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A novel approach to the clustering of microarray
data via nonparametric density estimation
Riccardo De Bin, Davide Risso*

Abstract

Background: Cluster analysis is a crucial tool in several biological and medical studies dealing with microarray
data. Such studies pose challenging statistical problems due to dimensionality issues, since the number of variables
can be much higher than the number of observations.

Results: Here, we present a general framework to deal with the clustering of microarray data, based on a three-step
procedure: (i) gene filtering; (ii) dimensionality reduction; (iii) clustering of observations in the reduced space. Via a
nonparametric model-based clustering approach we obtain promising results both in simulated and real data.

Conclusions: The proposed algorithm is a simple and effective tool for the clustering of microarray data, in an
unsupervised setting.

Background
The analysis of gene expression microarray data using
clustering techniques plays an important role, for
instance, in the discovery, validation, and understanding
of various classes and subclasses of cancer [1]. There are
two ways of clustering a gene expression matrix [2,3]:
(i) gene function may be inferred from clusters of genes
similarly expressed across the samples and (ii) samples
can form groups which show similar expression across
the genes. Moreover, genes and samples can be clus-
tered simultaneously, with their inter-relationship repre-
sented by bi-clusters [4,5].
The clustering of the genes on the basis of the sam-

ples is a standard cluster analysis problem that can be
effected by a variety of algorithms [1]. For a comprehen-
sive review see [2].
A more challenging problem is the clustering of the

samples on the basis of the genes, where the standard
clustering techniques, such as k-means or hierarchical
clustering, fail to capture complex local structures, due
to the high-dimenionality of the data [2].
In recent years, computational improvement enabled

new clustering techniques and contributed to the devel-
opment of previously unfeasible methods. In this context,
McLachlan et al. [1] propose a mixture model-based
approach to cluster microarray expression data. Their

scheme accounts for gene selection through mixtures of t
distributions, and dimensionality reduction through a
mixture of factor analyzers. More precisely, they select a
gene on the basis of a likelihood ratio statistic for testing
one versus two components in the mixture model. In the
second step of their algorithm, they cluster the samples
by fitting a two-component mixture of factor analyzers.
Although their method sounds like a good approach to

clustering samples in a high-dimensional space, there are
three main limitations. Firstly, the parametric assump-
tions about clusters distributions can be restrictive [6];
for example, two Gaussian random variables can result in
a single mode (one cluster) or even a two component
multivariate Gaussian mixture can lead to more than two
modes [6]. Moreover, it requires pre-specification of the
number of the mixture components; this represents a ser-
ious limitation from an unsupervised perspective, which
assumes that the true number of clusters is unknown.
Finally, the number of parameters per component grows
as the square of the dimension of the data [7], this is a
major shortcoming in high-dimensional data.
In this paper, we present a novel strategy, which con-

sists in applying a clustering technique after gene filter-
ing and dimensionality reduction, in order to exploit the
most significant dimensions in the definition of the clus-
ters. Our procedure can be thought of as a three-step
algorithm: (i) gene filtering; (ii) dimensionality reduc-
tion; (iii) clustering in the reduced space.* Correspondence: davide@stat.unipd.it
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Several authors outlined the importance of a gene fil-
tering step prior to inferential procedures [8] or cluster
analysis [9]. Tritchler et al. [9] empirically showed that
principal components and cluster analysis are strongly
affected by gene selection, and that filtering out uninfor-
mative genes can reduce bias in the clustering of sam-
ples. Furthermore, Johnstone and Lu [10] showed, from
a theoretical point of view, that some initial reduction in
dimensionality is desirable before applying a principal
component analysis, when p is larger than n.
Traditional approaches to gene filtering are based on

thresholding the mean or the variance of genes across
samples. Bourgon et al. [8] found that gene-by-gene fil-
tering by overall variance increased the power of the
subsequent t-test. Tritchler et al. [9] considered the cov-
ariance structure of the genes, defining filters that pre-
serve the topology of the network.
Nevertheless, from a clustering point of view, these

approaches could be unsafe: a gene should be consid-
ered relevant if it is important in the definition of the
clusters; therefore, it seems more appropriate to retain
those genes whose univariate distribution highlights a
clear grouping among the observations rather than the
ones with higher variance.
To evaluate our general strategy, we implement an

algorithm based on a nonparametric model-based clus-
tering technique by Azzalini and Torelli [11], which we
will refer to as pdfCluster (see the Methods Section for
a brief introduction). We compare it with a traditional
partition algorithm (i.e., k-means), and with a similar
strategy in which we use, instead of pdfCluster, its direct
competitor, Mclust [7,12], a state-of-the-art mixture-
model-based clustering tool. By using the nonparametric
approach based on pdfCluster, we achieve improvements
in clustering of samples both in simulated and in real
experiments. To be consistent with microarray applica-
tions, we use here the typical microarray terminology:
we denote by “genes” the p variables and by “samples”
the n observations. Nonetheless, it should be clear that
the proposed approach is not limited to microarray
data, but, in principle, it could be applied to every set of
continuous variables with “large p, small n”.

Results and Discussion
A novel algorithm to clustering of expression data
As we said, clustering samples using expression data is a
challenging statistical problem due to dimensionality
issues. Therefore, in this context, it is unfeasible to
directly apply a clustering technique to the whole data
matrix. Here, we evaluate our strategy implementing an
algorithm which exploits the self-detection of number of
clusters feature of pdfCluster.
The algorithm can be summarized as follows: (i) cluster

samples using the univariate distribution of each gene and

select for the subsequent analyses the p′ genes, in which
pdfCluster identifies two or more clusters; (ii) reduce
dimensionality by selecting the first p″ principal compo-
nents; (iii) apply pdfCluster in the p″-dimensional space.
It is straightforward to see that this algorithm falls within
the general framework defined in the Background Section.
As for step (i), i.e., gene filtering, we consider a gene

relevant if its values in one category (healthy, say) are
different from the ones in the other category (unhealthy,
say) or categories. From another point of view, this
means that the samples representing the healthy sub-
jects are separated from the unhealthy ones, or, more
simply, the samples are in different clusters. In this way,
it seems reasonable to apply a cluster method to each
gene, and retain as relevant those genes for which the
method identifies distinct clusters. In a nonparametric
framework, we can apply pdfCluster to each gene, tak-
ing advantage of the self-detection number of clusters
feature. We select only the genes for which the method
detects two or more clusters (see Figure 1). We con-
sider a clustering technique to define informative genes
over the traditional variance-based approaches, because
small overall variance does not necessarily imply a sin-
gle cluster, and high overall variance is not always an
indication of two of more clusters. Moreover, variance-
based filters depend on the choice of an arbitrary
threshold, which can be difficult to choose, since one
typically does not know which portion of the genes is
responsible for the clustering of the samples. As for
step (ii), i.e., dimensionality reduction, considered if the
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Figure 1 Example of gene selection in the filtering step of our
procedure. Gene1 is crucial in cluster definition, while gene2 is not.
The univariate distributions of the genes reflect this, as one can see
from the Gaussian kernel density estimation reported along the axes.
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selected genes are still too many, we propose to keep
the first principal components, as in [11]. The principal
component analysis is a very simple procedure which
reduces the dimension of a data set of a large number
of interrelated variables, preserving as much as possible
of the data set variation. Since it has no requirements
about the data distribution, it is consistent with our
nonparametric strategy.
In order to compare our approach to Mclust, we car-

ried out a procedure analogous to the one described
here, but using the normal-mixture model both in step
(i) and (iii). Note that this procedure differs from the one
in McLachlan et al. [1], because they use a mixture of fac-
tor analyzers to select genes and reduce dimensionality.
Computational issues
The further dimensionality reduction in our step (ii) is
necessary since pdfCluster, in order to compute the
Delaunay triangulation, exploits the Quickhull algorithm
[13]. Barber et al. [13] state that the Quickhull algorithm
for finding the convex hull of a set of n points in ℝp

requires at most O(n log n) operations if p ≤ 3, and O
(nm/m!) where m = ⌊p/2⌋ for p > 3. Azzalini and Torelli
[11] observed that the computing time increases less
than quadratically in n for any fixed p, but it increases
more than exponentially in p for fixed n. Our experience
is that for p = 1, the algorithm is very fast (less than one
minute to run 20,000 times with an Intel(R) Core(TM)2
Quad CPU Q9400 @ 2.66 GHz). Therefore, there are no
computationally related problems for step (i). Moreover,
with p < 10 it takes a reasonable time (e.g. 11 mins in
our machine with p = 9) to complete the procedure.
Number of principal components
In order to choose the number of principal components,
we carried out a small simulation study (data not
shown): we found that, with n = 100, pdfCluster per-
forms at best, in terms of misclassification error, with
3-4 dimensions, while with p = 5 the misclassification
error starts to grow. This is probably due to the extreme
dispersion of the observations in higher dimensional
spaces (the well-known curse of dimensionality). The
performances of pdfCluster are slightly better with 4
components, but the improvement does not justify the
increased computational time (recall that the order of
the number of operations needed to compute the Quic-
khull algorithm massively changes between p ≤ 3 and
p > 3). Thus, for the subsequent analyses, we will retain
3 principal components.

Simulated data
In this Section, we evaluate our proposal by means of
simulated data. For simulating data with structure simi-
lar to that of real microarray experiments, we use two
schemes, i.e., the Gamma-Gamma (GG) model [14] and
the Normal-Uniform (NU) model [15].

In GG model we simulate data with two clusters (e.g.
case/control), such that the majority of genes are equally
expressed between the groups and a small fraction of
them (5%) is differentially expressed. This mimics a clas-
sical experiment in which some diseased subjects are
compared to healthy controls.
In NU model we simulate data with three clusters:

cluster 1 consists of 40 samples with 150 up-regulated
and 50 down-regulated genes; cluster 2 consists of 40
samples with 50 down-regulated genes; cluster 3 consists
of 20 samples with neither up- nor down-regulated
genes. Note that cluster 2 and 3 are “closer” to each
other than to cluster 1 and that cluster 3 has smaller
sample size. This mimics a more elaborate design, e.g.
two different types of a specific disease versus a normal
control.
GG model
Table 1 shows that both pdfCluster and Mclust provide
results surprisingly accurate in correct cluster recogni-
tion, low error rate and high sensitivity/specificity: this
could be explained by an extreme distance between the
two groups in the original p-dimensional space.
More interesting is the very different behaviour in the

choice of the relevant genes: pdfCluster is very good in
recognizing them, with a very low error rate (about 8%),
while Mclust shows a very high error rate (about 78%).
We simulated a relatively small number of “marker”
genes; pdfCluster correctly discards the majority of
genes as non-relevant in the determination of the clus-
ters, while Mclust seems to be too sensitive to outliers,
erroneously capturing differences due to random noise.
NU model
As expected, Table 2 shows that in this model both
pdfCluster and Mclust lead to higher classification errors
than in GG model. Also in the gene filtering step, both
methods have difficulties in finding the relevant genes.
Mclust is able to recognize three clusters in 39% and

two clusters in 34% of the simulations; pdfCluster recog-
nizes three clusters in 19% and two clusters in 47% of
the simulations. On the other hand, the mean error rate
of the final classification is 0.135 for pdfCluster while

Table 1 Simulation results for GG model

pdfCluster Mclust

mean se mean se

SE 0.9877 0.0007 0.9991 0.0001

SP 0.9866 0.0008 0.9985 0.0004

ER 0.0128 0.0006 0.0012 0.0002

RG 0.0837 0.0061 0.7787 0.0093

CC 0.77 0.84

Simulation results for pdfCluster and Mclust in GG model: rate of correct
identification of number of clusters (CC), sensitivity (SE), specificity (SP) and
error rate (ER) in the classification of the samples, and error rate in the
selection of relevant genes (RG).
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for Mclust is 0.227. This is probably due to the fact that
the cases in which pdfCluster correctly recognizes three
clusters are those with the most separated clusters
among the ones recognized by Mclust: obviously, in the
less separated clusters cases, it is more difficult to allo-
cate the samples.
Finally, it is worth noting that pdfCluster outperforms

Mclust according to the gene selection error rate (“RG”
row): as in previous simulation study, pdfCluster works
better in recognizing which genes are effectively respon-
sible for the determination of the clusters.
Sample Size
One issue with microarray data is often the low sample
size. In order to evaluate its effect on the performance
of our approach, we simulated data from the NU model,
varying the sample size n. For different values of n,
namely n = 10, 20, 50, 100, 200, we simulated B = 1,000
samples in a setting similar to the previous Section, i.e.,
40% of the observations forming cluster 1, 40% forming
cluster 2 and 20% cluster 3.
Table 3 shows the misclassification error rate for both

pdfCluster and Mclust. Mclust performs badly for low and
moderate sample size (n ≤ 50), reaching results comparable
to that of pdfCluster only with a high number of observa-
tions (n = 200), which is rare in microarray studies. On the
other hand, pdfCluster behavior is stable across different
sample sizes, yielding good results even when n ≤ 20.

Real data
Along with simulations, we consider two benchmarking
real datasets, studied before by several authors [1,16-20],

which we will refer to as the Colon data and the Leu-
kaemia data (see Method Section for details on the
datasets).
Colon data
As described above, we analyze the dataset, following
three steps: (i) gene filtering, (ii) dimensionality reduc-
tion, (iii) clustering of samples. Namely, the first step of
the procedure consists in applying the cluster algorithm
to the univariate distribution of each gene. The genes
that show two or more clusters are considered for the
further steps.
In the first step, the pdfCluster algorithm is able to

recognize 84 genes, which discriminate data into two or
more groups. We proceed by considering the first three
principal components of this reduced data-matrix. The
procedure finds three clusters, summarized in Table 4
which clearly correspond to biologically meaningful
groups. The first cluster consists of tumor tissues (with 3
misclassified samples), while clusters 2 and 3 comprise
normal tissues (with 5 misclassified). It is worth noting
that six out of the eight misallocated samples (tumor tis-
sues 30, 33 and 36 and normal tissues 48, 58 and 60) are
found to be misclassified in several previous analyses,
including [1,17]. As stated, for instance, in [17], these six
samples are likely to be wrongly labeled. Furthermore,
Getz et al. [19] reported that there was a change in the
protocol during the experiments: tumor samples 1-11 and
normal samples 41-51 were collected within the first pro-
tocol, while tumor samples 12-40 and normal samples
52-62 were collected within the second. Although for the
tumor samples our approach did not recognize any differ-
ence between the protocols, cluster 2 and cluster 3 split
normal tissues in two groups according to the protocols.
In the first step, Mclust is able to find 369 discrimi-

nant genes. We consider the first three principal compo-
nents of this sub-space for clustering. The procedure
finds two clusters, with a rather high misclassification
error (see Table 5). We also apply the k-means algo-
rithm to the entire dataset. The results of the three
approaches are shown in Table 5. It can be seen that
k-means, exploited in the original p-dimensional space,
does not perform well. Moreover, pdfCluster outper-
forms (in terms of error rate) Mclust, if one considers
cluster 2 and 3 together as the normal samples.
As stated before, McLachlan et al. [1] studied the

same microarray dataset. They selected 446 relevant

Table 2 Simulation results for NU model

pdfCluster Mclust

mean se mean se

RG 0.433 0.041 0.616 0.077

CC2 0.47 0.34

CC3 0.19 0.39

ER 0.135 0.004 0.227 0.005

Simulation results for pdfCluster and Mclust in NU model: rate of two clusters
identification (CC2), rate of three clusters identification (CC3), error rate in the
classification of samples (ER) and error rate in the selection of relevant genes (RG).

Table 3 Sample size

ER pdfCluster Mclust

n mean se mean se

10 0.182 0.033 0.302 0.039

20 0.131 0.030 0.381 0.025

50 0.114 0.020 0.287 0.025

100 0.137 0.015 0.230 0.019

200 0.172 0.012 0.204 0.014

Misclassification error rate (ER) for pdfCluster and Mclust in NU model, varying
the sample size.

Table 4 Clusters found in Colon data

Cluster 1 1-6,8-19,21-29,31,32,34,35,37-40,48*,58*,60*

Cluster 2 7,41-47,49-51,52

Cluster 3 20,30*,33*,36*,53-57,59,61,62

Clusters found after pdfCluster procedure in Colon data; tumor samples are
labeled 1-40, normal samples 41-62; misallocated samples are shown in bold.
The star represents a wrongly labeled samples.
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genes, achieving clusters that seem to recognize the
change of protocol in the data structure, but fail to
recognize the normal/tumor differences [1]. Neverthe-
less, they achieved results slightly better than ours (ER =
0.1) considering a particular subspace: they clustered
genes in 20 groups and considered only the second
group (consisting of 24 genes) to cluster data [1].
Although this approach leads to good results in this
example, it seems difficult to reproduce the procedure
in an unsupervised setting.
Leukaemia data
As stated in [18], the Leukaemia dataset presents two
different problems: an easier one, consisting of separat-
ing ALL from AML (two-class problem, hereafter) and a
harder one, consisting also of recognizing the differences
in B-cell and T-cell subclasses (three-class problem).
Again, we consider the strategy previously described.

In the filtering step, pdfCluster recognizes 313 discrimi-
nant genes. Note that the higher number of genes
selected with respect to Colon data is consistent with
the higher difficulty of the problem. We proceed by
considering the first three principal components of this
subspace. The pdfCluster algorithm finds two clusters,
which clearly represent ALL and AML samples, with 4
AML samples classified as ALL and 5 ALL samples clas-
sified as AML, leading to a misclassification error rate of
0.125 (Table 6): pdfCluster is able to solve the two-class
problem, but it misses the three-class problem.
In the first step, Mclust fails to select relevant genes,

recognizing 3,119 out of 3,892 genes as discriminant
among the groups. Based on the first three principal
components of the subspace spanned by these genes,
Mclust clusters samples in four groups. We could inter-
pret the merged clusters 1-2 as the ALL B-cell class, and
cluster 4 as the AML class, while cluster 3 interpretation

is less clear (Table 6). Although Mclust is able to find
more than two clusters, it fails to distinguish between
B-cell and T-cell classes, leading to hardly interpretable
clusters.
The Leukaemia dataset has been studied by McLachlan

et al. [1] as well. The authors found 2,015 relevant genes
after the variable selection step. For the two-class problem,
their results were very good (only one sample misallo-
cated), but they failed to solve the three-class problem.
It should be noted that, unlike our algorithm, the

procedure used in [1] needs prior specification of the
number of clusters, which is not desirable in an unsuper-
vised learning, especially in cancer tissue classification,
where one of the main goals is to find new subclasses of
tumors.

Conclusions
Model-based approaches to clustering of data have
received increasing attention in the last few years, as
they provide a sound mathematical-based method.
Unfortunately, in microarray applications, the high
dimensionality of the space makes the clustering of sam-
ples in the whole space unfeasible within a model-based
framework.
Here, we have discussed a general strategy for the

clustering of microarray expression data, based on gene
filtering and dimensionality reduction as preliminary
steps in the cluster analysis.
We have discussed a nonparametric density estima-

tion-based algorithm within this framework, showing
promising results both in simulated data and in two real
applications, with surprisingly good computational
performances.
In our simulation experiments, we have found that

pdfCluster leads to slightly better performances than
Mclust. Moreover, the gene filtering step is much more
effective using pdfCluster than using Mclust both in
simulated and in real datasets. Here, “effective” means
good results in terms of both dimension reduction (e.g.
in Leukaemia data pdfCluster selected 313 genes versus
the 3,119 selected by Mclust) and of correct selection
(e.g. in GG model the gene selection error rates are 0.08
and 0.77, respectively).
Here we have used pdfCluster in order to select rele-

vant genes. We underlined the assets of this chioce, but
it is clear that any unsupervised technique able to dis-
card the irrelevant genes can be used. Similarly, the
choice of principal component analysis in the dimen-
sionality reduction step is only one among several possi-
ble choices. Since there are no guarantees that the first
principal components preserve the cluster structure in
the reduction of original dimension of data [21], future
efforts could be made in trying different approaches,
such as the projection pursuit [21,22] or the principal

Table 5 Confusion matrices for Colon data

pdfCluster Mclust k-means

Real 1 2-3 1 2 1 2

Tumor 35 5 29 11 23 17

Normal 3 19 12 10 6 16

ER: 0.13 0.37 0.37

Confusion matrices for pdfCluster, Mclust and k-means with error rates (ER) for
Colon data.

Table 6 Confusion matrices for Leukaemia data

pdfCluster Mclust k-means

Real 1 2 1 2 3 4 1 2 3

ALL B-cell 37 1 9 20 9 0 15 0 23

ALL T-cell 5 4 0 0 7 2 7 2 0

AML 4 21 0 2 1 22 1 23 1

Confusion matrices for pdfCluster, Mclust and k-means with error rates (ER) for
Leukaemia data.
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curves [23]. Nevertheless, in our case the principal com-
ponent analysis gives good results and provides a low
dimensional dataset on which it is feasible to apply a
model-based technique such as pdfCluster.
All the statistical analyses and simulations have been

performed with R [24] and with a public domain imple-
mentation of the “Quickhull” algorithm [13] available at
http://www.qhull.org/.
The datasets used are both freely available as Biocon-

ductor [25] packages (“colonCA” for Colon data and
“golubEsets” for Leukaemia data).

Methods
Simulation models
GG model
The samples are assumed to be independently generated
from Gamma distributions with a constant shape para-
meter α and gene-specific random scale λi, i = 1, ..., p; λi is
assumed to have a Gamma distribution with shape hyper-
parameter α0 and scale hyperparameter ν. The genes are
generated to be either “equally expressed” (i.e. one group)
or “differentially expressed” (i.e. two groups) among the
samples. We generated n = 100 samples and p = 2,000
genes, each with probability 0.05 of being differentially
expressed. We fixed parameter values as suggested by [26].
We applied our algorithm to the data matrix obtained,
selecting a number of relevant genes and using the first
three principal components as input for the pdfCluster
algorithm. We repeated this procedure B = 5,000 times.
NU model
The model deals with k-class classification of samples,
for general k. It is based on a mixture of Normal and
Uniform distributions. We exploit the model to simulate
gene expressions for a three-class problem, similar to
that of the leukaemia data.
Let us denote with xji the measured intensity of gene j

in sample i, j = 1, ..., p, i = 1, ..., n. We define three cate-
gories from which xji can arise and use eji to represent
them. (i) eji = -1, i.e., gene j has abnormally low expres-
sion in sample i (down-regulation); (ii) eji = 0, i.e., gene
j has normal expression in sample i; (iii) eji = 1, i.e.,
gene j has abnormally high expression in sample i (up-
regulation). For each gene j,

x e e f eji ji e j|( ) ~ , , , .,= ∈ −{ }1 0 1

Following [15], we use a Uniform distribution for f-1,j and
f1, j and a Normal distribution for f0,j. More specifically,
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where μj represents the gene-effect and αi the sample-
effect for the normal expression level (see [15] for
details). The authors justify the choice of the distribu-
tions arguing that, for normally expressed genes, the dif-
ferences in observed values are due mainly to noise
introduced in the experimental stage, while the Uniform
distribution may reflect the failure of a biological
mechanism that controls the expression level.
We simulated data from the model in a hierarchical

framework, with the following initial parameter values:
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where  denotes the Gamma and ℰ the Exponential
distribution. We simulated B = 5,000 datasets of n =
100 samples, p = 1,000 genes and m = 3 clusters
defined as follows: cluster 1 consists of 40 samples with
150 up-regulated and 50 down-regulated genes; cluster
2 consists of 40 samples with 50 down-regulated genes;
cluster 3 consists of 20 samples with neither up- nor
down-regulated genes.

Real data
Colon data
Alon et al. [16] used Affymetrix oligonucleotide arrays
to measure the expression of 6,500 human genes in 40
tumor and 22 normal colon tissue samples. They
focused on the subset of 2,000 genes with highest mini-
mal intensity across the samples: the raw expression
values of these 2,000 genes comprise our dataset. Fol-
lowing notation in [1], we named 1-40 the tumor sam-
ples and 41-62 the normal samples. Before clustering
the tissues, we pre-processed the raw intensities taking
the logarithm and applying the quantile normalization
[27], which is a standard choice for single-channel
microarray technology.
Leukaemia data
Golub et al. [20] studied the gene expression of two
types of acute leukaemias, acute lymphoblastic leukae-
mia (ALL) and acute myeloid leukaemia (AML). Gene
expression levels were measured using Affymetrix oligo-
nucleotide arrays containing 6,817 human genes. The
dataset comprises 47 cases of ALL (38 B-cell and 9
T-cell) and 25 cases of AML. The classification of sam-
ples is more difficult in this example than in Colon data
because it is much harder to classify between subclasses
of the same plasticity than to distinguish between
healthy and cancer tissues. Moreover, we have a typical
hierarchical structure, since B-cell and T-cell are
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subclasses of the ALL class and are harder to separate
than AML and ALL. Following [18], three preprocessing
steps are applied to the intensity matrix: (a) threshold-
ing, floor of 100 and ceiling of 16,000; (b) filtering,
exclusion of genes with max/min ≤ 5 or (max - min)
≤ 500; (c) base 10 log transformation. This procedure
left us with 3,892 genes.

Evaluation criteria
Both in simulated and in real data, we evaluate the per-
formances of the methods by calculating the error rate
(proportion of misclassified samples, ER), the sensitivity
(SE) and the specificity (SP). Moreover, in the simula-
tion studies, we record the frequency with which each
method finds the correct number of clusters (CC), and
we evaluate the performance of the methods in selecting
discriminant genes, considering the error rate in the
classification of relevant genes (RG), knowing a priori
which genes have been generated to have different
values among the groups.
Since cluster 2 and 3 of the Normal-Uniform model

have been simulated to be close to each other, in this
model we also consider the number of times in which
each method is able to recognize two clusters (cluster 1
versus clusters 2-3) or three clusters.

The pdfCluster algorithm: an overview
In the literature, nonparametric cluster analyses based
on mode identification have already been presented. See
[6,7,28-30]. The pdfCluster algorithm [11] starts from a
quite simple idea, introduced by Hartigan in 1975 [31],
who stated:
Clusters may be thought of as regions of high density

separated from other such regions by regions of low
density.
These regions are achieved by “cutting” the density

function computed out of observations by a level c, that
varies through the algorithm.
More formally, consider a p-dimensional space,
 ⊆  p . Let x1, ..., xn be a vector of p-dimensional
observations, xi ∈ , for i = 1, ..., n. Starting from this
vector, using a method of nonparametric density estima-
tion, we can obtain ˆ( ),f x x ∈, i.e. the empirical version
of the density f(x).
There is not a specific method for the nonparametric

density estimation related to pdfCluster, since the only
restriction is that ˆ( )f xi < + ∞ for all i = 1, ..., n. This
restriction is not limiting, because almost all estima-
tion techniques satisfy it. Following [11], we choose a
kernel method with Gaussian kernel and constant
smoothing parameter h = (h1, ..., hp)

⊤, with

h
p n

s j pj

p

j= +
⎛
⎝⎜

⎞
⎠⎟

=
+

4
2

1
1 4

( )
, ,...,

/( )

, where sj is the

estimated standard deviation of the j-th variable. This
choice is related to the minimization of the asymptotic
integrated mean square error [11]. As suggested by
Azzalini and Torelli [11] we slightly shrink h toward
zero, using a shrinkage factor of 3/4.

Cutting the computed ˆ( )f x at a level c f∈[ ,max ]
^

0 ,

they obtain m subspaces ℳk, k = 1, ..., m, of the sample
space . Dropping the observations not belonging to
 k

m
k=1 , they select only those observations xi such that

ˆ( )f x ci > . The observations belonging to the same ℳk are
connected by the Delaunay triangulation (see, e.g., [32])
to form the “cluster cores”. Finally, the unallocated
observations are allocated by a classification method,
based on nonparametric density estimation too: if x0 is
the unallocated observation, the estimated density
ˆ ( )f xk 0

based on the data already assigned to group k is
computed, and x0 is assigned to the group with highest
ratio ˆ ( ) / max ˆ ( )f x f xk l k l0 0≠ . Finally, it is important to
notice that pdfCluster selects by itself the number of
clusters.
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