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Abstract: This paper reports a method for the synthesis of 1,1,3,3,5,5-hexamethyl-7,7-diorganocy-
clotetrasiloxanes by the interaction of 1,5-disodiumoxyhexamethylsiloxane with dichlorodiorganosi-
lanes such as methyl-, methylvinyl-, methylphenyl-, diphenyl- and diethyl dichlorosilanes. Depend-
ing on the reaction conditions, the preparative yield of the target cyclotetrasiloxanes is 55–75%. Along
with mixed cyclotetrasiloxanes, the proposed method leads to the formation of polymers with regular
alternation of diorganosylil and dimethylsylil units. For example, in the case of dichlorodiethylsilane,
70% content of linear poly(diethyl)dimethylsiloxanes with regular alternation of units can be achieved
in the reaction product. Using 7,7-diethyl-1,1,3,3,5,5-hexamethylcyclotetrasiloxane as an example, the
prospects of the mixed cycle in copolymer preparation in comparison with the copolymerization of
octamethyl- and octaethylcyclotetrasiloxanes are shown.

Keywords: mixed cyclosiloxanes; 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane; 7-hydro-1,1,3,3,
5,5,7-heptamethylcyclotetrasiloxane; 1,1,3,3,5,5,7-heptamethyl-7-phenylcyclotetrasiloxanes; 7,7-diethyl-
1,1,3,3,5,5-hexamethylcyclotetrasiloxane; 1,1,3,3,5,5-hexamethyl-7,7-diphenylcyclotetrasiloxane; 1,5-
disodiumoxyhexamethylsiloxane; poly(diethyl)(dimethyl)siloxane

1. Introduction

Cyclosiloxanes can be used as an initial reagent for the preparation of siloxane homo-
and copolymer rubbers and liquids [1–4], as well as functional precursors for molecular
design [5–9], cross-linking reagents [10], flame retardants [11], components of compositions
for dry cleaning and detergents [12–14], solvents for coloring fabrics [15–19] and in cosmet-
ics for various purposes, including skin and hair care products, deodorants/antiperspirants,
makeup products, etc. [20–23].

Cyclosiloxanes of mixed composition are of particular interest in modifying poly-
dimethylsiloxane [24–27] to provide it with the required properties and to obtain a linear
functional matrix containing reactive groups in the chain for further transformations and
obtaining new polymers with a determined structure and a required set of characteris-
tics [28,29]. Substituents of the silicon atom have a strong effect on the polymerization
rate of cyclosiloxanes; as a result, it is difficult to obtain copolymers by polymerization
of a mixture of cyclosiloxanes with different groups at the silicon level [30–32]. This
problem can be solved by using mixed dimethylcyclotetrasiloxanes. In this regard, the
development of simple and effective methods for their preparation is an urgent task. Until
very recently, no effective methods for the synthesis of mixed cyclotetrasiloxanes could
be observed in the literature. For instance, mixed dimethylcyclotetrasiloxanes containing
one silicon atom with different substituents can be synthesized via the cohydrolysis of
dichlorodimethylsilane and the corresponding dichlorodiorganosilane, but the yield of
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the target cyclosiloxane does not exceed 30% [33–35]. Another approach is the heterofunc-
tional condensation of hexamethyltrisiloxanes with terminal chloro- [36], hydro- [37,38]
and hydroxy-groups [39,40] and the corresponding diorganosilanediols, diorganodialkoxy-
or chlorosilanes. Mixed dimethylcyclotetrasiloxanes can form selectively using either
diorganosilanediols or trisiloxanes with terminal functional groups. While the stability
of diorganosilanediols limits the former approach [41–44], the multistep preparation and
complexity of the method limit the latter [19,45–48].

Selective synthesis of 1,5-sodiumoxyhexamethyltrisiloxanes from dimethylsiloxanes
of cyclic and linear structure [49] opens up opportunities for the directed production of
mixed dimethylcyclotetrasiloxanes, including the transition to “green” chemistry methods.
On one hand, the salt yield does not depend on the structure of the initial reagent; thus,
low-molecular-weight debris from polydimethylsiloxane rubber production can become
the raw material for its production. On the other hand, using an acceptor of hydrogen
chloride, which is a standard component of hydrolytic and condensation processes with
chlorsilanes and the presence of which has a significant effect on the cyclotetrasiloxane
formation, is unnecessary [39,47].

Thus, this work aims to obtain mixed dimethylcyclotetrasiloxanes by reacting 1,5-
sodiumoxyhexamethyltrisiloxanes with a number of dichlorodiorganosilanes. We further
demonstrate the preparation of copolymers using dimethylcyclotetrasiloxanes.

2. Materials and Methods
2.1. Materials

The following reagents and organic solvents were used in the work: hexane, tetrahy-
drofuran (THF), methyl-tret-butyl ether (MTBE), anhydrous sodium hydroxide and potas-
sium hydroxide from OOO “Component-Reaktiv”, Russia; methanol and pyridine from
OOO “SpektrChem”, Russia; α,ω-dihydroxypolydimethylsiloxane brand SKTN A (PDMS)
from OOO “Penta-91”, Russia; dichloromethylsilane 97%, dichloromethylsilane 97%,
dichlorodiethylsilane 97%, dichloromethylphenylsilane 98%, chlorotrimethylsilane 97%,
dichlorodiphenylsilane 98%, octamethylcyclotetrasiloxane, octaethylcyclotetrasiloxane
from Reatorg, Russia.

All reagents were subjected to preliminary preparation in accordance with generally
accepted methods [50]. Chlorosilanes were distilled immediately before use. Pyridine was
dried over barium oxide. The toluene, THF and MTBE were distilled on a rotary evaporator
and dried over calcium hydride.

1,5-disodiumoxyhexamethyltrisiloxane was obtained immediately before use by the
interaction of sodium hydroxy and PDMS according to the procedure described in [51].

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium
(№ 1, Table 1). First, 20 g (0.07 mol) 1,5-disodiumoxyhexamethyltrisiloxane, 480 mL of
anhydrous THF and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask
equipped with a thermometer, reflux condenser and mechanical stirrer in an argon flow.
Then, the reaction mass was heated to 66 ◦C with vigorous stirring and allowed to cool
to room temperature. In this case, the salt completely dissolved and a clear solution was
formed. After this, a solution of 11.9 g (0.08 mol) of dichloromethylvinylsilane in 268 mL
of anhydrous THF was rapidly added to the reaction mixture and cooled to −60 ◦C with
vigorous stirring. The reaction mass was stirred until room temperature (for 1 h). The pH of
the reaction mass was 5–7. After this, the excess THF was distilled off on a rotary evaporator
and MTBE was added. Then, the reaction mixture was washed with water to remove the
precipitate, and the excess MTBE was distilled off on a rotary evaporator. The obtained
siloxane product was analyzed by gas–liquid (GLC) and gel permeation chromatography
(GPC). The results are shown in Table 1 (№ 1). Then, the product was distilled. As a result,
11.8 g containing of 98% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane was isolated
by 85 ◦C/20 mm Hg. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 55%.
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Table 1. Reaction conditions in THF and product characteristics.

№
Target

Cyclotetrasiloxane
Sequence of

Reagent
Addition

Characteristics of Products

Preparative
Yield

of Cycle, %

The Yield of Target
Cycle in Volatile

Products by GLC, %

GPC Data

Low-Molecular-
Weight Part

High-Molecular-
Weight Part

% Mp % Mp

1
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(DMe2)3(D
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MeH)
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Et2)
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(DMe2)3(D
Ph2)
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flow. A solution of 11.9 g (0.08 mol) of dichloromethylvinylsilane in 322 mL of anhydrous 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2)

Cl→ONa 99 80 700 20 1800 67
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Cl→ONa 99 80 700 20  1800 67 
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Cl→ONa 97 70 700 30 900 70 

1 Rapid injection of a solution of diorganodichlorosilane to a solution or suspension of 1,5-disodi-

umoxyhexamethyltrisiloxane; 2 simultaneous mixing of solutions of diorganodichlorosilane and 

1,5-disodiumoxyhexamethyltrisiloxane with the same molarity. 

In addition, 7-hydro-1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane, 7,7-diethyl-
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(№ 2, Table 1). First, 20 g (0.07 mol) 1,5-disodiumoxyhexamethyltrisiloxane, 341 mL of 
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flask equipped with a thermometer, reflux condenser and mechanical stirrer in an argon 
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cool to room temperature. A solution of 11.9 g (0.08 mol) of dichloromethylvinylsilane in 
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equipped with 2 reflux condensers, a thermometer and a mechanical stirrer, with vigorous 

stirring and cooling to −60 °C, a salt solution in THF and a solution of chlorosilane in THF 

were added simultaneously and at the same rate. The reaction mass was stirred until room 

temperature (for 1 h). The pH of the reaction mass was 5–7. After this, the excess THF was 

distilled off on a rotary evaporator and MTBE was added. Then, the reaction mixture was 

washed with water to remove the precipitate, and the excess MTBE was distilled off on a 

rotary evaporator. The obtained siloxane product was analyzed by GLC and GPC. The 

results are shown in Table 1 (№ 1). Then, the product was distilled. As a result, 9.9 g con-

taining of 96% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane was isolated. The 

1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 45%. 

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium 

(№ 7, Table 1). First, 20 g (0.07 mol) 1,5-disodiumoxyhexamethyltrisiloxane, 577 mL of 

anhydrous MTBE and 1 mL of anhydrous pyridine were added into a 2 L round-bottom 

flask equipped with a thermometer, dropping funnel and mechanical stirrer in an argon 

flow. A solution of 11.9 g (0.08 mol) of dichloromethylvinylsilane in 322 mL of anhydrous 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2) Cl→ONa 97 70 700 30 900 70

1 Rapid injection of a solution of diorganodichlorosilane to a solution or suspension of 1,5-
disodiumoxyhexamethyltrisiloxane; 2 simultaneous mixing of solutions of diorganodichlorosilane and 1,5-
disodiumoxyhexamethyltrisiloxane with the same molarity.

In addition, 7-hydro-1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane, 7,7-diethyl-1,1,3,3,5,5-
hexamethylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptamethyl-7-phenylcyclotetrasiloxane and
1,1,3,3,5,5-hexamethyl-7,7-diphenylcyclotetrasiloxane were obtained analogously to this
procedure in THF medium. The experimental results are presented in Table 1 (№ 3, 4, 5,
6, respectively).

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium
(№ 2, Table 1). First, 20 g (0.07 mol) 1,5-disodiumoxyhexamethyltrisiloxane, 341 mL of
anhydrous THF and 1 mL of anhydrous pyridine were added into a 1 L round-bottom
flask equipped with a thermometer, reflux condenser and mechanical stirrer in an argon
flow. Then, the reaction mass was heated to 66 ◦C with vigorous stirring and allowed to
cool to room temperature. A solution of 11.9 g (0.08 mol) of dichloromethylvinylsilane in
341 mL of anhydrous THF was prepared in a separate flask. Then, into another 2 L flask
equipped with 2 reflux condensers, a thermometer and a mechanical stirrer, with vigorous
stirring and cooling to −60 ◦C, a salt solution in THF and a solution of chlorosilane in THF
were added simultaneously and at the same rate. The reaction mass was stirred until room
temperature (for 1 h). The pH of the reaction mass was 5–7. After this, the excess THF
was distilled off on a rotary evaporator and MTBE was added. Then, the reaction mixture
was washed with water to remove the precipitate, and the excess MTBE was distilled off
on a rotary evaporator. The obtained siloxane product was analyzed by GLC and GPC.
The results are shown in Table 1 (№ 1). Then, the product was distilled. As a result, 9.9 g
containing of 96% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane was isolated. The
1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 45%.

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium (№ 7,
Table 1). First, 20 g (0.07 mol) 1,5-disodiumoxyhexamethyltrisiloxane, 577 mL of anhydrous
MTBE and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask equipped
with a thermometer, dropping funnel and mechanical stirrer in an argon flow. A solution of
11.9 g (0.08 mol) of dichloromethylvinylsilane in 322 mL of anhydrous MTBE was rapidly
added to the reaction mixture and cooled to −60 ◦C with vigorous stirring. The reaction
mass was stirred until room temperature (for 1 h). The pH of the reaction mass was 5-7.
Then, the reaction mixture was washed with water to remove the precipitate, and the excess
MTBE was distilled off on a rotary evaporator. The obtained siloxane product was analyzed
by GLC and GPC. The results are shown in Table 1 (№ 1). Then, the product was distilled.
As a result, 16.3 g containing of 97% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane
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was isolated by 85 ◦C/20 mm Hg. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane
yield was 75%.

In addition, 7-hydro-1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane, 7,7-diethyl-1,1,3,3,5,5-
hexamethylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptamethyl-7-phenylcyclotetrasiloxane and
1,1,3,3,5,5-hexamethyl-7,7-diphenylcyclotetrasiloxane were obtained analogously to this
procedure in MTBE medium. The experimental results are presented in Table 2 (№ 9, 10, 11,
12, respectively).

Table 2. Reaction conditions in MTBE and product characteristics.

№
Target Cyclote-

trasiloxane
Sequence of

Reagent
Addition

Characteristics of Products

Preparative
Yield

of Cycle, %

The Yield of
Target Cycle in

Volatile Products
by GLC, %

GPC Data

Low-Molecular-
Weight Part

High-Molecular-
Weight Part

% Mp % Mp

7

Polymers 2022, 13, x FOR PEER REVIEW 4 of 15 
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Cl→ONa 85 90 500 10 800 75 

8 ONa→Cl 3 83 80 500 20 1000 70 
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Cl→ONa 97 40  500 60  2400 55 

10 
 

Cl→ONa 80 30 700 70 1900 30 

11 
 

Cl→ONa 80 70 700 30 1200 40 

12 
 

Cl→ONa 90 60 700 40  900 38 

3 Adding dry 1,5-disodiumoxyhexamethyltrisiloxane to the diorganodichlorosilane solution. 

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium 

(№ 8, Table 1). First, 11.9 g (0.08 mol) of dichloromethylvinylsilane, in 899 mL of anhy-

drous MTBE, and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask 

equipped with a thermometer, dropping funnel and mechanical stirrer in an argon flow. 

Then, 20 g (0.07 mol) dry 1,5-disodiumoxyhexamethyltrisiloxane was rapidly added to 

the reaction mixture and cooled to −60 °C with vigorous stirring. The reaction mass was 

stirred until room temperature (for 1 h). The pH of the reaction mass was 5–7. Then, the 

reaction mixture was washed with water to remove the precipitate, and the excess MTBE 

was distilled off on a rotary evaporator. The obtained siloxane product was analyzed by 

GLC and GPC. The results are shown in Table 1 (№ 1). Then, the product was distilled. 

As a result, 15.2 g containing of 97% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane 

was isolated. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 70%. 

All obtained cycles were characterized by 1H and 29Si nuclear magnetic resonance 

(NMR)-1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane . 1H NMR, 

δ, ppm: 5.67–6.19 m (3H, ((CH2=CH)Si), 0.15 m (12H, Si(CH3)2). 29Si NMR, δ ppm: −18.48 

(2Si, Si(CH3)2O2/2), −18.89 (1Si, Si(CH3)2O2/2), −33.47 (1Si, Si(CH3)(CH2=CH)O2/2). 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2)

Cl→ONa 85 90 500 10 800 75

8 ONa→Cl 3 83 80 500 20 1000 70
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Cl→ONa 85 90 500 10 800 75 

8 ONa→Cl 3 83 80 500 20 1000 70 
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Cl→ONa 97 40  500 60  2400 55 

10 
 

Cl→ONa 80 30 700 70 1900 30 

11 
 

Cl→ONa 80 70 700 30 1200 40 

12 
 

Cl→ONa 90 60 700 40  900 38 

3 Adding dry 1,5-disodiumoxyhexamethyltrisiloxane to the diorganodichlorosilane solution. 

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium 

(№ 8, Table 1). First, 11.9 g (0.08 mol) of dichloromethylvinylsilane, in 899 mL of anhy-

drous MTBE, and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask 

equipped with a thermometer, dropping funnel and mechanical stirrer in an argon flow. 

Then, 20 g (0.07 mol) dry 1,5-disodiumoxyhexamethyltrisiloxane was rapidly added to 

the reaction mixture and cooled to −60 °C with vigorous stirring. The reaction mass was 

stirred until room temperature (for 1 h). The pH of the reaction mass was 5–7. Then, the 

reaction mixture was washed with water to remove the precipitate, and the excess MTBE 

was distilled off on a rotary evaporator. The obtained siloxane product was analyzed by 

GLC and GPC. The results are shown in Table 1 (№ 1). Then, the product was distilled. 

As a result, 15.2 g containing of 97% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane 

was isolated. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 70%. 

All obtained cycles were characterized by 1H and 29Si nuclear magnetic resonance 

(NMR)-1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane . 1H NMR, 

δ, ppm: 5.67–6.19 m (3H, ((CH2=CH)Si), 0.15 m (12H, Si(CH3)2). 29Si NMR, δ ppm: −18.48 

(2Si, Si(CH3)2O2/2), −18.89 (1Si, Si(CH3)2O2/2), −33.47 (1Si, Si(CH3)(CH2=CH)O2/2). 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2)

Cl→ONa 97 40 500 60 2400 55
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3 Adding dry 1,5-disodiumoxyhexamethyltrisiloxane to the diorganodichlorosilane solution. 

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium 

(№ 8, Table 1). First, 11.9 g (0.08 mol) of dichloromethylvinylsilane, in 899 mL of anhy-

drous MTBE, and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask 

equipped with a thermometer, dropping funnel and mechanical stirrer in an argon flow. 

Then, 20 g (0.07 mol) dry 1,5-disodiumoxyhexamethyltrisiloxane was rapidly added to 

the reaction mixture and cooled to −60 °C with vigorous stirring. The reaction mass was 

stirred until room temperature (for 1 h). The pH of the reaction mass was 5–7. Then, the 

reaction mixture was washed with water to remove the precipitate, and the excess MTBE 

was distilled off on a rotary evaporator. The obtained siloxane product was analyzed by 

GLC and GPC. The results are shown in Table 1 (№ 1). Then, the product was distilled. 

As a result, 15.2 g containing of 97% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane 

was isolated. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 70%. 

All obtained cycles were characterized by 1H and 29Si nuclear magnetic resonance 

(NMR)-1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane . 1H NMR, 

δ, ppm: 5.67–6.19 m (3H, ((CH2=CH)Si), 0.15 m (12H, Si(CH3)2). 29Si NMR, δ ppm: −18.48 

(2Si, Si(CH3)2O2/2), −18.89 (1Si, Si(CH3)2O2/2), −33.47 (1Si, Si(CH3)(CH2=CH)O2/2). 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2)

Cl→ONa 80 30 700 70 1900 30
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3 Adding dry 1,5-disodiumoxyhexamethyltrisiloxane to the diorganodichlorosilane solution. 

Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium 

(№ 8, Table 1). First, 11.9 g (0.08 mol) of dichloromethylvinylsilane, in 899 mL of anhy-

drous MTBE, and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask 

equipped with a thermometer, dropping funnel and mechanical stirrer in an argon flow. 

Then, 20 g (0.07 mol) dry 1,5-disodiumoxyhexamethyltrisiloxane was rapidly added to 

the reaction mixture and cooled to −60 °C with vigorous stirring. The reaction mass was 

stirred until room temperature (for 1 h). The pH of the reaction mass was 5–7. Then, the 

reaction mixture was washed with water to remove the precipitate, and the excess MTBE 

was distilled off on a rotary evaporator. The obtained siloxane product was analyzed by 

GLC and GPC. The results are shown in Table 1 (№ 1). Then, the product was distilled. 

As a result, 15.2 g containing of 97% of 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane 

was isolated. The 1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane yield was 70%. 

All obtained cycles were characterized by 1H and 29Si nuclear magnetic resonance 

(NMR)-1,1,3,3,5,5,7-hexamethyl-7-vinylcyclotetrasiloxane . 1H NMR, 

δ, ppm: 5.67–6.19 m (3H, ((CH2=CH)Si), 0.15 m (12H, Si(CH3)2). 29Si NMR, δ ppm: −18.48 

(2Si, Si(CH3)2O2/2), −18.89 (1Si, Si(CH3)2O2/2), −33.47 (1Si, Si(CH3)(CH2=CH)O2/2). 

(DMe2)3(D
MeVin)

(DMe2)3(D
MeH)

(DMe2)3(D
Et2)

(DMe2)3(D
MePh)

(DMe2)3(D
Ph2)

Cl→ONa 80 70 700 30 1200 40
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Synthesis of 1,1,3,3,5,5,7-heptamethyl-7-vinylcyclotetrasiloxane in MTBE medium (№
8, Table 1). First, 11.9 g (0.08 mol) of dichloromethylvinylsilane, in 899 mL of anhydrous
MTBE, and 1 mL of anhydrous pyridine were added into a 2 L round-bottom flask equipped
with a thermometer, dropping funnel and mechanical stirrer in an argon flow. Then, 20 g
(0.07 mol) dry 1,5-disodiumoxyhexamethyltrisiloxane was rapidly added to the reaction
mixture and cooled to −60 ◦C with vigorous stirring. The reaction mass was stirred until
room temperature (for 1 h). The pH of the reaction mass was 5–7. Then, the reaction mixture
was washed with water to remove the precipitate, and the excess MTBE was distilled off
on a rotary evaporator. The obtained siloxane product was analyzed by GLC and GPC.
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. 1H NMR, δ,
ppm: 5.67–6.19 m (3H, ((CH2=CH)Si), 0.15 m (12H, Si(CH3)2). 29Si NMR, δ ppm: −18.48
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/
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. 1H NMR, δ, ppm:
4.70 s (1H, SiH), 0.15 m (21H, Si(CH3)2). 29Si NMR, δ, ppm: −17.65 (2Si, Si(CH3)2O2/2),
−18.79 (1Si, Si(CH3)2O2/2), −34.79 (1Si, Si(CH3)(H)O2/2).
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1,1,3,3,5,5,7-heptamethyl-7-phenylcyclotetrasiloxane

Polymers 2022, 13, x FOR PEER REVIEW 5 of 15 
 

 

7-hydro-1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane . 1H NMR, δ, 

ppm: 4.70 s (1H, SiH), 0.15 m (21H, Si(CH3)2). 29Si NMR, δ, ppm: −17.65 (2Si, Si(CH3)2O2/2), 

−18.79 (1Si, Si(CH3)2O2/2), −34.79 (1Si, Si(CH3)(H)O2/2). 

7,7-diethyl-1,1,3,3,5,5-hexamethylcyclotetrasiloxane  1H NMR, δ, 

ppm: 0.91–0.96 t (6H, Si(CH2CH3)2), 0.49–0.52 q (4H, Si(CH2CH3)2), 0.08–0.10 d (18H 

(Si(CH3)2). 29Si NMR, δ ppm: −19.24 (1Si, Si(CH2CH3)2O2/2), −19.45 (1Si, Si(CH3)2O2/2), −19.58 

(2Si, Si(CH3)2O2/2). 

1,1,3,3,5,5,7-heptamethyl-7-phenylcyclotetrasiloxane . 1H NMR, δ, 

ppm: m 7.25-7.57 (5H, Si(C6H5)), 0.24 s (3H, Si(CH3)), 0.03–0.07 m (18H, Si(CH3)2). 29Si 

NMR, δ ppm: −18.07 (2Si, Si(CH3)2O2/2), −18.61 (1Si, Si(CH3)2O2/2), −32.59 (1Si, 

Si(CH3)(C6H5)O2/2). 

1,1,3,3,5,5-hexamethyl-7,7-diphenylcyclotetrasiloxane . 1H NMR, δ, 

ppm: 7.25–7.58 m (10H, Si(C6H5)2), 0.01–0.06 m (18H, (Si(CH3)2). 29Si NMR, δ ppm: −17.49 

(2Si, Si(CH3)2O2/2), −18.51 (1Si, Si(CH3)2O2/2), −46.19 (1Si, Si(C6H5)2O2/2). 

Polymerization of . First, 5 g (0.015 mol) of 7,7-diethyl-1,1,3,3,5,5-hex-

amethylcyclotetrasiloxane and 0.16 g (2.85 mmol) of KOH were stirred at 140 °C for 1 h. 

At the end of the polymerization, a colorless, highly viscous product was obtained. After 

this, at 5 °C, 13.5 mL anhydrous toluene, 1.5 g (0.014 mol) of chlorotrimethylsilane and 1.1 

g (0.014 mol) pyridine were added to the reaction mixture. The resulting product was 

washed to neutral pH of the aqueous layer, and the solution was dried over anhydrous 

sodium sulfate. Then, the excess solvent was removed on a rotary evaporator and the pol-

ymer was dried at 1 mmHg. The resulting product was characterized by a bimodal mo-

lecular weight distribution. The high-molecular-weight part was separated using prepar-

ative gel permeation chromatography. The product was analyzed by GPC and NMR 

methods. The copolymerizations of octamethylcyclotetrasiloxane  with octae-

thylcyclotetrasiloxane or  were performed in a similar manner to 

this procedure. The copolymerization conditions and results are shown in Table 3. 

Table 3. Polymerization conditions and characteristics of products. 

№ 
Monomer Ra-

tio, mol/mol 

KOH 1, 

mol 
Mn Theor. 

Molecular Weight Characteristics of the Product 

(GPC) 

Et2SiO/ 

Me2SiO, 

mol/mol 

Tg/Tc,  

°C 

% Low-

Molecular-

Weight 

Part 

% High-

Molecular-

Weight 

Part 

Mw Mn Mw/Mn Calc. NMR  

1 
/

 

1/1 

0.032 11,000 80 20 16,200 8300 1.9 1/1 1/5.4 
un-

changed 

2 
/

1/1 

0.032 10,000 40 60 68,200 30,300 2.3 1/7 1/6.0 −131/− 

. 1H NMR, δ,
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. First, 5 g (0.015 mol) of 7,7-diethyl-1,1,3,3,5,5-
hexamethylcyclotetrasiloxane and 0.16 g (2.85 mmol) of KOH were stirred at 140 ◦C for 1 h.
At the end of the polymerization, a colorless, highly viscous product was obtained. After
this, at 5 ◦C, 13.5 mL anhydrous toluene, 1.5 g (0.014 mol) of chlorotrimethylsilane and 1.1 g
(0.014 mol) pyridine were added to the reaction mixture. The resulting product was washed
to neutral pH of the aqueous layer, and the solution was dried over anhydrous sodium
sulfate. Then, the excess solvent was removed on a rotary evaporator and the polymer
was dried at 1 mmHg. The resulting product was characterized by a bimodal molecular
weight distribution. The high-molecular-weight part was separated using preparative gel
permeation chromatography. The product was analyzed by GPC and NMR methods. The
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were performed in a similar manner to this procedure. The
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1 
/

 

1/1 

0.032 11,000 80 20 16,200 8300 1.9 1/1 1/5.4 
un-
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/

1/1 
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/
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2.2. Methods

GLC analysis was performed on a Chromatek Analytic 5000 chromatograph (Russia),
a katharometer detector, a helium carrier gas, 2 m × 3 mm columns and a stationary phase
SE-30 (5%) printed on Chromaton-H-AW. Registration and calculation of data were carried
out using the program “Chromatek Analyst” (Russia).

GPC analysis was performed on a chromatographic system consisting of a STAYER se-
ries 2 high-pressure pump (Aquilon, Russia), a RIDK 102 refractometric detector (Czech Re-
public) (using eluent—toluene) and a JETSTREAM 2 PLUS column thermostat (KNAUER,
Berlin, Germany). Eluents—toluene + 2% THF, flow rate—1.0 mL/min. Columns 300 mm
long and 7.8 mm in diameter (300 × 7.8 mm) were filled with the Phenogel sorbent (Phe-
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nomenex, Torrance, CA, USA), the particle size was 5 mm, and the pore size was 103A and
104A (the passport separation range was up to 75,000 Da and up to 500,000 Da, respectively).
The registration and calculation of data were performed using the UniChrom 4.7 program
(Belarus).

1H and 29Si NMR spectra of products were recorded using a Bruker Avance II
300 spectrometer. CDCl3 was used as the internal standard with a chemical shift of
δ = 7.25 ppm.

Infrared (IR) spectra were recorded on an IR Fourier spectrometer—Nicolet iS50
(Thermo Scientific, Waltham, MA, USA)—with a built-in ATR (crystal-diamond) attachment.
Measurement conditions: resolution—4 cm−1, number of scans—32.

Differential scanning calorimetry (DSC) of samples was performed on the differential
scanning calorimeter DSC-3 (Mettler-Toledo, Switzerland) at a heating rate of 10◦/min in
an argon atmosphere (60 mL/min).

3. Results and Discussion
3.1. Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes

The general scheme of interaction of 1,5-sodiumoxyhexamethyltrisiloxane with dichlor-
odiorganosilanes is shown in Figure 1.
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Figure 1. Scheme of interaction of 1,5-disodiumoxyhexamethyltrisiloxane and diorganodichlorosi-
lanes.

Methylvinyl- and methyldichlorosilanes were used as dichlorodiorganosilane for the
synthesis of functional mixed dimethylcyclotetrasiloxanes. To study the effect of the sub-
stituent type, the interaction of 1,5-disodiumoxyhexamethyltrisiloxane and methylphenyl-,
diphenyl- and diethyldichlorosilanes was also investigated.

Firstly, 1,5-disodiumoxyhexamethyltrisiloxane is a white hygroscopic powder, prac-
tically insoluble in most organic solvents. Its dissolution in tetrahydrofuran or pyridine
is achieved only at temperatures up to 50–60 ◦C, but, even in this case, the solubility of
the salt does not exceed 5 wt.%. Therefore, it was of interest to compare the process under
homogeneous and heterogeneous conditions at the same concentration of reagent (5 wt.%)
in the reaction mixture. THF was used for homogeneous conditions; MTBE was used for
heterogeneous conditions. Regardless of other conditions, the reaction was carried out
at −60 ◦C to prevent the processes of cleavage of the siloxane bond under the action of
silanolate end groups. The reaction mixture was intensively stirred for 1 h after adding
the reagents. If the pH was neutral or slightly acidic, the reaction mixture was stirred
until room temperature. The siloxane product was isolated and analyzed by GPC, and
the 1,1,3,3,5,5-hexamethyl-7,7-diorganocyclotetrasiloxane was isolated by distillation at
reduced pressure. The purity and structure of the mixed cyclotetrasiloxanes were con-
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firmed by a combination of GLC and 1H and 29Si NMR spectroscopy methods. The reaction
conditions and the composition of the products are shown in Tables 1 and 2.

GLC data indicate the absence of side processes with the silanolate ends’ participation.
In all cases, depending on the type of diorganodichlorosilane and solvent, volatile products
consisted of the target cyclotetrasiloxane by 85–98% (Figure 2a,b, Tables 1 and 2). In compari-
son, Figure 2c shows the GLC curve of the volatile products of the 1,5-disodiumoxyhexameth
yltrisiloxane and dichlorodiethylsilane interaction under homogeneous conditions, where
the processes of siloxane bond cleavage and rearrangement of the resulting products
were found.
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Figure 2. GLC curves of volatile products 4 (a) (Table 1), 12 (b) (Table 2), obtained at the reaction
temperature of −60 ◦C, and the product of the interaction of the salt with dichlorodiethylsilane at
room temperature.

The effect of adding reagents on the reaction mixture was studied in the case of
dichloromethylvinylsilane and 1,5-disodiumoxyhexamethyltrisiloxane. It was found that
the order of reagent injection under homogeneous conditions and heterogeneous con-

ditions did not significantly affect the yield of the target
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. Thus, under
homogeneous conditions, the target cycle was formed in 45–55% yield, both when adding
chlorosilane in THF to a solution of salt in THF (№ 1, Table 1) and with the simultaneous
injection solutions of salt and chlorosilane in THF with the same molarity (№ 2, Table 1).
In this case, the sequence of reagent addition affected only the molecular weight distribu-
tion of linear oligomers (Figure 3). Under heterogeneous conditions, salt was added to a
chlorosilane in MTBE (№ 4, Table 1) or chlorosilane to a suspension of salt in MTBE, and
the yield of the product was 70–75% (№ 8, Table 1).

Polymers 2022, 13, x FOR PEER REVIEW 8 of 15 
 

 

In this case, the sequence of reagent addition affected only the molecular weight distribu-

tion of linear oligomers (Figure 3). Under heterogeneous conditions, salt was added to a 

chlorosilane in MTBE (№ 4, Table 1) or chlorosilane to a suspension of salt in MTBE, and 

the yield of the product was 70–75% (№ 8, Table 1). 

 

Figure 3. GPC curves of products 1, 2, 7 (Table 1). 

Further interactions were carried out by adding a solution of dichlorodiorganosilane 

to a solution or suspension of the salt in THF or MTBE, respectively. 

Analysis of the data in Tables 1 and 2 allowed us to divide all cases into two groups. 

Vinylmethyl- and methyldichlorosilanes showed the highest preparative yield of 

 and in MTBE, which is 55 and 75%, respectively (№ 

3 and 6, Table 1). The opposite situation was observed using more sterically hindered 

chlorosilyl end groups such as diethyl-, methylphenyl- and diphenyldichlorosilanes: the 

highest yields of , and  were achieved 

under homogeneous conditions, equal to up to 65, 67 and 70%, respectively (№ 8, 10, 12, 

Table 2). Such differences in the yields of products indicate significant opportunities for 

further optimization of the yield of each specific mixed cycle. 

All dimethylcyclotetrasiloxanes were isolated with a purity of at least 95% according 

to GLC data; the structure of the obtained products was confirmed by 1H, 29Si NMR and 

IR spectroscopy. The relevant data are given in the Supplementary Materials (Figures S1–

S15). The IR spectroscopy data of the isolated cycles indicate the absence of an absorption 

band in the region of 3400–3600 cm−1, which is characteristic of silanol groups and con-

firms the cyclic structure of the isolated compounds (Figures S1–S5). The 1H and 29Si NMR 

spectroscopy data of the isolated fractions indicate that the integral intensities of the pro-

tons signals of corresponding substituents at silicon atoms and silicon atoms themselves 

conform to the calculated values (Figures S11–S15). 

The data in Tables 1 and 2 show that the main reaction product may be a linear oli-

gomer with a regular arrangement of modifying units under certain conditions. In partic-

ular, in sample 10 (Table 2), the product contained  along with the linear 

poly(diethyl)(dimethyl)siloxane with Mp = 1900 and content of 70%. The product was 

blocked with chlorodimethylvinylsilane to confirm the linear structure (Figure 4) and its 

composition and molecular weight characteristics were determined by 1H NMR spectros-

copy and GPC methods (Figure 5). 

0 5 10 Evaluation time/ min

3

1

2

Mp of low 

molecular 

weight part
Mp of high 

molecular 

weight part

Figure 3. GPC curves of products 1, 2, 7 (Tables 1 and 2).
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Further interactions were carried out by adding a solution of dichlorodiorganosilane
to a solution or suspension of the salt in THF or MTBE, respectively.

Analysis of the data in Tables 1 and 2 allowed us to divide all cases into two groups.
Vinylmethyl- and methyldichlorosilanes showed the highest preparative yield of
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were achieved under
homogeneous conditions, equal to up to 65, 67 and 70%, respectively (№ 8, 10, 12, Table 2).
Such differences in the yields of products indicate significant opportunities for further
optimization of the yield of each specific mixed cycle.

All dimethylcyclotetrasiloxanes were isolated with a purity of at least 95% according
to GLC data; the structure of the obtained products was confirmed by 1H, 29Si NMR and IR
spectroscopy. The relevant data are given in the Supplementary Materials (Figures S1–S15).
The IR spectroscopy data of the isolated cycles indicate the absence of an absorption band
in the region of 3400–3600 cm−1, which is characteristic of silanol groups and confirms
the cyclic structure of the isolated compounds (Figures S1–S5). The 1H and 29Si NMR
spectroscopy data of the isolated fractions indicate that the integral intensities of the
protons signals of corresponding substituents at silicon atoms and silicon atoms themselves
conform to the calculated values (Figures S11–S15).

The data in Tables 1 and 2 show that the main reaction product may be a linear
oligomer with a regular arrangement of modifying units under certain conditions. In

particular, in sample 10 (Table 2), the product contained
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along with the
linear poly(diethyl)(dimethyl)siloxane with Mp = 1900 and content of 70%. The product
was blocked with chlorodimethylvinylsilane to confirm the linear structure (Figure 4)
and its composition and molecular weight characteristics were determined by 1H NMR
spectroscopy and GPC methods (Figure 5).
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Figure 4. Scheme of blocking linear poly(diethyl)(dimethyl)siloxane (№ 10, Table 2).
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Figure 5. 1H NMR spectrum and GPC curve of blocked linear poly(diethyl)(dimethyl)siloxane (№ 10,
Table 2).
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The correlation of the integral intensities of proton signals of ethyl, vinyl and methyl
groups in the backbone and terminal silicon atoms allowed us to determine by the 1H
NMR spectrum that the unit composition of the obtained product corresponded to the
following formula: VinMe2SiO-{[Et2SiO]1[Me2SiO]2,4}5,3-SiMe2Vin with Mn equal to ~1640.
The number-average molecular weights of the polymer calculated from the NMR and
determined by the GPC method (Mn = 1800, Mw = 2300, Mw/Mn = 1.3) were consistent
and confirmed the linear structure of poly(diethyl)(dimethyl)siloxane.

Thus, the interactions of 1,5-disodiumoxyhexamethyltrisiloxane with diorganodichloro
silanes were investigated to obtain 1,1,3,3,5,5-hexamethyl-7,7-diorganocyclotetrasiloxanes.
For the first time, it was shown that mixed dimethylcyclotetrasiloxanes can be obtained
with a yield of 55 to 75% by this method. The ratio of linear and cyclic products of a mixed
structure can be controlled within wide limits by selecting the reaction conditions. Using
dichlorodiethylsilane as an example, it was shown that this method can be a promising
means of obtaining linear oligomers with alternating diethyl- and dimethylsiloxane units.

3.2. Preparation of Poly(diethyl)(dimethyl)siloxane

A simple and cheap method for the preparation of 1,1,3,3,5,5-hexamethyl-7,7-diorgano
cyclotetrasiloxanes opens up new prospects for the preparation of polydimethyldiorganosilo
xanes with a controlled content of diorganosilyl groups via polymerization methods. It is
known that, in order to obtain polydiethylsiloxanes, hexaethylcyclotrisiloxane is polymer-

ized [51,52] since octaethylcyclotetrasiloxane
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is practically not polymerized. To
obtain poly(diethyl)(dimethyl)siloxane copolymers, catalytic rearrangement of the cohy-
drolysis products of dimethyl- and diethyldichlorosilanes is carried out [53]. In our study,

we paid attention to the prospects of using mixed
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The content of the high-molecular and low-molecular parts of the products was
determined by the GPC method (Table 3, Figures 7 and 8). The high-molecular-weight
part was separated using preparative GPC, and its composition and molecular weight
characteristics were analyzed by 1H NMR spectroscopy and GPC methods (Figures S16–
S18). The characteristics of the obtained products are shown in Table 3.
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