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A nitrogen-doped nanotube molecule with atom
vacancy defects
Koki Ikemoto 1,2, Seungmin Yang 1, Hisashi Naito 3, Motoko Kotani4,5, Sota Sato 1,2 &

Hiroyuki Isobe 1,2✉

Nitrogen-doped carbon nanotubes have attracted attention in various fields, but lack of

congeners with discrete molecular structures has hampered developments based on in-

depth, chemical understandings. In this study, a nanotube molecule doped periodically with

multiple nitrogen atoms has been synthesized by combining eight 2,4,6-trisubstituted pyr-

idine units with thirty-two 1,3,5-trisubstituted benzene units. A synthetic strategy involving

geodesic phenine frameworks is sufficiently versatile to tolerate pyridine units without

requiring synthetic detours. Crystallographic analyses adopting aspherical multipole atom

models reveal the presence of axially rotated structures as a minor disordered structure,

which also provides detailed molecular and electronic structures. The nitrogen atoms on the

nanotube serve as chemically distinct sites covered with negatively charged surfaces, and

they increase the chance of electron injections by lowering the energy levels of the unoc-

cupied orbitals that should serve as electron acceptors.
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The uniqueness of nanoscale graphitic networks is being
exploited, and, in particular, nanocarbons containing non-
carbon elements attract attention. Nitrogen-doped carbon

nanotubes were the first examples of doped nanocarbons1–3, and
modulations of electronic structures were demonstrated4–6.
Although donor-type contributions of nitrogen dopants have
been taken for granted, due to preceding concepts of doped n-
type inorganic semiconductors7, effects of nitrogen-doped
nanotubes are still controversial4–6 because of the lack of suffi-
cient information about atomic-level and electronic structures8.
Here we show the bottom-up synthesis and high-precision
structures of a nitrogen-doped nanotube molecule with a discrete,
rigid structure. Taking advantage of a versatile synthetic
strategy9,10, we replace eight methine (CH) groups of a (12,12)-
phenine nanotube (pNT) molecule11 with eight nitrogen atoms
and eight atom vacancy sites (Fig. 1). Detailed molecular and
electronic structures are disclosed to reveal unforeseen effects of
nitrogen doping.

Results
Synthesis. By replacing the phenine unit of pNT with 2,4,6-tri-
substituted pyridine, i.e., a nitrogen-doped phenine congener, we
designed nitrogen-doped pNT molecule (NpNT)11. A few minor
modifications were made in the synthesis, which resulted in a
slightly improved overall yield for the nitrogen-doped variant
(Fig. 2). Thus, the starting material was changed from dibro-
mobenzene to 1-bromo-3-chlorobenzene, which allowed the
coupling reaction with 2,6-dibromopyridine (4) via silylation and
borylation, and a resultant terphenylene congener (5) was cou-
pled by a Yamamoto-type coupling reaction to afford a nitrogen-
doped congener of [6]cyclo-meta-phenylene ([6]CMP) (6) with
an improved yield. The nitrogen-doped [6]CMP congener was
then cyclized to a flexible cyclic GPF (8) through borylation,
Pt-mediated macrocyclization, ligand exchange and reductive
elimination12. The final three steps of iododesilylation,
Suzuki–Miyaura coupling and Yamamoto-type coupling com-
pleted the nanometre-sized cylinder molecule, (12,12)-NpNT. A
minor modification of the catalyst for Suzuki–Miyaura coupling
was also made, and the overall yield of (12,12)-NpNT was
improved to 1.4% for the 10-step synthesis from the value of 0.7%
that was recorded for the 9-step synthesis of (12,12)-pNT11. The
structure of (12,12)-NpNT was first established by spectroscopy.
The 1H NMR spectrum showed seven aromatic singlet reso-
nances (Fig. 2), which showed the loss of one methine resonance

relative to the eight aromatic resonances of (12,12)-pNT11. The
chemical composition of C296H256N8 was confirmed by a
MALDI-TOF mass spectrum showing the presence of an ionized
species with m/z= 3923 [M+H]+. In the chemical composition,
the nitrogen atoms occupy 2.6% of non-hydrogen atoms (8/304),
which is close to the nitrogen contents often reported for
nitrogen-doped carbon nanotubes (2–5%)2,4. Representative
geometric descriptions of the molecule are summarized as fol-
lows. The (12,12)-NpNT molecule possesses a graphitic lattice of
(12,12)-carbon nanotube with a length index of tf= 7.0 (ref. 13).
The structural defects comprise both replacements and depletions
of atoms and bonds (Supplementary Fig. 1), which can be
quantitatively described by geometric measures of bond-filling
and atom-filling indices of Fb= 53% and Fa= 64%. By using an
oblique coordinate system of carbon nanotubes (see the Supple-
mentary Methods for details)13,14, we can further identify and
describe the positions of nitrogen atoms as (5,–2), (8,1), (11/3,
–10/3), (11,4), (14,7), (20/3,–1/3), (29/3,8/3), and (38/3,17/3)
(Supplementary Fig. 2).

Crystallography. For the elucidation of precise molecular struc-
tures, elaborate X-ray diffraction analyses were necessary because
of unexpected, disordered structures unique to the cylindrical
shape. A single crystal of (12,12)-NpNT was obtained from a 1,2-
dichloroethane solution by diffusing 2-propanol vapour at 25 °C.
With 22,961 unique reflections from 299,140 total reflections
(multiplicity of observations= 13) from a single crystal, we first
solved the structure by a conventional analytical method adopting
spherical, independent atom models (IAM)15. With a few t-Bu
conformations located as disordered structures, the structure
converged with a moderate R-factor [R(F2)= 0.1267 on SHELX16

and R(F)= 0.1010 on XD2016]17 (Supplementary Fig. 4, stage 0
and stage 1). To define a structure with a higher accuracy, we
adopted multipole aspherical atom models in the
Hansen–Coppens formalism18 by using a transferrable aspherical
atom model (TAAM)19 with parameters from the University at
Buffalo pseudoatom databank (UBDB)20 (Supplementary Fig. 3).
Close examinations of the residual electron densities (Fo–Fc) after
the TAAM analysis indicated the presence of a disordered
structure that originated from a 45° axial rotation of the
nanometre-sized cylinder (Supplementary Fig. 4; stage 2). Such
rotational disorders were not found with a previous example of
hydrocarbon pNT11. With this anomalous rotational disorder
included as a minor structure (occupancy= 12%), the molecular
structures were solved with a higher accuracy (Fig. 3a): the R(F)
values reached 0.0855 with IAM/XD2016 analysis (Supplemen-
tary Fig. 4, stage 3), which was further improved to R(F)= 0.0802
with TAAM/XD2016 analysis with multipole aspherical atom
models (Supplementary Fig. 4, stage 4). The Fo–Fc maps con-
firmed the decrease in the residual electron densities (Supple-
mentary Fig. 4), and the deformation maps of F1–F2 confirmed
the deformed densities of the major structure. The two axial
rotational disorders were made possible by the cylindrical shape
with uniform diameters (1.6 nm; Supplementary Fig. 5). The
nanometre-sized cylindrical structure is shown for the major
disorder (occupancy= 88%) in Fig. 3b. The introduction of eight
nitrogen atoms did not affect the overall molecular structures,
and negligible differences between (12,12)-NpNT and (12,12)-
pNT were noted with the π-orbital axis vector (POAV) θp and
dihedral angles21 (Supplementary Fig. 6).

Electronic structures. The effects of the nitrogen dopants were
determined from the fine molecular structures. As observed from
the crystal structure of 4,4′-bipyridine, the lengths of C–N bonds
in the aromatic ring are shorter than the lengths of the C–C

(12,12)-pNT, C304H264
tf = 7.0, Fb = 67%, Fa = 67%

(12,12)-NpNT, C296H256N8
tf = 7.0, Fb = 53%, Fa = 64%
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Fig. 1 Phenine nanotube molecules. a (12,12)-pNT. b Nitrogen-doped
(12,12)-NpNT.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15662-6

2 NATURE COMMUNICATIONS |         (2020) 11:1807 | https://doi.org/10.1038/s41467-020-15662-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


bonds (1.34 vs. 1.39 Å) (Supplementary Fig. 7). Unlike flexible
cycloarylenes with fluctuating structures22,23, (12,12)-NpNT
possessed a rigid molecular structure, which allowed for
unequivocal assignments of the nitrogen atoms. The crystal-
lographic analyses of (12,12)-NpNT thus allocated the shorter
bonds of 1.33 Å at the expected positions to connect the nitrogen
atoms (Supplementary Fig. 7). The effects of nitrogen atoms and
their bonding on the electron density were further clarified by
charge-density analysis after TAAM/XD2016 refinements18,19.
The deformation map showing the electron density deformed by
chemical bonds thus revealed the lone pair densities on the
nitrogen atoms (Fig. 3c). An electrostatic potential map also
revealed the charge distributions and located the red areas of
higher electron densities around the nitrogen atoms, character-
izing the nitrogen sites as chemically distinct areas with an
abundance of electrons (Fig. 3d).

Optical properties. The effects of nitrogen doping were also
observed from the optical properties. As shown in Fig. 4a, the UV
absorption spectrum of (12,12)-NpNT was redshifted from that
of non-doped (12,12)-pNT (λedge= 345 nm)11, with the edge
absorption appearing at 378 nm (optical gap= 3.28 eV). Fluor-
escence was also observed with (12,12)-NpNT with a quantum
yield of 16%. The density functional theory (DFT) calculations of
(12,12)-NpNT also confirmed the narrowed gap between the
highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) (3.07 eV) with highly
degenerate orbitals (Fig. 4b). However, the lone pairs of nitrogen
did not contribute to the narrowing of the gap, with HOMO-7 to
HOMO-10 (–3.55 eV) located below HOMO to HOMO-6 among
the conjugated π-orbitals (–3.48 eV) (Fig. 4b and Supplementary
Fig. 9). In contrast, the nitrogen-related π*-orbitals were inserted
on the unoccupied orbital side as LUMO to LUMO+3 at –0.41 to
–0.38 eV, which narrowed the HOMO–LUMO gap of the
cylindrical molecule. The effects of nitrogen atoms over the
electronic structures of NpNT were unexpected from HOMO/
LUMO-stabilizations found with N-doped acenes24.

The optical properties were modulated under acidic conditions.
When we added an excess amount of trifluoroacetic acid, the
absorption and fluorescence spectra were broadened (Fig. 4d).
Moreover, when photoluminescence quantum yields were
measured, the quantum yield dropped from 16% to 8% under
the acidic conditions. We believe that the spectral changes can be
ascribed, most likely, to the protonation at the pyridinic nitrogen
atoms of NpNT under acidic conditions.

Discussion
A nitrogen-doped congener of phenine nanotubes was synthe-
sized, which also allowed us to periodically embed atom vacancy
defects into a nanotube molecule. Crystallographic analyses
adopting aspherical atomic models revealed the presence of
unique disorders with axially rotated molecular structures, which
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should similarly exist in bundles of carbon nanotubes. The
aspherical atom models also allowed charge density analyses,
showing the subtle yet apparent effects of nitrogen atoms on the
structures. Interestingly, the nitrogen lone pairs created chemi-
cally distinct, basic sites on the molecule but did not affect the
HOMO level. In contrast, the nitrogen-related π*-orbitals low-
ered the LUMO level, which should be favourable in n-type
organic semiconductors by accepting negative charge carriers.
Thus, unlike the inorganic semiconductors where lone pairs
donate charge carriers in the conduction bands, the nitrogen-
doped nanotubes tend to be n-type organic semiconductors
where lowered unoccupied orbitals facilitate electron injections
from the electrodes. Thus, this study revealed unique character-
istics of so-called pyridinic nitrogen atoms doped on graphitic
networks4–6. This study also demonstrated that the
structure–property relationships of nanocarbon molecules, par-
ticularly those with rigid discrete structures, can deepen our
understanding of the effects of heteroatom doping25. Taking
advantage of the versatile synthetic approach of phenine frame-
works, we will explore other variants of heteroatom dopants with
various locations and structures of dopants in the near future.

Methods
Synthesis. The nitrogen-doped (12,12)-NpNT was synthesized by the procedure
detailed in the Supplementary Methods. All the data necessary for the identification
are also provided.

Location of defects. Locations of defects were defined by using an oblique coor-
dinate system of carbon nanotubes14. Details such as the location of the origin are
described in the Supplementary Methods. The defect locations can also be defined by
using a web-based applet at https://physorg.chem.s.u-tokyo.ac.jp/applet/defect/.

Crystallography. A single crystal (ca. 0.04 × 0.03 × 0.02 mm3) suitable for the
crystallographic analysis was obtained by slowly diffusing 2-propanol vapour into a
solution of (12,12)-NpNT in 1,2-dichloroethane at 25 °C. A single crystal was
mounted on a thin polymer tip with cryoprotectant oil and frozen at –173 °C via
flash-cooling. The diffraction analysis with a synchrotron X-ray source was con-
ducted at –173 °C at the beamline BL26B1 (SPring-8), which was collimated for an
increased brightness with a capillary lens (Hamamatsu, J12432-01). The beamline
for macromolecular crystallography was equipped with a single-axis goniometer
(KOHZU, QKSU-SDD) with an additional house-build compact κ goniometer
head for the crystal tilt. Diffraction data were collected by a hybrid photon
counting detector (Dectris EIGER X 4M) comprising 2070 × 2167 pixels up to
sin θ λ–1= 0.60 Å–1 resolution26. The first set of diffractions were collected with an
oscillation range of 0.1° (exposure time= 0.3 s) for a ω range of 360°. Because of an
insufficient level of the completeness (94.6%), a second set of 360°-diffractions were
collected after tilting the crystal by 30°. Two datasets were merged with the XDS

C C

N

CC

CC

H

H
C

C

0.096

b c d

Occupancy 88% Occupancy 12%

a

Overlay of 45° axial rotational disorders

Fig. 3 Crystal structures of (12,12)-NpNT. a Molecular structures of two disordered structures. b Molecular structure (occupancy= 88%). c Deformation
map (contour interval: 0.02 e Å−3, positive: red, negative: blue). Note that, because of the lower occupancy of 12%, negligible densities of the minor
disordered structure were found in the electron and deformation density map, which also resulted in distortions of the assigned structures. See also Fig. 3a
and Supplementary Fig. 5. d Electrostatic potential map mapped on the 0.0067 e Å−3 isosurface of the electron density.
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programme to afford 299,140 total reflections with 22,961 unique reflections
(multiplicity of observations= 13)27. After solving the initial structure by a direct
method by using SHELXT software programme28, the final structure was obtained
through trial-and-error processes adopting IAM/SHELXL16, IAM/XD2016 and
TAAM/XD2016 refinement protocols17. In short, the first candidate structure with
t-Bu disorders was obtained by IAM/SHELXL and IAM/XD2016 refinements but
was partly refuted by TAAM/XD2016 refinements with inferior R values. The
residual electron densities after the IAM/XD2016 refinements indicated the pre-
sence of an unexpected disordered cylinder that was located at axially rotated

orientations. By taking account of the minor rotated disorder, we then finalized the
structures through IAM/SHELXL, IAM/XD2016 and TAAM/XD2016 refinements.
Further details of the refinements and analyses are described in the Supplementary
Methods. In addition to our final cif file (CCDC 1966650), we also deposited a
preliminary cif file at the stage 0 as CCDC 1984802. The res and HKL data
embedded in this file can allow readers to follow the present analytical procedures
from the raw data.

DFT calculations. The DFT calculations were performed by the same method used
for (12,12)-pNT11. The geometry optimizations were thus performed at the
PBEPBE/STO-3G level of theory29,30 by using Gaussian 16 programme suite31.

Optical properties. A solution of (12,12)-NpNT was prepared in CH2Cl2 at 1.2 ×
10–6 M. The absorption and fluorescent spectra were recorded at 25 °C on V-670
(JASCO) and FP-8500 (JASCO; excitation= 255 nm) spectrometers, and the
photoluminescence quantum yield was determined by C9920-02G spectrometer
(Hamamatsu; excitation= 255 nm). Fluorescence lifetime was determined as 3.3 ns
on Quantaurus-QY C11347 (Hamamatsu). The same spectra were also recorded
after the addition of trifluoroacetic acid (7.4 × 10–3 M).

Data availability
Synthetic and experimental procedures, as well as crystallographic, spectroscopic and
computational data are provided in the Supplementary Information. Crystallographic
data for the structures reported in this Article have been deposited at the Cambridge
Crystallographic Data Centre, under deposition numbers CCDC 1966650, CCDC
1966651 and CCDC 1984802. Copies of the data can be obtained free of charge via www.
ccdc.cam.ac.uk/data_request/cif. For the designation of defect locations, we provide a
web-based applet that can be used free of charge at https://physorg.chem.s.u-tokyo.ac.jp/
applet/defect/.
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