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Abstract

Background: Estimates of the sensitivity and specificity for new diagnostic tests based on evaluation against a
known gold standard are imprecise when the accuracy of the gold standard is imperfect. Bayesian latent class
models (LCMs) can be helpful under these circumstances, but the necessary analysis requires expertise in
computational programming. Here, we describe open-access web-based applications that allow non-experts to apply
Bayesian LCMs to their own data sets via a user-friendly interface.
Methods/Principal Findings: Applications for Bayesian LCMs were constructed on a web server using R and
WinBUGS programs. The models provided (http://mice.tropmedres.ac) include two Bayesian LCMs: the two-tests in
two-population model (Hui and Walter model) and the three-tests in one-population model (Walter and Irwig model).
Both models are available with simplified and advanced interfaces. In the former, all settings for Bayesian statistics
are fixed as defaults. Users input their data set into a table provided on the webpage. Disease prevalence and
accuracy of diagnostic tests are then estimated using the Bayesian LCM, and provided on the web page within a few
minutes. With the advanced interfaces, experienced researchers can modify all settings in the models as needed.
These settings include correlation among diagnostic test results and prior distributions for all unknown parameters.
The web pages provide worked examples with both models using the original data sets presented by Hui and Walter
in 1980, and by Walter and Irwig in 1988. We also illustrate the utility of the advanced interface using the Walter and
Irwig model on a data set from a recent melioidosis study. The results obtained from the web-based applications
were comparable to those published previously.
Conclusions: The newly developed web-based applications are open-access and provide an important new
resource for researchers worldwide to evaluate new diagnostic tests.
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Introduction

The accuracy (i.e. sensitivity and specificity) of new
diagnostic tests are usually defined against an established gold
standard. This assumes that the gold standard is perfect (100%
sensitive and specific), but this is not always the case. Gold
standard tests for many diseases are of unknown accuracy,
may be too invasive, or may not be available [1,2,3]. For
example, expert microscopy is used as the gold standard
during the evaluation of alternative tests for malaria, but the
accuracy of an individual microscopist is usually unknown and
could be imperfect [4,5]. A pathological diagnosis made from

tissue is a gold standard for cancer diagnosis, but access to
tissue is invasive and only obtained when the suspicion for
cancer is high, which is problematic for the evaluation of
alternative diagnostic tests [6,7]. There is no gold standard for
the diagnosis of latent tuberculosis infection (LTBI), and the
accuracy of available diagnostic tests for this remain uncertain
[8,9].

If the error rates of a gold standard are ignored during the
evaluation of new diagnostic tests, the accuracy of new tests
can be underestimated and disease prevalence either under-
or over- estimated [10,11]. The impact of an imperfect gold
standard can be demonstrated using a hypothetical example in
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which 200 subjects with a true disease prevalence of 50% (100
diseased subjects and 100 non-diseased subjects) are
evaluated. If the true sensitivity and specificity of the current
gold standard are 80% and 100%, respectively, the estimated
prevalence of the disease using the gold standard will be 40%
(80/200) rather than 50%. If the true sensitivity and specificity
of a newly developed diagnostic test are 95% and 100%,
respectively, these will be incorrectly estimated against this
imperfect gold standard as 95% (76/80) and 84% (101/120),
respectively, and the test may be erroneously discarded.

In 1980, Hui and Walter proposed the first statistical model to
estimate the accuracy of diagnostic tests when the accuracy of
the gold standard is unknown [12]. Their model does not
assume that the gold standard is perfect, but calculates the
accuracy of diagnostic tests based on the estimation of true
disease prevalence. Their approach requires that two
diagnostic tests are both applied to two populations with
differing disease prevalence. The result of one diagnostic test
is assumed to have no effect on that of the other, and the
accuracy of both diagnostic tests is assumed to be consistent
among two different populations [12]. Disease prevalence in
both populations and the accuracy of both diagnostic tests can
then be estimated using the formula provided [12]. Based on
the same principle, in 1988 Walter and Irwig expanded the
model for the application of three diagnostic tests in one
population [13].

In 1995, Joseph et al. proposed the use of Bayesian latent
class models (LCMs) as a method to estimate the accuracy of
diagnostic tests when the accuracy of the gold standard is
unknown [14]. Bayesian LCMs are applicable to both the Hui
and Walter model and the Walter and Irwig model [3,15].
Bayesian LCMs have been increasingly used to evaluate the
accuracy of diagnostic tests for both communicable diseases
(e.g. malaria [5,16,17], tuberculosis [18] and cholera [19]) and
non-communicable diseases (e.g. breast cancer [7], temporal
arteritis [20] and neurocognitive disorders [21]). We recently
showed that gold standard tests for melioidosis (culture) [22],
leptospirosis (a combination of culture and MAT) [23] and
dengue infection (paired ELISAs) [24] have low sensitivities,
and that Bayesian LCMs are useful for estimating the true
accuracy of alternative diagnostic tests when the accuracy of
the gold standard is unknown. An important drawback is that
computation of Bayesian LCM requires considerable expertise
and specific mathematical software such as R and WinBUGS
[25,26]. Commonly used statistical software such as SAS,
SPSS, EpiInfoTM and STATA do not contain the commands for
Bayesian LCMs. These requirements may deter researchers
from using Bayesian LCMs. At the present time, there is only
one application which allows users to apply Bayesian LCMs to
their own data sets without the need for specialist mathematical
software [27]. However, this application requires users to
download and install another three programs including
WinBUGS, Active Perl and Microsoft.Net Framework. In
addition, its interface can be difficult for first-time users with a
limited mathematical or statistical background [27].

Here, we describe the development of user-friendly, open-
access, web-based applications that can compute imperfect
gold standard models using Bayesian LCMs. We provide both

simplified and advanced interfaces so that the novice can use
these readily and advanced users can adjust settings as
required.

Results and Discussion

Web-based application
A schematic diagram of the web application and the

programs running on the central server is shown in Figure 1.
The web-based application consists of two major components.
The first is a webpage (http://mice.tropmedres.ac) that receives
data inputs in a simple tabular format for Bayesian LCMs (two-
tests in the two-population model (Hui and Walter model) [12],
and three-tests in the one-population model (Walter and Irwig
model) [13]). The second is an application on our central web
server that invisibly converts data inputs into text files that are
suitable for mathematical programs, and automatically
performs Bayesian LCMs using R and WinBUGS programmes.
The user receives their results on the webpage within a few
minutes. Our web-based applications do not require users to
download or install any software.

Bayesian Latent Class model (LCM)
Data sets are applicable to Bayesian LCMs if: (1) two

diagnostic tests are applied together to more than one
population; (2) more than two diagnostic tests are applied
together to one population; or (3) more than two diagnostic
tests are applied together to more than one population [14,28].
This is because Bayesian LCMs need to estimate true disease
prevalence, and a 2x2 summary table of two diagnostic tests
applied to one population does not provide enough data for this
calculation [14,28]. In the event that two diagnostic tests were
applied together to one population, it is possible to divide a
single population data set into multiple population data sets
based on specific variables [29]. For example, a data set of one
population may be divided into multiple populations based on
different geographical regions in the event that spatial data has
been collected [29]. Selecting diagnostic tests to include in the
Bayesian LCM model is very important, and the aim should be
to include tests that diagnose the same disease based on
different biological assays [28,29]. For example, antigen
detection, antibody detection and imaging of a disease could
be considered as different biological assays of a single
disease.

Figure S1 illustrates how the Bayesian LCM estimates actual
accuracies of diagnostic tests. In brief, these do not assume
that any test or a combination of any tests is perfect, but
considers that each test could be imperfect in diagnosing the
true disease status. The true disease status of the patient
population is then defined on the basis of overall prevalence.
The model estimates the prevalence and accuracy of each test
based on the observed frequency of the possible combinations
of test result [14,28,30]. The model is then iterated using the
Markov chain Monte Carlo (MCMC) method to estimate all
unknown parameters, including prevalence and accuracy of
each diagnostic test, and their 95% credible intervals [31].

Web-Based Application for Bayesian LCMs
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Simplified web-based interfaces including practice data
sets

Simplified interfaces have been created in which all settings
of the Bayesian LCMs are set in default mode and hidden from
view. Practice data sets are provided to allow the user to gain
experience in use of the website prior to analysing their own
data set. For the two-tests in the two-population model, the
practice data set is an application of the Mantoux (test A) and
Tine (test B) tests to diagnose tuberculosis in 555 participants
in a southern U.S. school district (population 1) and 1322
participants at the Missouri State Sanatorium (population 2)
[12]. The input data set consists of 8 numbers in a tabular
format describing the summary results (Figure 2A). The output
page (Figure 2B) shows that the prevalence of tuberculosis in
the two populations estimated by the Bayesian LCM (2.8% and
71.6%) were different from those based on test A alone (3.2%
and 69.4%, respectively). In addition, the Bayesian LCM
estimated that the true specificity of test B was 98.3%, which is
higher than 95.1% estimated for test A. The specificity of test B
was underestimated when compared with test A because the
true sensitivity of test A was less than perfect (96.6%). The
imperfect sensitivity of test A was validated using another data
set of patients with culture-positive pulmonary tuberculosis [12].
The results obtained by our web-based application using the

Bayesian LCM were very similar to those calculated by the
formulas described by Hui and Walter [12] (Table S1).

For the three-tests in one-population model, the practice data
set is an assessment of pleural thickening by three
independent radiologists (test A, B and C) for 1,692 male
employees in asbestos mines and mills (one population) [13].
The input data set consists of 8 numbers in a tabular format
describing the summary results (Figure 3A). The output page
(Figure 3B) shows that the true sensitivity of radiologist B
(63.1%) and radiologist C (73.5%) were much higher than
those estimated by considering radiologist A to be the gold
standard (52.3% and 60.2%, respectively). This is because the
true sensitivity of radiologist A was estimated to be only 75.1%.
The results obtained by our web-based application using
Bayesian LCM were very similar to those calculated by the
maximum likelihood estimation methods described by Walter
and Irwig [13] (Table S2).

Advanced web-based interfaces
Advanced interfaces for both models were designed for

those with experience in Bayesian statistics who wish to adjust
the default settings of the models. Adjustable settings of both
models include: (1) an additional assumption that there is a
correlation among the diagnostic tests being evaluated; (2)
adding a priori scientific knowledge about prevalence and

Figure 1.  Schematic diagram of the web-based application (http://mice.tropmedres.ac).  (A) Users input the data set and
settings into a table provided on the webpage, (B) The central web server invisibly transforms the data set and settings inputted into
multiple text files suitable for the statistical software, and automatically runs the Bayesian latent class models (LCM) using the R and
WinBUGS programs. (C) The results estimated by Bayesian LCM are provided on the webpage within few minutes.
doi: 10.1371/journal.pone.0079489.g001

Web-Based Application for Bayesian LCMs
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accuracy of diagnostic tests into the analysis (i.e., adjusting
prior distributions and probable ranges of all unknown
parameters); (3) defining starting values of prevalence and
accuracy of diagnostic tests for the first iteration of the MCMC
method (i.e., defining initial values of all unknown parameters);
(4) defining the total number of iterations at the beginning of an
MCMC run to be discarded (i.e., burn-in iterations) and the total
number of iterations to be used for estimating values of the
unknown parameters (Table S3 and S4).

The ability to define a correlation among diagnostic tests in
the model could be useful because ignoring this can lead to
inaccurate estimation of test accuracy [14,28]. This is of
particular concern when the diagnostic tests being evaluated
are based on a comparable biological assay. For example,
culture and PCR are based on organism detection despite
different methods. The correlation between culture and PCR (if
present) means that diseased patients who are positive for
culture are likely to be positive for PCR, an assumption with
biological plausibility. In addition, the ability to take account of
external information on beliefs about test accuracy before the
data set is analysed (specified in the prior distribution) is a key
part of Bayesian statistics [32]. Beliefs relating to parameters
are usually presented as probability distributions, and a beta
distribution is used here to represent the probability
distributions of prevalence, test sensitivity and test specificity
[32]. The beta distribution is characterized by two positive
numbers, such as beta distribution (1,1) or beta distribution
(90,10), to express the shape of its probability distribution

within a range between 0 and 1. The probability distribution can
also be truncated on the interval defined. The default setting for
the simplified interface assumes that we know nothing about
diagnostic tests before the data set is analysed; in other words,
non-informative prior distribution is used for all parameters
(beta distribution (0.5,0.5)), except a certainty that specificity is
above 0.4 (permitted ranges of specificities are between 0.4
and 1). Beta distribution (0.5, 0.5) implies that every value of
the unknown parameter is equally likely prior to the analysis.
Truncation of probable ranges of specificities prevents the
Bayesian LCM from estimating the test accuracy the other way
around (considering a test with true sensitivity of 95% and
specificity of 95% as a test with sensitivity of 5% and specificity
of 5%) [12], and relies on an assumption that users are not
using tests with very low specificities (tests with high false
positive rate in healthy individuals) in their studies. In the
advanced interface, the user can define the two positive
numbers for each beta distribution prior and a probable range
of each parameter estimated. This is recommended when
external information or beliefs about test accuracy are available
and reliable, because that information (informative priors) can
improve the accuracy and precision of all parameters estimated
in Bayesian LCMs [3,32,33]. For example, culture positivity for
pathogenic organisms from blood specimens that are rarely
isolated as contaminants could be considered highly specific
for many bacterial and fungal infections. Therefore, the
specificity of culture could be fixed at 100% in previous studies

Figure 2.  Input and output screen for the simplified interface of the two-tests in two-population model (Hui and Walter
model) provided on the website (http://mice.tropmedres.ac).  See text for details.
doi: 10.1371/journal.pone.0079489.g002
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[22,23], and this can be taken into account via prior
distributions as shown in the following example.

Examples of advanced interfaces
The utility of the advanced interfaces is illustrated here using

the data set from a recent melioidosis study performed by us
[22] (Figure S2). In brief, the study prospectively recruited
patients with suspected melioidosis presenting at the
Sappasithiprasong Hospital, Ubon Ratchathani, Northeast
Thailand between June and October 2004 [22]. A total of 320
patients were included in the study, and blood specimens were
collected on admission and evaluated for 5 diagnostic tests
(bacterial culture, indirect hemagglutination test (IHA), IgM
immunochromogenic cassette test (ICT), IgG ICT, and the
ELISA). Isolation of B. pseudomallei from any clinical specimen
(including blood, urine, sputum and pus) was defined as
bacterial culture positive [34]. IHA, IgM ICT, IgG ICT and
ELISA were serological tests [35,36].

The advanced interface was applied to multiple example
data sets generated from the complete data set of five
diagnostic tests [22]. As the three-tests in one-population
model was used, we initially created all possible permutations
of three-tests from the five-tests data set. In addition, as
diagnostic tests with different diagnostic biological phenomena
should be included in the model, combinations of culture and

two serological tests were selected. This made 6 example data
sets, including (1) Culture, IHA and IgM ICT (2), Culture, IHA
and IgG ICT (3), Culture, IHA and ELISA (4), Culture, IgM ICT
and IgG ICT (5), Culture, IgM ICT and ELISA, and (6) Culture,
IgG ICT and ELISA (Text S1). The setting of the model was
modified from the default as follows: the specificity of culture
was fixed at 100%, and there was a correlation between the
two serological tests in diseased patients (Figure S2). This
setting was based on biological plausibility and validated as
previously described [22].

Table 1 shows the prevalence and accuracy of each
diagnostic test estimated by the Bayesian LCM compared to
those based on gold standard (culture). Results from all 6
example data sets estimated by the Bayesian LCM differed
considerably from those based on the gold standard. The
prevalence of melioidosis was estimated to be about 59.9%
(ranging from 52.6% to 63.8%, estimated by the example data
set 5 and 4, respectively), much higher than the estimated
37.2% based on culture. All six examples estimated that
sensitivity of culture was only about 62.2% (ranging from
58.2% to 70.5% estimated by the example data set 4 and 5,
respectively). The high prevalence and low sensitivity of culture
were credible and validated by post-hoc model validation as
previously described [22]. A very low specificity of ELISA
(73.1%) was previously reported when compared to culture,

Figure 3.  Input and output screen for the simplified interface of the three-tests in one-population model (Walter and Irwig
model) provided on the website (http://mice.tropmedres.ac).  See text for details.
doi: 10.1371/journal.pone.0079489.g003
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and it had been erroneously discarded [36]. However, all
example data sets that included ELISA in the model (data set
3, 5 and 6) showed that the true specificity of ELISA was about
95.2% (ranged from 90.6% to 98.3%, estimated by the
example data set 5 and 6, respectively), representing a test
that could be used to rule in melioidosis with a high degree
accuracy. The differences among the results obtained using
the 6 example data sets were minimal. All showed that culture
was an imperfect gold standard, and that the accuracy of
alternative diagnostic tests should be estimated by imperfect
gold standard models. The results of all 6 example data sets
obtained by our web-based applications were very similar to
those obtained by the full data set previously described [22].
This example also shows that different combinations of
diagnostic tests should provide comparable outcomes if the
diagnostic tests included in the models are selected based on
reasonable scientific background.

Potential issues
Before using the result estimated by the Bayesian LCM,

Bayesian statistics requires that users check for convergence
of the Markov chains and fitness of the model used [37].
Simple figures and guidelines on how to check for these points
are always provided for users together with the results. The
result shown in the summary table should not be used if the
Markov chains do not converge.

Bayesian LCMs do not assume that the accuracy of gold
standard is perfect, but some assumptions are still needed.

These are that each participant is assumed to contribute
exactly one record (i.e. no repeated records), each participant
is assumed to have been randomly selected from the
population being evaluated, and the accuracy of diagnostic
tests is estimated based on the overall prevalence of the
disease in the study population. For the Hui and Walter model,
it is also assumed that the accuracy of diagnostic tests is
consistent between two populations with a different prevalence
of the disease. However, it is not uncommon that the accuracy
of diagnostic tests might change according to the prevalence
and range of disease manifestations, and the summary
statistics obtained would then be a compromise between its
accuracy in the two different populations [29]. In addition, if the
difference in prevalence of disease in the two populations is
small, the accuracy and precision of the estimates obtained by
Hui and Walter model could be very poor [29].

Bayesian LCM is only one of the methods recommended
when the accuracy of the gold standard is imperfect or
unknown [2,38]. Other methods, such as assessment of the
ability of a test to predict patient outcome or assessment of the
concordance of difference tests instead of test accuracy should
also be considered [2,38]. In addition, accuracy of parameters
estimated using Bayesian LCMs should be considered carefully
and validated with all external knowledge and scientific
information available [22,23]. For example, three diagnostic
tests for LTBI could be applied to a large group of LTBI
suspected patients, and then the three-tests in one-population
model (Figure 3) can be used. If possible, any treatment
provided should be the same regimen to all study patients.

Table 1. Prevalence, sensitivities and specificities estimated by using culture as a perfect gold standard and the complete
data set, and by Bayesian latent class models using advance interfaces of the web-based applications
(www.mice.tropmedres.ac) and 6 example data sets extracted from the complete data set.

Parameters Culture as gold Example Example Example Example Example Example
 standard a Data set 1 b Data set 2 b Data set 3 b Data set 4 b Data set 5 b Data set 6 b

Prevalence 37.2 (31.9-42.7) 62.6 (53.1-72.6) 63.1 (55.4-71.6) 55.4 (48.4-62.2) 63.8 (55.2-72.6) 52.6 (44.1-60.8) 57.2 (51.0-63.7)
Culture
Sensitivity 100 59.4 (49.4-70.0) 58.8 (49.9-67.5) 67.1 (58.4-75.7) 58.2 (49.2-67.6) 70.5 (60.2-82.2) 64.9 (56.9-72.3)
Specificity 100 100 100 100 100 100 100
IHA
Sensitivity 71.4 (63.2-79.7) 70.3 (61.6-78.1) 70.7 (62.0-78.3) 71.3 (63.4-78.5) NA NA NA
Specificity 63.7 (57.0-70.4) 86.0 (75.0-82.5) 87.1 (78.5-93.9) 78.0 (70.0-85.2) NA NA NA
IgM ICT
Sensitivity 81.5 (74.4-88.6) 81.0 (73.4-87.4) NA NA 80.5 (72.9-87.0) 80.8 (73.4-87.2) NA
Specificity 48.8 (41.8-55.7) 68.4 (56.7-82.5) NA NA 69.6 (58.7-80.3) 58.2 (49.3-67.0) NA
IgG ICT
Sensitivity 87.4 (81.3-93.4) NA 86.7 (79.9-93.9) NA 86.8 (79.8-92.1) NA 87.4 (80.9-92.5)
Specificity 49.3 (42.3-56.2) NA 74.1 (62.6-87.4) NA 75.2 (62.7-89.4) NA 66.6 (57.7-74.8)
ELISA
Sensitivity 82.5 (75.4-89.3) NA NA 81.9 (74.4-88.0) NA 81.7 (73.9-88.0) 81.6 (74.0-87.9)
Specificity 73.1 (67.0-79.3) NA NA 95.2 (87.3-99.7) NA 90.6 (80.3-98.9) 98.3 (93.5-99.9)

Values shown are median estimates with 95% credible interval unless otherwise stated. NA = Not available.
a Values shown are mean estimates with 95% confidence interval.
b Each data set had a total sample size of 320 patients with three diagnostic test results (Text S1). Advanced interface of the three-tests in one-population model (Walter and
Irwig model) was used, in which specificity of culture was fixed at 100%, and there was a correlation between the serological tests in diseased patient.
doi: 10.1371/journal.pone.0079489.t001
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Then, the accuracy of diagnostic tests estimated using
Bayesian LCM could be compared and validated with further
evidence such as long-term outcome of the study patients who
have different test results. This concept could be implemented
in large cohorts or clinical trials of LTBI suspected patients.

Further developments
We aim to include four-tests in one-population model and

five-tests in one-population model, and to include correlations
among three or four diagnostic tests in those developing
models. This would allow advanced users to apply Bayesian
LCM with more complicated data sets in the future [22,23,24].

Materials and Methods

The web application is located at http://mice.tropmedres.ac.
The interface was developed using Microsoft Visual Studio
2008 and ASP.NET 3.5 (Microsoft; Washington, US). The
Bayesian statistics were processed using R version 2.11.1,
RtoWinBUGS application version 2.1.16, and WinBUGS
version 1.4.3 (Cambridge UK) [25,26]. All data were stored in
Microsoft SQL Server 2008 R2. The applications were tested
with multiple data sets including the Hui and Walter data set
[12], Walter and Irwig data set [13] and melioidosis data sets
[22]. Web pages were tested with Internet Explorer 9.0, Firefox
6.0.2 and Safari 5.0.2.
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Figure S1.  Schematic illustration of the use of Bayesian
latent class model (LCM) to obtain unbiased estimates of
accuracy of diagnostic tests.
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three-tests in one-population model (Walter and Irwig
model) provided on the website (http://mice.tropmedres.ac).
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Table S1.  Prevalence, sensitivities and specificities for an
example data set estimated by the Bayesian latent class
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Table S4.  Settings for the Bayesian latent class models
(LCMs) used in web-based application (http://
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