43.4%) 10 0 1 0
-Or-IIIa 6 2 (33.3%) 2 0 3 0
-Or-IIIb 6 2 (33.3%) 2 0 0 0

Ping16A_Stow is defined as a locus where Ping has inserted into the Stowaway element on chromosome 1 (2640500–2640502)
a“Number of accessions with Ping16G” plus “Number of accessions with Ping16A” is less than or equal to “Number of accessions with Ping” because Ping genotypes in some accessions cannot be
determined from available sequences. An exception is “temperate japonica”, where one accession (IRIS_313-10564) has both Ping16G (Chr8: 2964281–2964283) and Ping16A (Chr6:
23521641–23526981)
bEight indica accessions have Ping16A that are located in regions showing evidence of introgression from japonica (seven accessions share the locus Chr3: 21965880–21965882 and one accession has the
Nipponbare Ping locus Chr6: 23521641–23526981). One indica accession has Ping16A in a region with indica background. Analyses were performed with RFMix v2.03
cThirty-one admixed accessions have Ping16A from japonica. Two admixed accessions have Ping16A that are located in regions with ambiguous origin. Analyses were performed with RFMix v2.03
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could be made, all of the Ping16A loci in indica and admixed
accessions originated by introgression from japonica (Table 1).
Thus, Ping16A has experienced limited but significant prolifera-
tion during or after japonica domestication such that it now
accounts for the majority of Ping elements present in domes-
ticated rice accessions (Table 1).

Reduced mobility of Ping16A in yeast assays. The TIRs and
adjacent sequences of several DNA transposons have been shown
to be functionally significant with mutations of these sequences
reducing transposition frequency by decreasing the binding of
transposase23,24. Because the SNP distinguishing Ping16A from
Ping16G is adjacent to the 15-bp 5ʹ TIR (Fig. 3a), we employed a
yeast assay to assess transposition rates of 14 mutations within
and 2 mutations adjacent to the 5ʹ TIR (Fig. 3b). In this assay,
Pong transposase and an enhanced Ping ORF1 (the putative
binding domain) catalyzes transposition of mPing inserted in an
ADE2 reporter gene, thereby allowing growth of yeast cells18,25.
The results indicate that both the mutations adjacent to the TIRs
(G16A and G17T) and 12 of 14 mutations in the TIR significantly
reduced mPing transposition (one-way ANOVA with Tukey’s
HSD test, adjusted P-value ≤ 0.05; Fig. 3b), supporting the
hypothesis that this SNP (+ 16 G/A) may have functional sig-
nificance by reducing Ping16A’s mobility. Although Pong trans-
posase, which was shown previously to catalyze higher
transposition frequency than Ping, was used in this experiment to
facilitate the yeast transposition assays, its catalytic mechanism is
likely indistinguishable from Ping transposase25. Furthermore,
the reduced transposition of the G16A mutant (mPingG16A) was
independently confirmed using Ping transposase (Supplementary
Figure 5).

A Ping locus correlates with higher mPing copy number. The
four accessions previously shown to be undergoing mPing bursts

(HEG4, EG4, A119, A123) have many (7–10) Pings, and all share
only a single Ping, Ping16A_Stow7. This correlation suggests that
acquisition of Ping16A_Stow may have initiated the burst. Pin-
g16A_Stow, located on chromosome 1 (2640500–2640502), is
comprised of the Ping16A variant inserted in a 769-bp Stowaway
element (Fig. 4a). Of interest was whether any of the 3000
accessions had Ping16A_Stow and, if so, did they also have more
mPings.

Among the 3000 accessions, 11 have Ping16A_Stow (188 have
only the Stowaway insertion at this locus) (Table 1) and these
accessions have significantly more mPings (two-tailed
Wilcoxon–Mann–Whitney test, P= 2.5e–08; Fig. 4b, Table 2,
and Supplementary Table 3), providing additional correlative
evidence for the involvement of Ping16A_Stow in mPing bursts.

Pong has been stably silenced since domestication. Pong enco-
ded proteins catalyze transposition of mPing in yeast and A.
thaliana assays17,18 and in rice cell culture5. However, because
Pong elements are epigenetically silenced in Nipponbare and in
accessions undergoing mPing bursts (HEG4, EG4, A119, A123)7,
there is no evidence to date that Pong has an impact on Ping or
mPing copy number or distribution.

Data from this study extend previous findings7 and suggest
that Pong was silenced in O. rufipogon and has been stably
silenced in domesticated rice. Pong elements are present in the
genomes of almost all of the analyzed rice accessions (99.1%,
2972/3000), and Pong copy numbers vary little within or between
subgroups (Supplementary Figure 6). On average, rice accessions
have four Pong elements (Fig. 1d). All O. rufipogon accessions
have Pong elements (Supplementary Figure 2), except four
(W1849, W1850, W2022, W2024), which appear to contain only
Pong deletion derivatives (see Methods). As in domesticated rice,
there is minimal Pong copy number variation among the O.
rufipogon accessions examined (Supplementary Figure 2).
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Nucleotides shown within the blue dotted lines are the sequences of the nonautonomous Stowaway element. Target site duplications (TSDs) are indicated
by nucleotides underscored. b Comparisons of mPing copy number in 3000 rice accessions with or without Ping16A_Stow in the genome. Gray dots indicate
mPing copy number of rice accessions in each category. The error bars show standard deviation (s.d.) of each category. Differences in mPing copy numbers
between two categories were tested by a two-tailed Wilcoxon–Mann–Whitney test. Source data for Fig. 4b are provided in Supplementary Data 1
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Six rice accessions with higher Pong copy numbers (14–25)
were analyzed to determine if this resulted from Pong activation.
First, because active Pong elements produce proteins that catalyze
mPing transposition, we tested if the genomes of these lines
contained more mPings. However, all six accessions had the same
range of mPing copies as accessions with few Pongs (Supplemen-
tary Table 4). Second, because host regulatory mechanisms
suppress transposition, other potentially active TEs (elements
shown previously to transpose when epigenetic regulation is
impaired) may have been activated in these accessions along with
Pong. However, the six accessions harbored average copy
numbers of nine potentially active TEs (Supplementary Table 4).
Taken together these data suggest that these six accessions have
accumulated silenced Pong elements since domestication. Finally,
additional evidence for the stability of Pong silencing can be
inferred from the observation that none of the 2801 accessions
lacking Ping have a higher mPing copy number than accessions
with Ping.

Discussion
Results of the evolutionary inventory of the members of the
mPing/Ping/Pong TE family in wild and domesticated rice gen-
omes suggest the following scenario for the origin of the mPing
burst. All mPing subtypes in domesticated accessions (mPingA-D)
were generated prior to domestication, probably in O. rufipogon,
by internal deletion from Ping16G. Furthermore, Ping16G, but
not Ping16A, was detected in 21 of 48 O. rufipogon accessions.
The fact that only 31 of the 3000 extant domesticated accessions
examined have Ping16G suggests that there has been a massive
loss of this element in domesticated rice. In contrast, the Ping16A
variant was identified in the majority of the domesticated acces-
sions with Ping (154/199). Its absence in O. rufipogon genomes
indicate that it was either very rare in wild populations or that it
arose in japonica after domestication. Ping16A has experienced
limited but significant proliferation in japonica and has even been
introgressed into a small number of indica accessions (Table 1).
Taken together, these data indicate that Ping16A has become
more widely distributed in domesticated accessions, whereas
Ping16G is disappearing.

Yeast assays testing the functional impact of several mutations
in and adjacent to the Ping TIR demonstrate that the+ 16G
(Ping16G) to+ 16A (Ping16A) polymorphism significantly
reduces transposition frequency. Thus, Ping16A encoded proteins
(which are identical to Ping16G encoded proteins) are more
likely to catalyze the transposition of mPing (with its+ 16G)
than Ping16A. This situation is reminiscent of other autonomous
elements that harbor sequences that reduce transposition
frequency26,27. It has been hypothesized that autonomous TEs
enhance their survival by evolving self-regulating mutations

that reduce both host impact and epigenetic detection and
silencing27.

The vast majority of accessions with Ping16A have only one
Ping (105/154 accessions) and a moderate number of mPing
elements (mean= 28). One of these accessions is the reference
accession Nipponbare where the inability to detect transposition
of Ping or mPing was initially attributed to Ping silencing28. In
fact, Ping is not silenced in Nipponbare nor in any other acces-
sion analyzed to date7. Rather it is transcribed and catalyzes
(infrequent) transposition of mPing6,7. We speculate that acces-
sions with a single copy of Ping16A may be experiencing a bal-
ance, perhaps under stabilizing selection, between host survival
and the maintenance of an active TE family in the genome.

The hypothesized balance between Ping16A and mPing ele-
ments and the host was perturbed in the subset of temperate
japonica accessions experiencing mPing bursts7 and it was sug-
gested that the shared Ping16A_Stow locus may have been
responsible7. Based on the evolutionary inventory presented in
this study, it follows that Ping16A_Stow was generated in a
temperate japonica accession when Ping16A transposed into a
Stowaway element on chromosome 1. The Stowaway element
(without the Ping insertion) was also present at this locus in O.
rufipogon (Table 1). It is unlikely that this Stowaway is active as
there are only four family members, each with < 96% sequence
identity, in the Nipponbare genome. Here we find that Pin-
g16A_Stow is also shared by five of the six accessions with the
highest mPing copy numbers among the 3000 accessions analyzed
(Table 2). The sixth accession, IRIS_313_15904, has a region of
introgressed indica or aromatic alleles at this location, which may
have replaced the Ping16A_Stow locus in prior generations. The
association of Ping16A_Stow with higher mPing copy numbers is
consistent with its suggested role in triggering mPing bursts.
However, the mechanism by which Ping16A_Stow may initiate
the burst is unknown and warrants further investigation. Prior
studies indicated that increased Ping transcripts were correlated
with more mPing transpositions in accessions undergoing mPing
bursts7,28. Our unpublished data suggest that Ping16A_Stow does
not produce more transcripts compared with other Ping elements,
suggesting that mechanisms other than an increased transcript
level from this locus may be responsible.

In conclusion, the results of this study demonstrate that mPing
bursts are likely restricted to the past century as none of the
thousands of genomes analyzed have as many mPing (hundreds)
and Ping (7–10) elements as the four previously characterized
accessions. Further, analysis of the 3000 rice genomes and wild
progenitors indicates that two variants of the autonomous Ping
element, Ping16A and the subsequently evolved Ping16A_Stow
locus appear to be critical for mPing hyperactivity. Other studies
have shown that domestication can be associated with the loss of
epigenetic regulation29, which may lead to the activation of TEs.

Table 2 Ping copy numbers and genotypes in rice accessions with high copy numbers of mPing

Accessiona Origin Subgroups mPing copy number Ping copy number Ping+ 16G/A SNP genotypes Ping16A_Stow

HEG4a Japan Temperate japonica 503 7 Ping16A Yes
EG4a Japan Temperate japonica 437 7 Ping16A Yes
A123a Japan Temperate japonica 231 10 Ping16A Yes
A119a Japan Temperate japonica 333 7 Ping16A Yes
B160 China Temperate japonica 180 3 Ping16A Yes
IRIS_313-15904 South Korea Temperate japonica 178 3 Ping16A No
B235 China Temperate japonica 113 2 Ping16A Yes
B005 Japan Temperate japonica 86 1 Ping16A Yes
B003 China Admixed 72 2 Ping16A Yes
B001 China Temperate japonica 71 2 Ping16A Yes

aFrom Lu et al.7
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However, our data indicate that Pong element copy number has
been stably maintained from the wild ancestor through the gen-
eration of the thousands of domesticated accessions, suggesting
that epigenetic regulation was unaffected. In contrast, Ping
activity has been sustained during domestication, resulting in the
spread and amplification of the Ping16A variant and the gen-
eration of the Ping16A_Stow locus in rice. Yet, the spread of Ping
activity associated with exceptional mPing activity has been very
limited in rice, likely due to its high level of self-fertilization.

Methods
Dataset. Illumina DNA sequencing reads of 3000 rice accessions were obtained
from NCBI SRA project PRJEB6180. The metadata incorporating name and origin
of the 3000 rice accessions was extracted from previously published Tables S1A and
S1B20. The raw reads of 48 O. rufipogon accessions were obtained from NCBI SRA
under project accession numbers listed in Supplementary Data 2. The metadata
associated with the subgroup classification of these 48 O. rufipogon accessions was
extracted from prior studies10,30. The raw reads of Oryza glaberrima, Oryza glu-
maepatula (also known as Oryza glumipatula), and Oryza meridionalis were
obtained from NCBI SRA projects accession numbers SRR1712585, SRR1712910,
and SRR1712972.

Population structure and ancestral component analysis. The genotyped SNP
dataset (release 1.0 3 K RG 4.8 million filtered SNP Dataset) of the 3000 rice
genomes was obtained from SNP-Seek Database31 (http://snp-seek.irri.org). A
subset of 270,329 SNPs was selected by removing SNPs in approximate linkage
equilibrium using plink v1.09 (--indep-pairwise 1000 kb 20 kb 0.8)32. Population
clustering analysis was performed by ADMIXTURE v1.3.033 (-s 2) with K from 2 to
10. Most rice accessions clustered into five subgroups (indica: IND, aus/boro: AUS,
aromatic (basmati/sadri): ARO, temperate japonica: TEJ, and tropical japonica:
TRJ) when K is 5. Using the ancestral analysis of ADMIXTURE under the K= 5
model, a rice accession was assigned to one of these five subgroups if it had ≥ 80%
of its ancestral component from a given subgroup. Any accessions that had no
major ancestral component ( < 80%) were categorized as admixed (ADM) acces-
sions. During the preparation of this study, Wang et al. published an analysis of the
same dataset14. The subgroup classifications were compared between the two
studies and the results are consistent except that Wang et al. identified additional
subgroups in indica and japonica.

The 4.8 million filtered SNPs were imputed and phased with BEAGLE v5.034

using default parameters (impute= true imp-states= 1600 imp-segment= 6.0
cluster= 0.005). A total of 768 accessions with major ancestral component over
99.99% were used as reference panels for five rice subgroups (344 indica accessions,
111 aus/boro accessions, 31 aromatic accessions, 124 temperate japonica
accessions, and 158 tropical japonica accessions). Local ancestry assignment was
performed on accessions of interest with RFMix v2.0335 using default parameters.
Regions of interest were manually inspected in the results of RFMix. Introgression
was defined as an allele that is present in one subgroup but has originated from
another subgroup.

Copy numbers characterization. The mPing, Ping, and Pong insertion sites across
the 3000 rice genomes were characterized with RelocaTE2 (aligner= BLAT mis-
match= 1 len_cut_trim= 10)19 using raw reads obtained from NCBI SRA.
Element-specific sequence differences were identified and used to distinguish Ping
and Pong from mPing insertions (Fig. 1a). Three separate runs of RelocaTE2 were
performed using mPing, Ping, and Pong as queries. Paired-end reads where one
read of a pair matched the internal sequence of a Ping element (253–5164 bp) and
the mate matched to a unique genomic region of the Nipponbare reference genome
(MSU7) were used to differentiate Ping insertions. Similarly, paired-end reads
where one read matched the internal Pong element sequence (23–5320 bp) and the
mate matched to a unique genomic region of MSU7 were used to identify Pong
insertions. An equivalent approach was undertaken with mPing sequences but the
prior identified Ping and Pong insertion sites were removed from the mPing
RelocaTE2 results to generate final mPing insertions. RelocaTE2 analysis was
performed in 48 O. rufipogon genomes to identify mPing, Ping, and Pong inser-
tions. However, the short insert size and insufficient read depth of O. rufipogon
sequencing libraries prevented distinguishing Ping and Pong insertions from
mPing.

Copy numbers of mPing, Ping, and Pong elements were estimated from the ratio
of the element read depth to the genome-wide average read depth using the script
“Rice3k_copy_number_depth_window_mPing/Ping.py”. The genome average
sequence coverage for each genome was calculated using qualimap v2.1.236. The
element read depth was calculated using a window-based approach to capture read
depth variation across the element. All sequencing reads associated with a given
repeat element were extracted from the RelocaTE2 results. The reads were aligned
to the element using BWA v0.7.1237 with default parameters (mem -k 19 -w 100 -T
30). Alignments with ≤ 2 mismatches were retained for further analysis. The
sequence coverage of each position in the element was calculated using mpileup

command in SAMtools v0.1.1938 (mpileup -d 8000). Positions 1–430 bp of mPing
element was divided into 50-bp windows with 40-bp of overlapping sequence
between adjacent windows. The read depth of each 50-bp window of mPing was
extracted from mpileup results. The copy number of each 50-bp window was
defined as the ratio of the depth of each 50-bp window to the genome-wide average
read depth. Approximate estimation of mPing copy numbers was from an average
copy number of all 50-bp windows. Ping and Pong copy numbers were calculated
using positions 260–3260 bp so that unique regions in the targeted element were
considered for the assessment. To confirm the statistical differences a one-sample t-
test was performed to determine whether the average read depth of 50-bp windows
of a given element was equal to genome-wide average read depth.

The read depth method was evaluated using simulated datasets. Simulated TE
insertions were generated by randomly inserting mPing elements into rice
chromosome 3 (OsChr3) and chromosome 4 (OsChr4) using custom scripts. Copy
numbers of 1, 10, 100, and 1000 mPings were simulated to evaluate the performance
of the read depth on TE copy numbers. Three replicates were generated for each
dataset. Sequencing datasets were simulated with pIRS39 at varying depths of 1, 2, 3,
4, 5, 10, 20, and 40 to evaluate the performance of the read depth method on
sequencing depths. Sequencing reads were aligned to OsChr3 and OsChr4 with
SpeedSeq40 (align -t 24 -R “@RG/tID:id/tSM:sample/tLB:library”), which uses BWA
(mem -k 19 -w 100 -T 30) to align reads, Sambamba41 (-M 20) to sort alignments,
and SAMBLASTER42 (-c 2 -m 20) to mark PCR duplicates. Genome-wide
sequencing depths were obtained with qualimap using BAM files generated by
SpeedSeq.mPing-related reads were obtained with RelocaTE2 (--size 500 --mismatch
2 --aligner blat) and were aligned to mPing sequence with BWA (mem -k 19 -w 100
-T 30). Alignments with ≤ 2 mismatches were retained for further analysis. The
sequence coverage of each position in the element was calculated using mpileup
command in SAMtools (mpileup -d 100000). mPing copy numbers were
characterized with the script “Rice3k_copy_number_depth_window_mPing.py”.
The results indicate that the read depth method can estimate approximate mPing
copy numbers with a wide range of sequencing depth (Supplementary Figure 7).
Even at a low coverage of 2 where RelocaTE2 shows low efficiency to identify TE
insertions, the read depth method can accurately estimate mPing copy number when
there is only a single element in the genome (Supplementary Figure 7a).

The presence and absence of mPing, Ping, and Pong were also confirmed with
manual inspection. Briefly, mPing, Ping, and Pong-associated reads were extracted
and aligned to the elements as described above. The sequence coverage of mPing,
Ping, and Pong were inspected using heatmap and Integrative Genomics Viewer
(IGV) v2.3.043. Only accessions showing sequence coverage across a given element
(generally needs ≥ 70% of elements covered) were defined as accessions having this
element. This approach was also used to identify four Aus/boro accessions that
have a Ping locus (Chr11: 25822230–25802232) that was not identified with
RelocaTE2.

Analysis of Ping16A_Stow. The pre-aligned BAM files of 3000 rice genomes
(http://s3.amazonaws.com/3kricegenome/Nipponbare/”Accession_Name”.rea-
ligned.bam) were analyzed to determine if a Stowaway element was present at the
Ping16A_Stow locus Chr1: 2640500–2640502. A total of 199 rice genomes with
signatures of TE insertions at the Ping16A_Stow locus (reads with only partial “soft
clipped” alignments) were analyzed to confirm the Stowaway insertion. A pseu-
dogenome was built of a single Stowaway element and its 2-kb flanking sequences
at position Chr1: 2640500–2640502. The sequencing reads from each of the 199
rice genomes were aligned to the pseudogenome using BWA with default para-
meters (mem -k 19 -w 100 -T 30) followed by analysis of the BAM files to identify
junction reads covering both the Stowaway and its flanking sequence. All of these
199 accessions were confirmed to have the Stowaway element at position Chr1:
2640500–2640502.

A similar approach that identified the Stowaway insertion was used to identify
Ping insertions in the Stowaway element at the Ping16A_Stow locus. A
pseudogenome was built using a Ping element and its flanking sequences, which are
1–305 bp of the Stowaway element upstream of Ping and 306–770 bp of the
Stowaway element downstream of Ping. The sequencing reads of these 199 rice
genomes were aligned to the pseudogenome using BWA with default parameters
(mem -k 19 -w 100 -T 30). Analysis of junction reads covering both Ping element
and its flanking Stowaway element identified eleven accessions having a Ping
insertion in the Stowaway element at the Ping16A_Stow locus (Supplementary
Table 3).

Analysis of+ 16 G/A SNP genotype. A locus-specific approach was used to
analyze the genotype of the+ 16 G/A SNP of the Ping element in rice. Ping-
containing reads of each locus were extracted from the RelocaTE2 results and the
reads were aligned to the Nipponbare Ping element using BWA with default
parameters (mem -k 19 -w 100 -T 30). Alignments with ≤ 2 mismatches were
analyzed using mpileup command in SAMtools (mpileup –d 8000) to generate a
read depth profile, which includes base composition information at each position.
The nucleotide counts at the+ 16 G/A SNP were obtained from the read depth
profile. A Ping with two or more reads supporting G was genotyped as Ping16G,
whereas a Ping locus with two or more reads supporting A was genotyped as
Ping16A. The genotypes of three Ping loci, including Chr6: 23521641–23526981
(Nipponbare Ping), Chr1: 264050–2640502 (Ping16A_Stow), and Chr11:
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25822230–25802232 (a Ping locus in Aus/boro), were assigned through manual
inspection because these loci were either reference Ping (53 accessions with Nip-
ponbare Ping) or nonreference Ping but have not been identified with RelocaTE2
(11 accessions with Ping16A_Stow and 4 accessions with the Aus/boro Ping locus).

For O. rufipogon, all reads aligning to mPing, Ping, and Pong were pooled to
analyze the base composition at the+ 16 G/A SNP because mPing, Ping, and Pong
insertions could not be efficiently sorted. An O. rufipogon genome was categorized
as a genome having Ping16G or Ping16A based on whether they had two or more
reads supporting G or A. Accessions that have two or more reads supporting both
G and A were further analyzed to clarify whether the Ping16A is present in these
genomes. For example, accession W1230 had both G (288 reads) and A (23 reads)
at the+ 16G/A SNP. These A-supporting reads and their mates were extracted
from W1230 sequences and aligned to pseudogenomes that have W1230 mPing or
Ping inserted in MSU7. All of these A-supporting reads were uniquely aligned to
mPing locus Chr3: 25526483–25526485 that contains a 430-bp mPingC element
successfully assembled from locus-specific paired-end reads, suggesting these A-
supporting reads were from mPing not from Ping.

Assembly and classification of mPing sequences. A locus-specific assembly was
performed to recover full-length mPing sequences from rice sequences. The
sequencing reads matching mPing were obtained using RelocaTE2, assembled
using velvet v1.2.09 (MAXKMERLENGTH= 31 -ins_length 500 -exp_cov auto
-scaffolding yes)44. The flanking non-mPing sequences were removed from the
assembled sequences. Any mPing candidate loci containing sequence gaps were
removed from the analysis. The remaining full-length mPing sequences were
compared using BLAST v2.2.26 to build an undirected graph with python package
NetworkX (https://networkx.github.io). Each node in the graph is an mPing
sequence and each edge is a connection, which requires two mPing sequences are
properly aligned (number of gaps or mismatches ≤ 4). The mPing sequences in
each subgraph represent a subtype of mPing. Representative sequences were
extracted from each mPing subtype and aligned with four canonical defined mPing
subtypes (mPingA, mPingB, mPingC, and mPingD) from the prior study5 using
MUSCLE v3.8.42545 with default parameters (-maxiters 16). The multiple sequence
alignment in MSA format was converted into VCF format using msa2vcf.jar tool
(https://github.com/lindenb/jvarkit) to identify polymorphic sites. The assembled
mPing sequences were classified into subtypes based on their breakpoints and point
mutations compared with the four canonical mPing subtypes.

The reads of O. rufipogon accessions were aligned to four canonical defined
mPing subtypes (mPingA, mPingB, mPingC, and mPingD) using BWA with default
parameters (mem -k 19 -w 100 -T 30). Alignments with ≤ 2 mismatches were
manually inspected using IGV v2.3.0 to determine if the reads cover breakpoint of
each mPing subtype in each accession. An accession with two or more reads
covering the breakpoint of an mPing subtype was identified as an accession
containing this mPing subtype.

Phylogenetic analysis. The 270,329 SNPs used for ADMIXTURE analysis were
used to genotype HEG4, EG4, A119, and A123 using GATK UnifiedGenotyper
v3.4-4646. The phylogenetic tree of rice accessions was built using a neighbor-
Joining method implemented in FastTree v2.1.10 (-noml -nome)47. The sequencing
reads for the 48 O. rufipogon accessions were analyzed to obtain a SNP dataset.
Briefly, paired-end reads were aligned to MSU7 using SpeedSeq v 0.1.0 (align -t 24
-R “@RG/tID:id/tSM:sample/tLB:library”). The resulting BAM files were analyzed
with GATK UnifiedGenotyper to perform SNP calling. Filtering parameters (QD <
2.0, MQ < 40.0, FS > 60.0, AF < 0.05, HaplotypeScore > 13.0, MQRankSum < –12.5,
ReadPosRankSum < –8.0, MQ0 >= 4 && ((MQ0/(1.0×DP)) > 0.1), QUAL < 30.0,
DP < 6, DP > 5000, HRun > 5) were used to retain high-quality SNPs using GATK
VariantFiltration. Only homozygous SNPs that did not overlap the repetitive
sequences were used in the phylogenetic analysis. These high-quality SNPs were
extracted and converted into PHYLIP format multiple sequence alignment for
phylogenetic analysis with RAXML v8.2.848 under a GTRGAMMA model (-m
GTRGAMMA). Bootstrap was performed using 100 iterations (-f a -# 100). O.
glaberrima, Oryza glumaepatula, and O. meridionalis were treated as outgroups.
Graphical representations of the phylogenetic trees were generated in R using
“APE” libraries49.

Yeast transposition assay. mPing was amplified with Phusion High-Fidelity PCR
Master Mix (Thermo Fisher Scientific) using the control mPing primers (mPing F
and mPing R) or mutation containing primers (i.e., mPing F and mPing16A R;
Supplementary Table 5). The primary PCR products were then amplified with
ADE2 TSD F and ADE2 TSD R primers (Supplementary Table 5) to add ADE2
homologous sequences. Purified PCR products were co-transformed into
Saccharomyces cerevisiae strain JIM1750 with HpaI digested pWL89a plasmid using
the lithium acetate/polyethylene glycol method51. Plasmids were isolated from
individual yeast clones using the Zymo Yeast Plasmid Miniprep kit (Zymo
Research) and transformed into Escherichia coli for plasmid purification and
sequence validation.

Sequence verified plasmids were transformed into S. cerevisiae strain CB10150

containing previously described pAG413 GAL ORF1 Shuffle1 NLS and pAG415
GAL Pong TPase L384A, L386A plasmids25. The transposition rate was measured

as described in the prior study18. Briefly, 3 ml cultures were grown in CSM-His-
Leu-Ura (dextrose) for 24 h at 30 °C, and 100 µl was plated onto 100 mm CSM-
His-Leu-Ura-Ade (galactose) plates. The total number of yeast cells was calculated
by plating a 10-4 dilution of the cultures onto YPD plates. The numbers of colonies
on the galactose plates were determined after 10 days of incubation at 30 °C.
The transposition rate was determined by dividing the galactose colony count
by the total number of cells plated.

Statistical analysis. Sample sizes, statistical tests, and P-values are indicated in
figures or figure legends. Linear regression, two-tailed Pearson’s correlation, two-
tailed Wilcoxon–Mann–Whitney, one-way ANOVA and Tukey’s HSD test were
performed with “lm”, “cor.test”, “wilcox.test”, “aov”, and “TukeyHSD” functions
in R. One-sample t-test was performed with ‘ttest_1sample’ function in Python
module ‘sci.stats’.

Code availability. RelocaTE2 and other code used in this study are available at
https://github.com/stajichlab/Dynamic_rice_publications or https://doi.org/
10.5281/zenodo.1492794.

Data availability
A reporting summary for this article is available as a Supplementary Information
file. Illumina DNA sequencing reads have been obtained from NCBI SRA project
PRJEB6180, SRR1712585, SRR1712910, and SRR1712972. SNPs and BAM files
have been obtained from 3000 Rice Genomes Project On AWS [https://registry.
opendata.aws/3kricegenome/]. Source data for Figs. 1b–g, Figs. 2a, b, d, e, Fig. 4b,
Supplementary Figure 2-3, and Supplementary Figure 6 are provided in Supple-
mentary Data 1-2. Source data for Fig. 3b and Supplementary Figure 5 are provided
as a Source Data file. Yeast strains used in this study are readily available from C.
Nathan Hancock lab upon request (NathanH@usca.edu).
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