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Abstract: Our present study was designed to investigate the role of both Trichoderma harzianum and
chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium
ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of
Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect
of T. harzianum against P. ultimum reached 81.6% after 120 h. Data also showed the productivity
of total phenolics and total flavonoids by T. harzianum, was 12.18 and 6.33 mg QE/100 mL culture
filtrate, respectively. However, these compounds were determined in chamomile flower extract at
concentrations of 75.33 and 24.29 mg QE/100 mL, respectively. The fractionation of aqueous extract
of chamomile flower using HPLC provided several polyphenolic compounds such as pyrogallol,
myricetin, rosemarinic acid, catechol, p-coumaric acid, benzoic acid, chlorogenic acid and other
minor compounds. In vivo, the potentiality of T. harzianum with chamomile flower extract against
Pythium pathogen of bean was investigated. Data obtained showed a reduction in the percentage of
rotted seed and infected seedling up to 28% and 8%, respectively. Whereas, the survival increased
up to 64% compared to other ones. There was also a significant promotion in growth features, total
chlorophyll, carotenoids, total polyphenols and flavonoids, polyphenol-oxidase and peroxidase
enzymes compared to other ones. To the best of our knowledge, there are no reported studies that
included the mutual association of fungus, T. harzianum with the extract taken from the chamomile
flower against P. ultimum, either in vitro or in vivo. In conclusion, the application of both T. harzianum
and/or M. chamomilla extracts in the control of bean Pythium pathogen showed significant results.

Keywords: Trichoderma harzianum; antifungal activity; Matricaria chamomilla; Phaseolus vulgaris

1. Introduction

Leguminous crops, such as Phaseolus vulgaris, L. are widely cultivated for human
consumption, due to their richness in protein, fibers, calories, vitamin B and other minerals,
e.g., iron, calcium, phosphorous and zinc [1,2]. Common French beans are a variant of
those legume crops that contain several constituents, i.e., flavonoids, saponins, tannins and
phenolic acid, with significant biological activity, e.g., anti-urolithiatic and anti-obesity [3].
However, these bean plants often get infected by pathogenic species of Pythium spp., which
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cause decay, pre-emergency and post-emergency on bean species. Additionally, the infected
common bean seeds or seedlings turned to be discolored, chlorotic and soft and decay after
germination and/or they become wilt or die within 1–3 weeks [4].

Several pathogens are known to infect been plants and have a significant economic
impact on the bean market. The most aggressive species of Pythium, P. aphanidermatum,
affects bean plants causing root rot and crown necrosis of mature bean plants, which has a
significant economic impact [5,6]. Another species is P. splendens, which is known for its
pathogenicity towards seedlings of different species, causing damping-off of seedlings [7].
The most common Rhizoctonia solani, Fusarium solani, F. oxysporum and Pythium ultimum
had superiority among the soil borne fungi in causing pathogens of beans [8]. Importantly,
several investigations pointed out that the colored seeds of beans cultivars were more
resistant to Pythium pathogens compared to other white seeds [9]. Therefore the choice in
procedures of pathogen control, which have differing environmental impact, depends on
the type of the bean cultivars and their resistance which has an effect on sustaining the
agricultural process.

Sustaining the agricultural process with a high crop production, requires protection
strategies of which disease control plays a crucial role in the management and protection
against plant diseases which cause severe loss of crop during epidemics [10]. Fungicides
and pesticides are commonly used to combat fungal and insect diseases. However, their
active chemical agents often have deleterious effects on the environment so the search for
environmentally friendly alternatives has become significant.

The biological control of these diseases using Trichoderma spp. has been gaining inter-
est worldwide [11], due to the reported efficacy and potential of Trichoderma spp against soil
borne fungi [12]. Members of the Trichoderma genus of fungi belong to the family Hypocre-
aceae, which is present in nearly all soil types. They are the most prevalent culturable
fungi and can be characterized as opportunistic avirulent plant symbionts that can form
mutualistic endophytic relationships with several plant species [13]. The therapeutic bioa-
gent, Trichoderma spp. employs numerous mechanisms involved in the restriction of other
fungi including enhanced promotion of plants through the vegetation period of growth.
Examples of such mechanisms involved include mycoparasitism, antibiosis activity, com-
petition, chitinase and gluconase enzymes production [14,15] additionally, the defense
responses with metabolism of germination stimulants and promotion of systemic acquired
resistance [10,16,17]. Other studies showed that Trichoderma spp are able to secrete several
biologically active agents of significance, e.g., pyrones, isocyanates, peptides, peptaibols
and trichothenes [18]. Trichoderma spp. are promising new therapeutic agents as they are
potentially safer and effective than commercially available alternatives in addition to being
more environmentally safer posing relatively no hazardous effect to food chains [19].

Plant extracts are considered another alternative to traditional fungicides and pes-
ticides as they produce bioagents that are effective against bacteria and fungi [20]. The
volatile compounds and essential oils show promise as a substitute for antibacterial and an-
tifungal agents in several studies [21]. Additionally, increasing attention has been directed
towards extracts of grapefruit and citrus wastes which contain bioactive molecules that
have anti-fungal properties as well as the ability to further induce plant resistance [22,23].
Similarly, the biological activity of Capparis spinosa has been investigated, by which the
scavenging activity against DPPH and ABTS radical cations could be due to the high
content of phenolic compounds such as flavonoids and tannins [24]. Najjaa, et al. [25]
investigated the high content of polyphenol (164.85 GEA/g extract) of herbal plant, i.e.,
Retama reatam, which has antimicrobial properties. Chamomile is one of the most consumed
herbal teas in the world extracted from chamomile (Matricaria chamomilla, L.) which is used
in therapeutic spectrums, e.g., anti-inflammatory, analgesic, antimicrobial, antispasmic
and sedative [26]. The therapeutic use of the chamomile is due to it being an excellent
source of bioactive molecules such as phenolic, terpenoids, essential oil and flavonoids
content [27,28]. Moreover, the high content of phenolic compounds, especially the subfam-
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ily of flavonoids are the most responsible for its high antioxidant activity which can be
utilized through extraction from chamomile plants [29].

The extraction strategies for phytonutrients of chamomile could be subjected to sev-
eral techniques, of which several employ the use of environmentally safe and nontoxic
solvents [30]. In general, the extraction of various phytochemicals, specifically polyphe-
nolic compounds is effectively done by solvents such as methanol, ethanol, glycerol and
water [31]. However, more and more attention has been focused towards the use of water
as a safe effective solvent for the extraction of phenolic compounds [32].

This study has been designed to investigate the potentiality of T. harzianum towards
P. ultimum, in association with aqueous extract of chamomile (Matricaria chamomilla, L.)
flower, either in vitro and/or in vivo.

2. Results and Discussion

Generally, the bean is regarded as an important nutritional crop in combating starva-
tion for millions of people worldwide [33,34], but it is prone to diseases throughout its life
cycle, especially ones that are caused by soil borne fungi [35]. Fungicide threshold chemical
agents are often used to effectively protect plants from soil borne diseases, however their
use is restricted due to their immensely harmful effect on the environment leading to the
emergence of mutant fungal variations of pathogenic species as well as biomagnification
that extends to human food products affecting their health [36,37]. Recently, both biotic
and naturally occurring abiotic agents have shown to be the best approaches in perspective
study plant disease control, due to their relative safety towards the environment. In this
study, T. harzianum alone and/or associated with chamomile (Matricaria chamomilla, L.)
flower extract was investigated against the bean (Phaseolus vulgaris, L.) pathogen P. ultimum,
in vitro and in vivo.

2.1. In Vitro, the Comparative Response of P. ultimum to Aqueous Extract of Chamomile Flower
and T. harzianum

Our study was done to evaluate the potentiality of chamomile flower extract on
the radial growth of P. ultimum. Data shown in Figure 1 indicates the superiority of
chamomile extract at concentrations of 3.0%, compared to other treatments where the radial
growth of P. ultimum decreased significantly to 30% compared to the control. The radial
growth of P. ultimum responded significantly to different concentrations of chamomile
extract when compared to the control. These results could be due to the total phenolic
compounds and total flavonoids, 75.33 and 24.29 mg QE/100 mL filtrate, respectively
contained in chamomile.

Figure 1. Radial growth (%) of P. ultimum as a responded to thresholds of chamomile flower extract.
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Constituents of chamomile flower extract (Table 1), were determined during the
fractionation of the aqueous extract of chamomile using high performance liquid chro-
matography (HPLC showing several common phenolic compounds, such as myricetin
(1587.82 ppm), quercetin (927.72 ppm), benzoic acid (414.88 ppm), rosemarinic acid
(370 ppm), which were provided as major constituents. Other components showed minor
values, e.g., catechol (11.28 ppm), coumaric acid (23.59 ppm) and chlorogenic acid (38.02).
These results are consistent with other reported studies [26,28]. Likewise, Raal et al. [27] in-
vestigated the essential oil, terpenoids and polyphenols content in commercial chamomile
extract. Polyphenolic compounds and their derivatives could be play a crucial role as an
alternative to antifungal activity [38]. However, it is interestingly that, the chamomile
extract was found to significantly sustain the growth features of T. harzianum, i.e., the fresh
weight and number of spores compared to the control (Figure 2). However, the dry weight
showed no significant difference compared to the control. Consequently, the chamomile
flower extract was chosen as applicable bioactive agent in association with T. harzianum
in the management of Pythium pathogen in vivo. The antagonistic activity of T. harzianum
against P. ultimum during a dual culture procedure was studied, by which the radial growth
of P. ultimum decreased significantly with a ratio of 81.6%, after 120 h compared to the
control (Figure 3). There is also a significant difference among the interval periods.

Figure 2. Enhancement of the radial growth of T. harzianum as threshold of chamomile flower extract
compared to the control.

Figure 3. Growth reduction percentage of P. ultimum as antibiosis of T. harzianum.
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Table 1. Fractionation and identification of phenolic compounds of Matricaria chamomilla flowers extract using HPLC
technique.

Compound/Structure Retention Time
(min)

Concentration
(ppm) Compound/Structure Retention Time

(min)
Concentration

(ppm)

Syringic acid

3.431 137.446
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Rosmarinic acid

13.624 370.598

Caffeine
6.215 79.975

Benzoic acid
13.797 414.887

Gallic acid

6.813 77.146

Naringenin

13.977 400.997

Pyrogallol

7.245 324.612
Ferulic acid

15.243 47.982

Chlorogenic acid
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Cinnamic acid
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Catechol
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Vanillic acid
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acid
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p-Coumaric acid

22.467 23.591

Ellagic acid
12.507 17.016

o-Coumaric acid
24.345 20.999

The total phenolic compounds and total flavonoids content of culture filtrate of T.
harzianum were 12.18 and 6.33 mg QE/100 mL culture filtrate, respectively. Furthermore, the
kinetic process of how the Trichoderma spp. preys on the host pathogen, could be occurred
during the mycoparasitic interaction, by secretion of chitinase and β-1,3-glucanase lytic
enzymes that attack the host fungi bearing holes in the walls of the fungi and plucking the
nutrients which reduces their growth [39]. Moreover, the potentiality of Bacillus pumilus
INR7, Trichoderma harzianum and Rhizophagus intraradices against Rhizoctonia root rot of
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common bean (Phaseolus vulgaris, L.) has been investigated, in addition to their extended
efficiency at the reduction of disease severity and improving dry weight of the bean [40].
The potentiality of Trichoderma spp. towards some pathogenic fungi, e.g., Alternaria alternata,
Macrophomina phaseolina and Geotrichum candidum was investigated. T. viride was found
to reduce the fungal growth of A. alternata, M. phaseolina and G. candidum up to 84.44%,
86.66% and 74.44% respectively [41]. Similarly, the Rhizobium sp along with cyanobacterial
extracts significantly inhibited the mycelial growth of Sclerotinia sclerotiorum that causes
the white rot disease of the common bean [42].

2.2. In Vivo, Investigation of the Potentiality of Chamomile Flower Extract and Culture of T.
Harzianum Against Pythium Pathogen of Bean
2.2.1. Disease Assessment

The percentage of rotted seeds and infected seedlings as well as the survival of
Phaseolus vulgaris plants as they responded to different treatments were recorded in Table 2
across the board the bean pathogen disease incidence% was decreased significantly in all
treatments. a combined mixture of chamomile flower extract and T. harzianum showed
the most promise and rose to second order after fungicide, with a highly significance
increase of rotted seed, infected seedling and survival percentages. However, the fungicide
increased the survival percent up to 84%, whereas, both of chamomile extract and T.
harzianum increased the survival percentage of beans by 58 and 54%, respectively. The
survival percentages of beans were significantly responsive to therapeutic treatments, and
this response is likely due to the presence of flavonoids and phenolics compounds in the
extract and/or associated with growth of fungus, Trichoderma spp [38]. Negi et al. [15]
investigated the role of T. viride, T. harzianum and T. virens as bioagents against Phaseolus
vulgaris diseases, in which the Trichoderma spp antagonized many of the plant pathogens,
additionally, they served a role as plant growth promoters. The efficiency of plant growth
promoting rhizobacteria play a crucial role in protection of Phaseolus vulgaris beans against
fungal diseases [15]. Similarly, the synergism of cyanobacterial extracts with Rhizobium
leguminosarum diminished the disease incidence and severity in common bean (Phaseolus
vulgaris, L.) during infection with Sclerotinia sclerotiorum [42]. The chamomile flower extract
was effective but less efficient compared to the mixture of extract with T. harzianum in
disease parameters. The efficiency of chamomile extract is likely due to the involvement of
antioxidant compounds, e.g., flavonoids, coumarins, phenolic acids, glucosides, terpenoids,
vitamins and sesquiterpenes [26,27]. The efficacy of Trichderma harzianum C52 in reducing
the disease percentage and disease incidence of lettuce, was 50 and 35%, respectively [43].
McLean, et al. [44] investigated the role of Trichoderma harzianum C52 in controlling the
onion white rot pathogen, Sclerotium cepivorum.

Table 2. The percentage of rotted seeds and infected seedlings as well as survival plants of Phaseolus
vulgaris as response to different treatments.

Treatments Rotted Seeds Infected Seedling Survival%

M 30 b 12 a 58 bc
T. harzianum 38 b 8 ab 54 bc

T + M 28 b 8 ab 64 b
Fungcide 12 c 4 b 84 a
Pythium 56 a 14 a 30 d

Ex + Pythium 32 b 12 a 64 b
T + M + Pythium 38 b 12 a 50 bc

T + Pythium 40 b 16 a 44 cd
Different letters within each column means values are significantly different at p ≤ 0.05.

2.2.2. Morphological Features of Bean Plants

Data as depicted in Figure 4 illustrated the values of plant length (root and shoot
length), root fresh weight, root dry weight and plant dry weight, as well as, leaf area as the
samples responded to different treatments. Concerning plant length of beans, chamomile
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extract showed a high value of length compared to other treatments, however no significant
difference of length values were found with the use of fungicide and a mixture treatment
(extract and T. harzianum). Furthermore, the chamomile extract showed superiority in root
fresh weight, with significant value increases compared to the other treatments with no
significant difference among the mixture, fungicide and T. harzianum treatments in plant
fresh weight. Regarding leaf area, the fungicide showed the highest values followed by
the mixture and chamomile, respectively. Similarly, the efficiency of both Bacillus subtilis
ATCC11774 with and/or without amino acids mixture against wilt disease pathogen of
tomato has been investigated, by which the response in plant growth features, e.g., root
and shoot length, shoot fresh and dry weight of tomato plants to Bacillus subtilis with
a mixture of amino acids was occupied [45]. As well as, the management of tomato leaf
spots caused by the fungus Alternaria tenuissima, by the use of the bioagents Agrileen and
salicylic acid were tested [46].

2.2.3. Physiological Characters

• Total phenols, total flavonoids, defense related enzymes and antioxidant capacity

The response of total phenols, flavonoids and defense related enzymes (polyphenol
oxidase and peroxidase), as well as, antioxidant capacity (ABTS% inhibition and DPPH%
inhibition) to chamomile extract, T. harzianum and its combination under non-infested
and infested soil with P. ultimum are shown in Table 3. Concerning total polyphenols, the
mixture treatment showed higher values when compared to other treatments, whereas,
both chamomile and T. harzianum provided higher values compared to Pythium treatment
alone. The tricombination (extract+Tricho.+ Pythium) showed the highest value compared
to each individual extract and Trichoderma alone. Interestingly, the mixture of extract and
Trichoderma provided the highest values of total flavonoids significantly higher than other
treatments. Additionally, there was an increase in responsiveness shown in values of
treatments using polyphenol oxidase and peroxidase compared to Pythium alone. Other-
wise, the ABTS and DPPH inhibition% were increased significantly in case of a mixture,
followed by fungicide, whereas in a case of Pythium alone, a less value has been obtained
compared to other ones. These data are conceding with the investigation of Ghoniem,
et al. [45] who found that an increased response of total polyphenols, total flavonoids, and
polyphenoloxidase in tomato plants as result of Bacillus subtilis and a mixture of amino
acids. Further, Trichoderma spp. could be produced effectively plant growth promoters,
such as gibberellic acid and biological control of some pathogenic fungi, i.e., Rhizoctonia
solani, with increasing the plant growth [47,48].

Table 3. Biochemical features of Phaseolus vulgaris plants as response of different treatments.

Treatment Total
Polyphenols

Total
Flavonoids

Polyphenol
Oxidase Peroxidase ABTS

Inhibition%
DPPH

Inhibition%

M. chamomilla 28.699 d 15.056 d 9.776 d 0.619 d 29.936 d 13.677 e
T. harzianum 27.755 d 14.189 d 9.414 d 0.599 d 21.726 e 11.495 f

T + M 43.222 a 28.469 a 15.353 a 0.948 a 58.234 a 26.151 a
Fungcide 40.960 b 26.381 b 11.152 c 0.897 b 55.647 b 25.036 b
Pythium 26.071 e 12.632 e 8.766 e 0.561 e 14.129 g 7.147 h

M + Pythium 32.945 c 18.980 c 11.408 c 0.716 c 33.658 c 17.919 d
T + M + Pythium 40.079 b 25.575 b 14.150 b 0.877 b 34.495 c 19.557 c

Different letters within each column means values are significantly different at p ≤ 0.05.
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Figure 4. (A) root length, (B) shoot length, (C) plant length (D) root fresh weight, (E) root dry weight, (F) plant fresh weight
and (G) plant dry weight, as well as, (H) leaf area of Phaseolus vulgaris as response to different treatments.
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Our results implicated that the content of chamomile extract of phenols and flavonoids,
as well as, the productivity of such these a aforementioned compounds by T. harzianum
could be responsible for anti-fungal activity, modulators of pathogenicity and activators of
plant defense [38]. Another reported study of Žlabur et al. [26] investigated the bioactive
components of chamomile extract, such as flavonoids, coumarins, phenolic acids, gluco-
sides, sesquiterpenes and antioxidant vitamin, in addition to antioxidant activity with
toxicity against Vibrio fischeri [28]. Other investigations pointed out that the exogenously
applicable of biotic and abiotic agents could be affecting the physiological and metabolites
of host plants, during activation of defense gene and generation of some antioxidant sub-
stances [46,49]. Likewise, the Trichoderma spp. (e.g., T. hamatum, T. viride, and T. harzianum)
were showed to reduced significantly the pre-and post-emergence damping off disease
of bean under artificial infection with pathogens [50], with additional significant increase
in bean plant features and peroxidase and poly phenol oxidase activities compared to
the control.

Commonly, the knowledge concerning the behavior of how Trichoderma spp. antago-
nism P. ultimum, is a vital for management of bean disease pathogen, whereby there are
several mechanisms were suggested, i.e., production of lytic enzymes, antifungal antibi-
otics, competitors with pathogens and promotion of plant growth [51]. As well as, the
potentiality of some Trichoderma spp against pathogenic fungi could be due to production
of secondary metabolites such as, pyrones, koninginins, viridian, gliovirin, peptaibols and
other negligible constituents [52].

• Photosynthesis pigments

Total chlorophyll, chlorophyll a, chlorophyll b and carotenoids were determined
in Table 4. Generally, P. ultimum-infested soil decreased the total chlorophyll contents
in kidney bean leaves significantly compared to the other pathogens. Furthermore, the
mixture of extracts and Trichoderma showed superiority with significant values in total
chlorophyll compared to the other treatments. Additionally, the carotenoid content of
leaves showed a significant increase as a response to treatments compared to Pythium alone.
These results follow those of reported investigations, which showed the role of Trichoderma
harzianum in increasing the total chlorophyll content in potato, in addition to increasing
antioxidant enzymes [47]. Moreover, Pseudomonas aeruginosa KMPCH and rhizobacteria
showed a vital role in induction of systemic resistance in bean [10]. The Trichoderma spp.
were also found to be effective against enormous soil borne fungi, especially their ability to
induce plant resistance against foliar disease pathogen in bean, such as Uromyces appen-
diculatus [10], additionally, production of some antifungal agents, e.g., cellobiohydrolase,
N-acetyl-β-glucosaminidase, trypsin like protease and β-glucosidase [53].

Table 4. Chlorophyll A, chlorophyll B and total chlorophyll of Phaseolus vulgaris plants as responded
to different treatments.

Treatment Chlorophyll A Chlorophyll B Total Chlorophyll Carotenoids

M. chamomilla 2.814 a 1.651 b 4.466 b 0.679 c
T. harzianum 2.123 b 1.418 c 3.542 d 0.578 d

T + M 2.908 a 1.875 a 4.784 a 0.934 a
Fungcide 1.592 d 1.180 e 2.771 f 0.529 e
Pythium 1.526 d 1.113 e 2.639 f 0.286 f

M + Pythium 2.136 b 1.430 c 3.566 d 0.894 b
T + M + Pythium 2.248 b 1.598 b 3.846 c 0.597 d

Different letters within each column means values are significantly different at p ≤ 0.05.

2.2.4. Disease Symptoms of Bean (Phaseolus vulgaris, L.) as Pythium Pathogen Infection

In infected soil, the disease symptoms appeared as necrotic lesions on vegetative
growth, root rot, lower stem rot, wilt and subsequent plant death before the flower
stage. Figure 5 illustrates the clear differences of kidney bean root structure that were
found among cross sections under scanning electron microscope (SEM) of normal plant
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(Figure 5A) and plant infected with P. ultimum. The root section of an infected root
(Figure 5B) showed remarkable differences occurring mainly in a cross-section shape con-
taining the epidermis, cortex, vascular cylinder and pith cells. Complete destruction was
reported in several areas of the epidermis, separation and hydrolysis and eventually macer-
ation in some area of cortex tissue and degradation and dissolution of pith cell components
leading eventually to cell death and presence of black areas in the central part of the root
cross section. Fungal growth hyphae could be clearly seen in the inter-and intera-cellular
spaces of cortex tissue. While, the dimensions of xylem vessels were increased in infected
root due to the plant’s attempts at adaptating to compensate for the lack of water absorp-
tion. Otherwise, other treatments led to a decrease in the injurious effects of P. ultimumon
root structure. The extract of chamomile flower was the most effective followed by the
combination treatment of both T. harzianum and chamomile flower extract.

Figure 5. SEM micrograph of kidney bean root cross sections under infested soil with Pythium
ultimum, (A): check (treated with fungicide), (B): fungal infection without treatment, (C): treated with
extract + T. h., (D): treated with Trichoderma harzianum and (E): treated with extract. Xv = Xylem
vessels, Hc = hydrolyzed cells, Fh = Fungal hyphae.

Fungal infection causes anatomical changes in different plant organs such as the
changes in parenchymatous cell walls which involve swelling, less of fibrillary wall, hy-
drolysis or dissolution of cell components and eventually maceration of the tissues due to
an increase in ethylene production [54]. Ethylene promoted the activity of exo-and endo
cellular hydrolytic enzymes i.e., pectinethylestrase, polyglacturonase and cellulose [55].
Moreover, El-Hai, et al. [56] showed deformation in the anatomical structure in the basal
portion of soybean stem infected with M. phaseolina, R. solani, F. oxysporum and F. solani
which occurred mainly in the epidermis, cortex and pith. They observed complete disrup-
tion in the epidermal cells and sever plasmolysis in the cortical cells with destruction of the
outer cortical cells. The infected kidney bean by mixture pathogenic fungi (F. oxysporum,
F. solani, R. solani and P. ultimum) led to complete destruction of the root epidermis and
separation in some area of cortex tissue followed by degradation and dissolution of cell
components [57]. In our investigation, the increase in the dimensions of xylem vessels in
root cross sections under infection of P. ultimum might be because of the plant’s attempts to
compensate for the lack of water absorption which occurred due to the obstruction of some
vessels by the fungal hyphae [58,59].

3. Materials and Methods
3.1. Preparation of Matricaria Chamomilla Flower Extract

Dry flowers of Matricaria chamomilla were obtained from the Agricultural Research
Center (ARC, Giza, Egypt). Extraction process was prepared according to the method de-
scribed by [60]. 100 g of Matricaria chamomilla whole dry flowers were extracted accurately
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using 1 L of deionized water heated to 60 ◦C for 90 min using a horizontal water bath
shaker (Memmert WB14, Schwabach, Germany). Whatman no.1 filter paper (Whatman
International Ltd., Kent, UK) was used to filter the extract. The filtrate was adjusted using
deionized water in volumetric flasks to 500 mL and filtered through a Büchner funnel then
stored at −18 ◦C for later use.

3.2. Fractionation and Identification of Phenolic Compounds

Phenolic compounds were identified using high performance liquid chromatography
(HPLC) Technique at Food Technology Research Institute (FTRI), Agricultural Research
Center according to Määttä, et al. [61]. This methodology was used for obtaining the
chromatogram of each standard phenolic compound as well as a mixture of all the phenolic
compounds. The standard phenolic compounds were purchased from reputed manufactur-
ers such as Sigma-Aldrich (Cairo, Egypt). HPLC was conducted using a Hewlett-Packard
instrument containing a 1100 series quaternary pump, diode array detector and an au-
tosampler all linked to The Chemstation data handling system (Waldbronn Analytical
Division, Waldbronn, Germany). Phenolic compounds were separated using LiChroCART
Purospher RP-18e column (125 × 3 mm2 i.d., 5 µm, Merck, Darmstadt, Germany) with a
guard column of the same material (4 × 4 mm2) used as protection. Finnigan MAT LCQ
ion trap mass spectrometer (San Jose, CA, USA) with an attached Rheos 400 HPLC pump
(Danderyd, Sweden) was used for Liquid chromatography–mass spectrometry (LC-MS)
analysis. LC-MS is an analytical chemistry technique that combines the physical sepa-
ration capabilities of liquid chromatography with the mass analysis capabilities of mass
spectrometry. Conditions for the initial ionization in the positive and negative ionization
modes included capillary voltages at +4.5kV and −3 kV and a temperature at 225 ◦C. The
MS data was acquired as full scan mass spectra at m/z 150–1500 by using 200 ms for
collection of the ions in the trap. Tandem mass spectrometry or MS/MS is a technique in
instrumental analysis where two mass analyzers are coupled together using an additional
reaction step to increase their abilities to analyse chemical samples. MS/MS was performed
using helium as the collision gas, and the collision energy was set at 30%. MS revealed the
positive or negative molecular ions; MS/MS broke down the most abundant ones with
dependent collision-induced dissociation.

The percentage peak area method uses the area of the target component peak as a
proportion of the total area of all detected peaks to analyze quantity. This method is used
to determine changes in concentration of a known sample mixture, or to determine an
approximate concentration of a sample mixture. Retention time and peak area were used
to calculate the concentrations of phenolic compounds content compared with standard
calibrated polyphenols by analyzing the data of Hewlett Packard software.

3.3. Evaluation of Chamomile Flower Extracts Concentrations on Pythium Ultimum Growth

The response of linear growth of Pythium ultimum to aqueous extract of chamomile
(Matricaria chamomilla, L.) flower was evaluated. From the extract, four concentrations
(1.5%, 2.0%, 2.5% and 3.0%) were incorporated in potato dextrose broth media flasks by
adding the appropriate amount of each concentration to the melted medium and then
sterilized. Flasks without any addition were used as control. Disks (5 mm in diameter)
taken from the growing edge of 5-day-old colony of Pythium were used singly inoculated
the prepared flasks. The flasks were incubated at (25 ◦C). Three replicates were used per
concentration. The fungal linear growth was calculated for three consecutive days from
incubation.

3.4. Antifungal activity of Trichoderma Harzianum

• Dual Culture Assay

The potential of T. harzianum against P. ultimum was evaluated using a dual culture
technique [62] by which the tested antagonist mycelial disc (5 mm) fungus was taken
from 5-day-old culture which it paired against the same sized mycelial disc of pathogen
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fungus at the opposite end on 9 cm diameter of PDA Petri dishes. Both the pathogen
and antagonist disc were inoculated at equal distances (1 cm) from the petri plate periph-
ery. The PDA plates were incubated at 25 ± 2 ◦C. The growth of the pathogen and the
control were recorded. The percent inhibition of radial growth was calculated using the
following equation:

I = (R1 − R2)/R1 × 100 (1)

where I = inhibition of radial growth. R1 = outward growth of the pathogen in control.
R2 = radial growth of the pathogen in dual culture with antagonists.

Based on the previous screening, after five days of dual growth antagonism reaction of
T. harzianum was evaluated by using a scale of five degrees, to detect growth and interaction
between dual mycelia. The 1 to 5 scale rates the antagonism reaction, in which the first
degree indicates that Trichoderma completely overgrowing pathogen and fifth degree is the
opposite [63].

3.5. Evaluation of M. Chamomilla Flower Extract Concentration on T. harzianum Linear Growth

The effect of 2.0%, 2.5% and 3%concentration of M. chamomilla extract was evaluated
on T. harzianum linear growth by incorporating in potato dextrose broth media flasks and
then sterilized. Flasks without any addition were used as control. Disks (5 mm in diameter)
taken from the growing edge of 5-day-old colony of T. harzianum were used to singly
inoculated the prepared flasks and incubated at (25 ◦C). Three replicates were used per
concentration. The fungal linear growth was calculated for three consecutive days from
incubation. T. harzianum was filtrated, fresh and dry weight of mat was recorded with
three replicates.

3.6. Evaluation of Chamomile Flower Extract on T. harzianum Sporulation

To investigate the enhancing of chamomile flower extract on T. harzianum, the fungus
was gently scraped from the Petri-dish with a sharp spatula and washed several times with
a total volume of 50 mL of sterilized water. The number of spores per mL was determined
using a hemocytometer compared to the control.

3.7. Greenhouse Experiment

The effect of M. chamomilla flower extract and T. harzianum either each of them sep-
arately or in combination between them was evaluated against Pythium pathogen under
greenhouse conditions.

3.7.1. Inoculum Preparation

• The inoculum of Pythium

P. ultimum inoculum was prepared by growing on potato dextrose agar plates and
incubated at 25 ◦C for five days and then mycelial plugs were carried on sterilizing medium
of sorghum: coarse sand: water (2:1:2 v/v) and incubated at 25 ◦C for ten days; to be ready
to use.

• T. harzianum inoculum

T. harzianum inoculum was prepared using 14 days old culture grown on potato
dextrose broth under static conditions (25 ± 2) as active ingredients.

3.7.2. Greenhouse Evaluation of Chamomile Flower Extract and/or T. harzianum on
Phaseolus vulgaris Pathogen

Pots were filled with 8 kg/pot antiseptic soil; clay: sand (2:1, v/v) and singly infested
with the previous prepared pathogen inoculum at the rate of 0.4% (w/w), with irrigate
regularly with tap water and left for one week to warranty the fungus spread. On the day
of planting, the beans were soaked in 2.5% of M. chamomilla concentration and T. harzianum
filtrate either each of them separately or in combination between them according to the
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treatment. Additionally, chemical fungicide (F) used was (56% Sc) Dose that recommended
by the Ministry of Agricultural, was 250 cm/100 L.

The treatments applied were; (1) chamomile extract (2) T. harzianum (3) chamomile
extract + T. harzianum, (4) Fungicide, (5) Pythium only, (6) chamomile extract + Pythium, (7)
chamomile extract + T. harzianum+ Pythium and (8) T. harzianum+ Pythium. All pots were
organized in randomized block design and kept in the greenhouse.

• Disease assessment

After ten days, the percentage of rotted beans (un-emerged beans), post infected
seedlings (percentage of dead seedlings after 30 days from planting) and plant survival
was recorded.

• Vegetative growth parameters

Five plants of each treatment were carefully harvested after five weeks from planting,
rinsing with tap water to remove any soil particles and the following parameters were
recorded, shoot, root and plant length (cm), root fresh and dry weight (g), plant fresh and
dry weight (g) and leaf area.

• Chlorophylls and carotenoids content of investigated leaves

The totals of the following, chlorophyll a, b and carotenoids were evaluated according
to Wellburn [64]. Fresh leaves (0.05 g) were placed inside a test tube, softened and soaked
in 10 mL methanol at 4 ◦C overnight in the presence of trace amounts of sodium bicarbon-
ate to inhibit the function of chlorophyllase enzymes, the test tube is then sealed using
aluminum foil to prevent photooxidation from occurring. The chlorophyll contents were
then measured through spectrophotometry at 452.5, 650 and 665 nm respectively using the
following calculations [65]:

Total Chlorophyll = (25.5 × E650) + (4 × E665) (2)

Chlorophyll a = (16.5 × E665) − (8.3 × E650) (3)

Chlorophyll b = (33.8 × E650) − (12.5 × E665) (4)

Carotene = (4.2 × E452.5) − (0.0264 × Chlorophyll a) − (0.496 × Chlorophyll b) (5)

Chlorophyll or carotene (mg/g fresh weight)
=

Chlorophyll or carotene content × volume of methanol
1000 × weight of sample (g)

(6)

• Total polyphenols content

To measure the total phenolic content, 0.1 g of air-dried leaves were dissolved in 1 mL
of distilled water of which 0.1 mL was taken and added to a solution of exactly 2.8 mL of
distilled water, 2.0 mL of 2% (w/v) sodium carbonate and finally 0.1 mL of 50% (v/v) of Folin–
Ciocalteu reagent utilizing the Folin–Ciocalteu reagent method [66]. The mixture was then
incubated at room temperature for 30 min before the solution was spectrophotometrically
(Spekol 11 spectrophotometer, Analytik Jena AG, Jena, Germany) measured at 750 nm with
distilled water used as a blank. For quantitative assessment a standard curve of gallic acid
(0–200 mg/L) was prepared in the same manner. Total phenol contents were expressed as
milligram gallic acid equivalent (GAE)/g based on dry weight.

• Total flavonoids content

To measure the total flavonoids colorimetrically of the air-dried leaves, 0.1 g of the
leaves were dissolved in 1 mL of distilled water of which 0.5 mL was then taken and
1.5 mL of 95% ethyl alcohol, 0.1 mL of 10% aluminum chloride (AlCl3), 0.1 mL of 1 M
potassium acetate (CH3COOK) and 2.8 mL of distilled water was added [67]. The resulting
solution was then incubated for 40 m at standard room temperature before the solution
was measured using a spectrophotometer at 415 nm with distilled water used as a blank. A
standard curve was constructed using quercetin as the standard for flavonoids (0–50 mg/L).
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The total concentration of the flavonoids contents were measured as milligram quercetin
equivalent (QE)/g based on dry weight.

• Determination of antioxidant activity by the DPPH and ABTS radicals scaveng-
ing methods

The free radical scavenging activity was determined according to [68] using different
concentrations of 2,2-diphenyl-1-picrylhydrazyl (DPPH) by measuring the bleaching of
the purple color of DPPH, the absorbance was measured at 517 nm and the percentage
of inhibition was calculated. The ABTS (2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic
acid) assay was based on the method of Christodouleas, et al. [68]. The absorbance of the
resulting greenish-blue solution was recorded at wavelength 734 nm, the decrease in the
absorbance is expressed as a percentage of inhibition which was calculated.

• Polyphenol oxidase and peroxidase activities

Extraction and activity of both enzymes were determined using a spectrophotometric
method based on an initial rate of increase in absorbance at 410nm were carried out at 4 ◦C,
according to Seleim, et al. [69].

3.8. SEM Analysis

The anatomical changes in bean root due to the pathogen and other treatments were
studied by taking cross sections, gold-coating them and examining at various magnifi-
cations using SEM (TEM-2100, JEOL, Tokyo, Japan) attached to an accelerating voltage
of 200 kV at the Central Laboratory, Electron Microscope Unit, Mansoura University,
Egypt [70].

3.9. Statistical Analysis

The statistical analysis software CoStat version 6.4 (CoHort Software, Pacific Grove,
CA, USA) was used to perform the analysis of variance of the data. Duncan’s new multiple
range test at probability (p) level ≤ 0.05 was applied. Some of the experimental data were
presented as means ± standard deviation (±SD) and at least six replicates were used.

4. Conclusions

Our investigative study aimed to investigate the effect of chamomile (Matricaria
chamomilla, L.) flower extract and T. harzianum either alone or combined as bioagents
against P. ultimum with an effect up to 30–81.6% radial growth reduction in both of in vitro
and in vivo applications. The potentiality of both chamomile extract and T. harzianum
against P. ultimum was obtained. Furthermore, the fractionation of M. chamomilla extract
was performed to investigate its active compounds which showed several polyphenolic
compounds. The in vivo response of percentages of root rot, seedling rot and survival
for both chamomile flower extract and T. harzianum was determined to be up by 64%.
The biochemical parameters such as chlorophyll, carotenoids, and antioxidant enzymes
increased with use of the therapeutic treatments and the cross sections of roots of bean were
investigated using SEM with a decrease in symptomatic features of diseases as a response
of therapeutic treatments. In conclusion, the application of both T. harzianum and/or M.
chamomilla extracts in the control of bean Pythium pathogen showed significant results.
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