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Abstract

Motivation: Drug combination therapy for treatment of cancers and other multifactorial diseases

has the potential of increasing the therapeutic effect, while reducing the likelihood of drug resist-

ance. In order to reduce time and cost spent in comprehensive screens, methods are needed which

can model additive effects of possible drug combinations.

Results: We here show that the transcriptional response to combinatorial drug treatment at pro-

moters, as measured by single molecule CAGE technology, is accurately described by a linear com-

bination of the responses of the individual drugs at a genome wide scale. We also find that the

same linear relationship holds for transcription at enhancer elements. We conclude that the

described approach is promising for eliciting the transcriptional response to multidrug treatment at

promoters and enhancers in an unbiased genome wide way, which may minimize the need for ex-

haustive combinatorial screens.

Availability and implementation: The CAGE sequence data used in this study is available in

the DDBJ Sequence Read Archive (http://trace.ddbj.nig.ac.jp/index_e.html), accession number

DRP001113.

Contact: xin.gao@kaust.edu.sa or erik.arner@riken.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Unlike single-gene disorders, which are regulated by a particular gene,

complex diseases like cancer are dependent on multiple cellular func-

tions and processes. Single drug cancer therapies fail to target more

than one signalling pathway and increase the chance of developing

drug resistance (Hopkins, 2008). Drug combinations are considered a

promising strategy to overcome these limitations (Yang et al., 2008).

Combinatorial drug treatment offers significant advantages over high-

dosage monotherapy, including amplified therapeutic efficacy and

reduced risk of drug resistance (Zimmermann et al., 2007).

Many experimental and computational methods have been pro-

posed to identify effective drug combinations. High-throughput
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(Mathews Griner et al., 2014) and RNA interference (Prahallad

et al., 2012) screenings are unbiased experimental strategies that can

indicate favorable combinations of FDA approved compounds. On

account of the high cost and large combinatorial space, numerous

computational approaches have been developed to reduce the need

for exhaustive screens (Bansal et al., 2014; Sun et al., 2015). Despite

recent advances on prioritizing multidrug therapies for further ex-

perimental validation, no existing methodology has been demon-

strated to quantify and model the combinatorial drug effects at the

transcriptional level.

Most earlier studies looking at the transcriptional response to

multidrug therapy use microarrays (Jin et al., 2011; Lee et al.,

2012). We recently employed CAGE, a sequencing-based unbiased

approach for quantifying promoter expression, after single drug

treatment (Kajiyama et al., 2013), and were able to capture moder-

ate cellular responses in the transcriptome even at submaximal drug

dosages, which is very difficult to attain with microarray approaches

(Kajiyama et al., 2013). Apart from giving promoter based reso-

lution, CAGE has the additional advantage of detecting enhancer

expression in the same experiment (Andersson et al., 2014).

Transcribed enhancers as detected by CAGE are more likely to be

functional than enhancer predictions based on chromatin status

(Andersson et al., 2014). With CAGE, it is possible to not only

examine whether drug treatment alters enhancer RNA transcription,

but also investigate if enhancer expression levels in drug combin-

ations can be explained using individual treatment profiles.

It has been recently shown that protein dynamics after combina-

torial treatment of drugs can be accurately described as a linear

combination of individual responses (Geva-Zatorsky et al., 2010).

Moreover, Pritchard et al. reported that RNAi signatures of drug

combinations are mainly a weighted composite of single drug effects

(Pritchard et al., 2013). These findings suggest that the same rela-

tionship may be true at the transcriptional level. This paper aims to

test this hypothesis. To this end, we performed multiple linear re-

gression analyses on promoter and enhancer transcriptional activ-

ities after single and combinatorial drug treatment. Without using

any prior information about known drug targets and affected path-

ways, we show that it is possible to describe the transcriptome re-

sponse at promoters and enhancers with high accuracy in an

unbiased global way.

2 Materials and methods

2.1 RNA sample preparation and CAGE data generation
Sample preparation, CAGE data production and basic processing

are described in detail in Supplementary Notes. Briefly, human

MCF-7 breast cancer cells were treated with drugs individually and

in pair wise combinations, and triplicate CAGE libraries were pre-

pared for each drug treatment as described previously (Kanamori-

Katayama et al., 2011) and sequenced on HeliScope. CAGE tags

were processed and mapped to genomic positions as described previ-

ously (Kajiyama et al., 2013) and projected on to FANTOM 5

defined promoter and enhancer regions.

2.2 Multiple linear regression model
We used multiple linear regression to model the relationship be-

tween combinatorial drug response and single drug expression pro-

files by fitting a linear equation to the observed data. Individual

expression profiles were considered as explanatory variables and

combinatorial drug action as the response variable. Formally, the

model for multiple linear regression, given two drugs A and B, is:

FdrugA drugB ¼ b0 þ b1FdrugA þ b2FdrugB þ e

where Fdrugi denotes the logarithmic fold change (log2FC) of drug i

(in cpm) against the control condition for i ¼ {A, B}, bj are the re-

gression coefficients for j ¼ {0, 1, 2}, e is the error variable, and A, B

� {Gefitinib, U0126, Wortmannin}. We fitted the linear regression

models using the least squares approach in R. Quantile regression,

regression tree, multivariable linear regression with interaction term

and linear regression using one drug treatment were compared as al-

ternatives to the multiple linear regression method described above

(Supplementary Notes). To evaluate the robustness and prediction

ability of the regression models on new unseen values of the re-

sponse variable, we performed 10-fold cross validation. We used

three different metrics to assess the performance of the regression

models on the test set: Mean Absolute Error (MAE), Pearson correl-

ation and Spearman correlation (Supplementary Notes).

3 Results

3.1 Quantifying promoter expression after treatment

with three individual drugs and their combinations
Owing to its multidimensional role in the progression of cancer, the

EGFR signaling pathway has been the target of many anti-cancer

therapies (Seshacharyulu et al., 2012) (Fig. 1A). When multiple

drugs target either parallel signaling pathways or the same signaling

pathway at various nodes, they may function synergistically for

higher therapeutic efficacy and greater target selectivity (Shahbazian

et al., 2012). With this in mind, we recorded the effects of Gefitinib

(marketed commercially as Iressa), U0126 and Wortmannin, in

human breast cancer MCF-7 cells using the CAGE promoter profil-

ing method. Details about the mode of action of the three drugs are

given in Supplementary Notes.

We selected moderate concentrations below saturation for each

inhibitor and their combinations. CAGE profiles for three replicates

were obtained six hours after each drug treatment and assigned to

promoter regions. After normalization and filtering of lowly ex-

pressed promoters (Supplemental Notes), the resulting dataset con-

sisted of 19 693 promoters, 90% of which (17 768) were located

within 500 bp of known RefSeq transcripts. Promoter activities were

highly reproducible, achieving 0.9879 mean Pearson correlation co-

efficient among triplicates (Supplementary Fig. S1).

Differential expression analysis identified 436, 1058 and

1041 promoters significantly altered by Gefitinib, U0126 and

Wortmannin treatment, respectively (FDR 5%, Supplemental

Notes). However, after the combinatorial drug treatment the num-

ber of significantly affected promoters was notably greater com-

pared to single drug treatment (Fig. 1B), indicating the complicated

action of drug combinations in the entire transcriptome.

3.2 Promoter activity under combinatorial drug

treatment is efficiently described by a multiple

linear regression model
To test the hypothesis that the combinatorial drug response at the

transcriptome level could be explained by combining single drug ex-

pression profiles, we performed multivariable linear regression ana-

lysis, where individual expression profiles were considered as

explanatory variables and the combinatorial drug action as the re-

sponse variable. We applied our analysis to the entire promoter

dataset. Table 1 demonstrates the performance of the linear regres-

sion model after ten-fold cross validation in all the promoters. The

results showed that the linear model could describe the relation
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between single and combinatorial drug effects at the transcriptome

level to a high degree on a genome-wide scale. Importantly, with

this approach, it was possible to explain the response of 2963 out of

3256 (91%) promoters significantly differentially expressed by com-

binatorial treatment only for the Gefitinib-U0126 drug pair (85%

and 80% respectively for the Gefitinib-Wortmannin and U0126-

Wortmannin combinations). Figure 1C shows the correlation

between the regression model‘s estimations and Gefitinib-U0126

observed expression among the different promoter categories (also

Supplementary Fig. S2), and highlights two examples of genes differ-

entially expressed only after combinatorial treatment and well

described by the linear regression model. Thioredoxin-interacting

protein (TXNIP, a tumor suppressor) is an effective target for the

treatment of breast cancer (Shen et al., 2015). Its expression was sig-

nificantly increased in Gefitinib-U0126 combinatorial treatment and

it was well captured by the linear model. The same drug pair also

downregulated Topoisomerase I (TOP1, an oncogene) (Chen et al.,

2015; Zhao et al., 2003) with a combinatorial response very close to

the regression estimation. We identified numerous other key genes

important for the phenotypic outcome with promoters that were dif-

ferentially expressed only in combinatorial treatment and efficiently

described by the linear regression model (Supplementary Tables S1–

S3). Two cases of promoters where single drug treatment influ-

ences their expression in opposite direction are illustrated in

Supplementary Figure S2B and C. When the two drugs are com-

bined, they cancel out the individual effects in a manner well

described by the regression model, emphasizing its capacity to cap-

ture any additive effect between single drug treatments whether

there is amplification or cancellation of the transcriptome response.

Permutation analysis (Supplementary Notes) confirmed the

statistical significance of the results (P-value<2.2e-16 and

Supplementary Fig. S3). The distributions of the permutation tests

revealed the dominance of one drug in the combination, which is

additionally supported by the coefficient of the regression models in

the linear predictor function (Supplementary Table S4). When we

further tried to fit the linear regression model using only the domin-

ant drug profile, the performance was inferior to using both ex-

planatory variables (P-value<3e-4 for all combinations). The

inclusion of an interaction term between the single drugs did

not increase the adjusted r-squared statistic for the three models and

did not result in statistically significant improvement. Furthermore,

alternative regression models, namely quantile regression and

regression tree (Supplementary Notes), did not demonstrate

notably higher performance than multivariable linear regression

(Supplementary Tables S5–S7).

3.3 Enhancer activity under combinatorial drug

treatment is efficiently described by a multiple

linear regression model
CAGE identifies transcribed enhancers at high nucleotide resolution

by detecting bidirectionally transcribed enhancer RNAs (eRNAs)

(Andersson et al., 2014), having an almost balanced transcription

on both strands and being consistent with nucleosome borders. The

enhancer set analyzed here consisted of 1028 enhancers after nor-

malization and filtering, with mean Pearson correlation among rep-

licates 0.74 (Supplementary Fig. S4). Principal component analysis

showed (Supplementary Fig. S5) that the different drug conditions

and samples after filtering can be separated in the first two principal

components, suggesting not only that the drug treatment modifies

enhancer expression but also that different drug agents have a dis-

tinct impact.

Fig. 1. Promoter expression after combinatorial treatment. (A) EGFR pathway:

Gefitinib, U0126 and Wortmannin directly inhibit the activity of EGFR, ERK

and Akt pathway, respectively. (B) Venn diagrams showing the number of

significantly altered promoters after single and combinatorial drug treat-

ments. (C) Scatter plot of observed versus predicted log2FC values for the

Gefitinib_U0126 drug combination. Blue dots indicate promoters differentially

expressed both in single and combinatorial treatment, red dots denote pro-

moters differentially expressed only in combinatorial treatment and gray dots

represent the non-significantly altered promoters. The dashed lines define

the bounds for the two standard deviations of the residual error. See also

Supplementary Figure S2. Barplots show the expression of tumor suppressor

TXNIP and oncogene TOP1 after single and combinatorial treatment of

Gefitinib and U0126

Table 1. Performance of linear regression analysis, applied in all

the promoters

19693 promoters MAE Pearson

correlation

Spearman

correlation

Gefitinib_U0126 0.1160 0.8418 0.8284

Gefitinib_Wortmannin 0.1238 0.7453 0.7474

U0126_Wortmannin 0.1152 0.7480 0.7182

Note: The values shown in the table are the mean performance after ten-

fold cross validation.
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Having observed that the treatment alters enhancer expression,

we further explored whether enhancer expression in drug combin-

ations can be modeled using individual profiles. Thus, we performed

the multivariable linear regression analysis also in the enhancer

dataset. Table 2 demonstrates the performance of the linear regres-

sion model after ten-fold cross validation in all the three drug com-

binations. Notably, there is clear evidence that single drug therapy

can be used to explain the combinatorial treatment in enhancers.

Permutation tests validated the statistical significance of the re-

sults and verified the contribution of both single-drug profiles in the

regression model (P-value<2.2e-16, Supplementary Fig. S6) for all

drug combinations. The distributions of the permutations, as well as

the coefficient of the regression function, confirmed the dominance

of one drug in the description of combinatorial expression again

(Supplementary Table S8). The dominant drug was the same in pro-

moters and enhancers in all combinations.

The samples of our study are too few to infer reliable functional

promoter–enhancer pairs based on these samples alone. However,

we identified several candidate functional pairs that were highly cor-

related across the samples of our study and also correlated across all

the FANTOM5 phase 1 samples (Supplementary Table S9).

4 Discussion

Although prioritizing effective drug combinations has been the sub-

ject of extensive studies, the effects of drug combinations on the

transcriptional activity of enhancers and promoters have not yet

been investigated. Here we analyzed the pair-wise combined impact

of Gefitinib, U0126 and Wortmannin on human breast cancer

MCF-7 cells using single-molecule CAGE technology, and showed

that promoter and enhancer expression under combinatorial treat-

ment can be efficiently explained by a linear regression model using

as input single drug profiles. Our discovery facilitates the approxi-

mate control of the transcriptional response to multidrug therapies

and minimizes the need for exhaustive screens.

Current approaches in combinatorial drug prediction have two

main limitations: (i) they utilize microarray expression profiling and

therefore focus only on gene expression, and have a lower dynamic

range in comparison to using a sequencing based approach; (ii) they

consider only a small set of either the significantly altered genes by

the individual inhibitors or the genes located downstream of the tar-

get pathways. Thus such methods fail to capture the complicated ac-

tion of drug combinations in the entire transcriptome. In contrast,

(i) our analysis is the first to study the effect of drug combinations

on promoter as well as enhancer expression by taking advantage of

CAGE profiling; (ii) We model the transcriptional relationship for

drug combinations on a genome-wide scale. Consequently, we man-

age to describe with high accuracy the transcriptome response at

promoters and enhancers, without prior knowledge of drug targets

and pathways. CAGE also has the additional advantage that it can

detect distinct effects of single or combination treatment on different

promoters belonging to the same gene (an example is given in

Supplementary Fig. S7).

The results show that promoter and enhancer transcription levels

follow a linear relationship after combinatorial drug treatment. This

finding is in agreement with previous studies about protein dy-

namics (Geva-Zatorsky et al., 2010) and RNAi screenings(Pritchard

et al., 2013). In enhancers, even though the correlations are lower

than in promoters, we also see strong evidence that drug com-

binations can be modeled as a linear relationship of individual

responses. The lower performance of the linear regression in enhan-

cers compared to promoters can be attributed to the appreciably

lower expression and higher noise level of eRNAs, as shown by ran-

domly sampling promoters with similar transcriptional intensity as

the enhancers and re-applying linear regression for the three drug

pairs (Supplementary Fig. S8 and Supplementary Notes).

Although our findings suggest that a linear model is sufficient for

describing the transcriptional effects of combinatorial drug treat-

ment with high accuracy at the genome wide level, not all promoters

were well described by a linear combination of the individual

drugs involved (Supplementary Notes, Supplementary Fig. S9).

Interestingly, additional analysis of promoters not following the

linear pattern showed that these promoters are likely to belong to

transcription factors (Supplementary Notes, Supplementary Figs

S10–S11 and Supplementary Tables S10–S17) and that their gen-

omic regions are enriched for binding sites recognized by specific

transcription factors (Supplementary Notes and Supplementary

Tables S18–S21). These findings may indicate that the promoters of

transcription factors, as well as the targets of a subset of transcrip-

tion factors, are less likely to behave in a linear, additive way than

the promoter set as a whole.

To generalize the approach described here, future studies may

explore additional drug combinations, concentrations, treatment

durations and cell types. Future work may also examine whether the

linear relationship carries over combinations with three or four dif-

ferent drug agents. The integration of this information will lead to a

more extensive understanding of the joint action of drugs and will

enable the construction of more reliable and robust models for the

quantitative analysis of combinatorial drug treatment.
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