
© 2020 Journal of Research in Medical Sciences | Published by Wolters Kluwer ‑ Medknow | 2020 |1

Health risk of travel for chronic kidney disease 
patients
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thrombosis,” “altitude sickness,” “traveler’s diarrhea,” 
“jet lag syndrome,” “melatonin,” with “chronic kidney 
disease” only, or/and “dialysis.” Moreover, we present 
a narrative review summary of the literature obtained 
from these screenings.

The existing literature shows that travel‑related 
conditions pose an increased risk for CKD patients. 
We have described the mechanism of disease onset in 
detail and the most recent information on travel risks 
for CKD patients.

TRAVELER’S THROMBOSIS

Traveler’s thrombosis is defined as travel‑related 
venous thromboembolism (VTE), i.e., deep vein 

INTRODUCTION

Air travel is becoming increasingly popular due to time 
and cost advantages. However, the risk of long‑travel 
periods in chronic kidney disease (CKD) patients is 
unclear. This review aims to summarize the existing 
evidence on the influence of travel on the health risks 
of CKD patients. We describe the association between 
travel risks (traveler’s thrombosis, altitude sickness, 
traveler’s diarrhea, and jet lag syndrome) and their 
impact on CKD patients. We performed a detailed 
review of the recent literature. A literature screen was 
conducted by reviewing PubMed, Google Scholar, and 
Ichushi Web from the Japan Medical Abstracts Society. 
We screened the following keywords: “traveler’s 
thrombosis,” “venous thromboembolism,” “deep vein 

The number of people with chronic kidney disease (CKD) has increased and so has their demand for travel. However, the health risk 
posed by travel in these patients is unclear. Few reports document the travel risk in CKD and dialysis patients. The aim of this study 
is to summarize the existing evidence of the influence of travel on risks in CKD patients. We aim to describe the association between 
the impact of travel risks and patients with CKD. A detailed review of recent literature was performed by reviewing PubMed, Google 
Scholar, and Ichushi Web from the Japan Medical Abstracts Society. Screened involved the following keywords: “traveler’s thrombosis,” 
“venous thromboembolism,” “deep vein thrombosis,” “altitude sickness,” “traveler’s diarrhea,” “jet lag syndrome,” “melatonin,” with 
“chronic kidney disease” only, or/and “dialysis.” We present a narrative review summary of the literature from these screenings. 
The increased prevalence of thrombosis among travelers with CKD is related to a decrease in the estimated glomerular filtration 
rate and an increase in urine protein levels. CKD patients who remain at high altitudes are at an increased risk for progression of 
CKD, altitude sickness, and pulmonary edema. Traveler’s diarrhea can become increasingly serious in patients with CKD because 
of decreased immunity. Microbial substitution colitis is also common in CKD patients. Moreover, time differences and disturbances 
in the circadian rhythm increase cardiovascular disease events for CKD patients. The existing literature shows that travel‑related 
conditions pose an increased risk for patients with CKD.

Key words: Chronic kidney disease, dialysis, travel‑related illness

Address for correspondence: Dr. Yoshitaka Furuto, Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5‑9‑22, 
Higashi‑Gotanda, Shinagawa‑ku, Tokyo 141‑8625, Japan.  
E‑mail: furuto19761006@yahoo.co.jp
Submitted: 01‑Aug‑2018; Revised: 22‑Oct‑2019; Accepted: 16‑Dec‑2019; Published: 18‑Mar‑2020

Access this article online
Quick Response Code:

Website:  

www.jmsjournal.net

DOI:  

10.4103/jrms.JRMS_459_18

How to cite this article: Furuto Y, Kawamura M, Namikawa A, Takahashi H, Shibuya Y. Health risk of travel for chronic kidney disease patients. J Res 
Med Sci 2020;25:22.

This is an open access journal, and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work 
non‑commercially, as long as appropriate credit is given and 
the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

R
e

v
ie

w
 A

R
t

ic
l

e



Furuto, et al.: Travel and CKD patient condition

Journal of Research in Medical Sciences| 2020 | 2

thrombosis  (DVT) and subsequent  pulmonary 
thromboembolism (PTE). Virchow described three factors 
contributing to venous thrombosis: enhanced blood 
clotting, venous stasis, and damage to venous blood vessel 
walls. Most reports of VTE relate to air travel, wherein 
all the aforementioned factors are present. The inside of 
an airplane is a low‑pressure, low‑oxygen, low‑humidity 
environment, set at 0.8 bar and 5%–15% humidity. In a 
low‑pressure environment, leg venous return decreases and 
venous stasis occurs, while hypoxemia leads to a depressed 
fibrinolytic system. Coupled with dehydration caused 
by low humidity, these two factors combine to increase 
blood coagulation. Restricted movement in narrow seats 
often causes leg veins to be compressed, causing damage 
to vein walls.

Few epidemiological studies have statistically investigated 
thrombosis in Japan. A 2006 study showed that thrombosis 
is a multifactorial disease and that the Japanese population 
has a specific thrombotic predisposition that is different 
from that of Western populations.[1] Traveler’s thrombosis 
in Japanese air travelers is more likely to affect women, 
middle‑aged to elderly individuals, those with a short 
physical stature, and those seated in the window or middle 
seat. VTE typically develops immediately after a person 
first stands and starts walking after prolonged sitting.[2] 
Countermeasures during air travel include rehydrating, 
avoiding alcohol, wearing loose‑fitting clothing, performing 
moderate exercise such as occasionally moving the legs, 
and wearing elastic stockings.[3,4] Currently, aspirin is the 
preferred choice for preventing traveler’s thrombosis, but 
new oral anticoagulants have recently appeared on the 
market which may be useful for VTE prevention in high‑risk 
persons.[2] It is also becoming increasingly common for 
travelers at high risk of thrombosis in Western countries to 
receive subcutaneous injections of low‑molecular weight 
heparin before or after long flights.[3]

CKD reportedly increases the risk of DVT and PTE; 
further, a decrease in the estimated glomerular filtration 
rate (GFR) and an increase in the albumin/creatinine 
ratio are independently correlated with the risk of 
VTE [Table 1].[5‑7]

The global  incidence of  venous thrombosis  is 
104–183 cases/10,000 individuals/year,[8] but the risk of 
venous thrombosis is increased 2.3‑fold for those with 
end‑stage renal disease (ESRD) compared with the 
general population.[9] Previous research shows that the 
adjusted hazard ratio of DVT for ESRD is 13.92 times 
that for non‑ESRD patients.[10] In addition, patients who 
are undergoing hemodialysis have a risk of venous 
thrombosis that is 4–7 times higher than that for the general 
population.[11] Furthermore, CKD patients who develop 
pulmonary embolism have a higher mortality rate than 
patients without CKD.[12]

Potential mechanisms for clot formation in CKD 
include the involvement of oxidative stress, increased 
inflammatory mediator levels, accumulation of asymmetric 
dimethylarginine, and decreased calcium–phosphorus 
control, which not only promote arterial disease but also 
promote endothelial damage to the venous system.[13]

With CKD, there are elevated levels of procoagulants 
such as D‑dimers, C‑reactive protein (CRP), fibrinogen, 
interleukin‑6, factor VII, factor VIII, and plasmin–antiplasmin 
complexes.[14] These procoagulants continue to rise as renal 
function deteriorates.[15] Moreover, there is an increase in 
microparticles, which are membrane vesicles released from 
platelets, endothelial cells, and monocytes in the event of cell 
damage and apoptosis associated with CKD.[16,17] Together 
with an increase in circulating tissue factors, the conversion 
of prothrombin into thrombin is increased, thus facilitating 
blood clotting.[18]

The systemic inflammatory state associated with ESRD 
results in exacerbation of endothelial dysfunction and 
vascular disorders.[19] Such mechanisms promote a clotting 
reaction in CKD patients, increasing the risk of traveler’s 
thrombosis.

Because of the increased hemorrhage risk associated with 
the use of anticoagulants, the use of anticoagulant therapy 
to prevent venous thrombosis in CKD patients remains 
controversial. However, a few recent findings support the 
effectiveness and safety of novel oral anticoagulants for 
patients with CKD who are undergoing hemodialysis.[20,21] 
In conclusion, there is a lack of clinical data on anticoagulant 
use in severe renal impairment due to differences in 
individual factors.[22]

ALTITUDE SICKNESS

Altitude sickness is a general term for physical symptoms 
caused by low oxygen levels at altitudes above 2500 m.[23,24] 
For untrained individuals, however, the effect of high 
altitudes may need to be considered from 1500 m because 

Table 1: Adjusted hazard ratio of venous thrombosis 
to estimated glomerular filtration rate and 
albumin‑to‑creatinine ratio[6]

eGFR (mL/
min/1.73 m2)

Albumin‑to‑creatinine ratio
30 mg/g (3.3 
mg/mmol)

30‑300 mg/g (3.4‑
33.8 mg/mmol)

300 mg/g (33.9 
mg/mmol)

90 Reference 1.66 (1.11-2.48) 1.51 (0.48-4.73)
60-89 1.15 (0.96-1.38) 1.47 (1.07-2.03) 4.38 (2.64-7.26)
45-59 1.23 (0.87-1.74) 1.37 (0.76-2.49) 1.51 (0.48-4.77)
30-44 2.13 (1.26-3.62) 2.11 (0.95-4.95) 2.33 (0.74-7.34)
eGFR=Estimated glomerular filtration rate, results are reported as number (range)
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maximum oxygen consumption decreases approximately 
1% for every 100 m of ascent above 1500 m.[25,26] Causes of 
altitude sickness include organ edema owing to reduced 
pressure at high altitudes and a decrease in oxygen 
partial pressure, creating a systemic hypoxic state. At 
high altitudes, peripheral veins contract and the central 
blood volume increases; with pressure stimulus, secretion 
of antidiuretic hormone and aldosterone is suppressed, 
resulting in diuresis. These physiological changes are 
related to high‑altitude adaptation as is bicarbonate diuresis 
that occurs as compensation for respiratory alkalosis caused 
by hypoxia. It is generally possible to adapt to high altitudes 
if the altitude increases gradually, but the symptoms of 
altitude sickness may occur if compensatory mechanisms 
are unable to keep up.

There are three international classifications for altitude 
sickness [Table 2]:[23] acute mountain sickness (AMS), 
h igh‑a l t i tude  pulmonary  edema (HAPE) ,  and 
high‑altitude cerebral edema (HACE). AMS is cause for 
stopping any further increase in altitude, and if HACE 
or HAPE are suspected, then a lower altitude must 
be reached as soon as possible. Prevention involves 
gradually increasing altitude, taking acetazolamide, 
and rehydrating, because dehydration occurs at higher 
altitudes and exacerbates the symptoms of altitude 
sickness. Acetazolamide prevents altitude sickness by 
expanding cerebral blood vessels, increasing the blood 
flow, and mitigating the lack of oxygen. The mechanism 
of action is through suppression of carbonic anhydrase, 
resulting in elevated bicarbonate urinary excretion, 
which causes metabolic acidosis; the respiratory center 
is stimulated, and ventilation is increased to mitigate 
the hypoxemia.

Physiology of healthy kidneys at high altitudes
Renal function at high altitude is affected by various factors 
including respiration, cardiac output, sympathetic activity, 
and erythropoietin. When a sharp drop in oxygen partial 
pressure occurs, natriuresis and increased potassium and 
bicarbonate excretion develop via peripheral oxygen 
receptors. The respiratory compensation and natriuresis 
responses to hypoxia take place during the 24–48 h that 
follow hypoxic exposure and vary by as much as 10‑fold 
between individuals. Hypoxia and hypocapnia caused by 
high altitude increase the following: adrenosympathetic 
activity, epinephrine, atrial natriuretic peptide, brain 
natriuretic peptide, and endogenous digitalis. Kidney 
hypoxia increases endothelin‑1 and adrenomedullin and 
results in decreased levels of antidiuretic hormone, renal 
sensitivity to antidiuretic hormone, renin, aldosterone, 
and renal sympathetic nerve activity. These mechanisms 
result in increased natriuresis and diuresis.[27,28] These 
substances have been implicated in natriuresis, along 
with nitric oxide secretion due to the stimulus of 
hypoxia‑inducible factors (HIFs).[29] Through this HIF 
stimulus, erythropoietin production and angiogenesis in 
the renal cortex are promoted, thus improving oxygen 
supply.[30]

Kidney disease at high altitudes
With the increasing popularity of travel to and residence 
in mountainous regions, and the 10%–11% prevalence 
rate for adult CKD in developed countries, it is important 
to consider the association between these two factors.[31] 
Hypoxia develops in kidneys at high altitudes, which may 
promote CKD progression;[32] the Navajo Native Americans 
who reside at altitudes of 1600–3200 m have twice 
the incidence of end‑stage renal failure than do other 
Native Americans.[33] When patients with type 2 diabetic 
nephropathy who live at sea level and those who live at a 
high altitude of 1700 m were compared, those who lived 
at high altitudes reported a higher urinary protein levels 
and a lower GFR despite having the same blood sugar 
management as those who lived at sea level.[34]

Chronic, systemic hypoxemia among long‑term high 
altitude residents accelerates CKD progression; in 
addition, hypoxia is believed to cause glomerulosclerosis 
and tubulointerstitial damage.[35] High‑altitude sickness 
is accompanied by renal hypoxia and is associated with 
significant proteinuria, and the appearance of urine 
protein at high altitudes further exacerbates CKD.[36] 
Because protein reabsorption requires energy, oxygen 
consumption in the kidneys increases, leading to an 
increase in fibrotic matter due to hypoxia.[37,38] CKD 
patients who live at high altitudes, therefore, have the 
potential to progress to ESRD earlier than those living 
at sea level.[39]

Table 2: Classification criteria for the different types of 
altitude sickness[23]

Condition Criteria
Acute 
mountain 
sickness

Headache and at least one of the following symptoms
Anorexia, nausea
Whole-body fatigue, weakness
Vertigo, light-headedness
Sleep disorders

High 
altitude 
pulmonary 
edema

At least two each of the following symptoms and signs
Symptoms Signs
Dyspnea at rest
Coughing
Whole-body weakness
Decreased activity
Chest tightness sense of 
strangulation

Moist rales wheezing
Cyanosis
Rapid breathing
Tachycardia

High altitude 
cerebral 
edema

Patients with acute mountain sickness experiencing 
impaired consciousness or ataxia
Patients who have not had acute mountain sickness 
experiencing impaired consciousness and ataxia
Early diagnosis is possible with the tandem gait 
eyes-closed standing up, and finger-nose tests
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A short‑duration of stay at high altitudes results in a 
2–3‑fold increase in the amount of protein excreted in the 
urine by sudden hypoxemia.[40] Patients with elevated urine 
protein levels are reportedly more likely to experience 
altitude sickness.[41]

Regarding anemia, CKD patients living at high altitudes 
take lower amounts of erythropoietin but have a higher 
frequency of thrombosis and hypertension than CKD 
patients living at sea level.[42] Erythropoietin may react 
differently at high altitudes than at sea level, and the 
erythropoietin and hemoglobin target values in this 
population warrant further investigation.

Metabolic acidosis with CKD causes hypoxic pulmonary 
vasoconstriction, which plays a role in the pathogenesis of 
HAPE, and has the potential to worsen altitude sickness.[43] 
ESRD involves mild‑to‑moderate pulmonary hypertension, 
with various causes, in 40% of patients.[44] The fact that 
pulmonary hypertension and HAPE frequently occur 
together makes altitude sickness, an increased health risk 
for patients with ESRD.[39]

To the best of our knowledge, no previous studies have 
investigated whether patients with CKD receive the same 
treatment for AMS and HAPE as healthy individuals. 
However, in general, time or acetazolamide, which adjusts 
the bicarbonate ion levels, is effective for adapting to high 
altitudes,[45] and the administration of various other drugs 
has also been proposed as a treatment for lowering the risks 
of exposure to high altitudes.[23,39]

At high altitudes, patients with CKD have an increased 
risk of secreting an excess of body fluid owing to reduced 
urinary sodium excretion; improper functioning of sodium 
excretion in patients receiving hemodialysis increases the 
risk of pulmonary edema.[39] Indeed, the higher the altitude 
at which a hemodialysis patient is, the higher the weight 
gain between dialyses.[46] CKD patients therefore require 
daily body weight monitoring, if excess fluid retention 
associated with AMS occurs, then an increased dosage of 
diuretics is necessary. The monitoring of blood pressure 
and blood sugar is recommended.[39]

Nonsteroidal anti‑inflammatory drugs impair renal 
vasodilatation, reduce kidney oxygen supply, increase 
sodium reabsorption, and increase oxygen consumption 
and should therefore be avoided.[39] It is considered that 
angiotensin‑converting enzyme inhibitors should be 
prescribed to minimize altitude‑related proteinuria.[47] Thus, 
although CKD patients with high altitude stays pose an 
increased risk for progression of CKD, altitude sickness, 
and pulmonary edema, management strategies to counter 
the risks remain poorly understood, and the most effective 

treatment to prevent altitude sickness is to strive for gradual 
increases or decreases in altitude.

TRAVELER’S DIARRHEA

Traveler’s diarrhea most frequently occurs during travel 
in Southeast Asia, Latin America, and Africa and is 
chiefly a bacterial infection associated with the ingestion 
of contaminated water or food. It is defined as four or 
more bouts of diarrhea within 24 h, or three or more 
bouts of diarrhea within 8 h, along with abdominal pain 
and vomiting.[48] The causative pathogens of traveler’s 
diarrhea varies depending on the season; 15 different 
pathogens were detected from 3537 patients among 
5842 Tokyo metropolitan travelers (61%) who went 
abroad and developed diarrhea between 1978 and 1995. 
They include, in the descending order of frequency, 
enterotoxigenic Escherichia coli (35%), Salmonella (8.4%), 
Vibrio parahaemolyticus (6.5%), Campylobacter (6.4%), 
Plesiomonas (5.6%), and Shigella (5.5%).[49] Salmonella, 
Campylobacter, and Rotavirus occur not only in summer 
but also during winter.[50] Relevant risk factors include 
being ≤30 years old, the area visited (e.g., about 4% in 
Europe, but 80% in Nepal), travel during rainy season, 
length of stay, reduction of stomach acid (patients taking 
H2‑blockers, proton pump inhibitors, etc.), certain 
genetic factors, reduced immune function, and diabetes. 
Residence in a developing country for over 6 months 
allows for conditioning of the digestive tract and reduces 
the frequency of diarrhea.[51] Common symptoms are 
abdominal pain, vomiting, and a fever up to 38.5°, onset is 
typically on day 3 from the date of arrival (the incubation 
period can range from 6 h to several days), and the disease 
duration is 3–4 days if untreated. It can be prevented by 
washing hands with soap, consuming only bottled or 
boiled water, and only eating cooked food.[52]

Quinolone antibiotics may be administered to treat severe 
cases, but prophylactic administration should generally 
be avoided because it may contribute to drug resistance.[52] 
Rifaximin, a new antibiotic recently approved in Western 
countries, is a rifamycin antimicrobial that is effective 
against Gram‑positive, Gram‑negative, aerobic, and 
anaerobic bacteria. It shows promise as a treatment for 
traveler’s diarrhea because it is not absorbed into the blood, 
often remaining in the intestine (the target organ); it is 
effective against a wide range of bacterial infections; and 
it rarely increases bacterial resistance.[53,54] Recent evidence 
has demonstrated that probiotics may be effective, to a 
certain extent, in preventing traveler’s diarrhea or reducing 
the disease duration.[55] Notably, in about 30% of the cases, 
starting early treatment with antibiotics for traveler’s 
diarrhea has no effect on the prevention of a hypersensitive 
state in the colon even 6 months later.[51,56]
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In general, traveler’s diarrhea is not life‑threatening, but it 
may become more severe in patients with CKD due to their 
reduced immune function. In CKD patients, uremia lowers 
the functions of lymphocytes, neutrophils, monocytes, nitric 
oxide, and platelets, resulting in reduced phagocytosis, 
chemotaxis, and control of chemokines and cytokines, thus 
lowering the immune response.[57]

Patients on hemodialysis are frequently malnourished,[58] 
with vitamin deficiency,[59] reduced prealbumin levels, and 
elevated CRP.[60] The resulting hypotension also lowers 
nitric oxide activity and platelet function, causing anemia[61] 
and a consequent loss of immune ability.

Microbial substitution colitis is also common. CKD patients 
also experience Clostridium difficile colitis 1.95 times more 
often than the general population, whereas the rate for 
ESRD patients is 2.63 times higher.[62] Cryptosporidium 
is about four times more common in hemodialysis 
patients than in healthy individuals,[63] and ESRD patients 
also have parasitic infections more often than healthy 
individuals.[64] Irrespective of colitis, sepsis‑related deaths 
among hemodialysis patients are 100–300 times more 
common than among healthy patients;[65] therefore, it is 
essential to pay attention to the worsening of infections.

Although there is no epidemiological research on traveler’s 
diarrhea in hemodialysis patients, severe dehydration 
represents a high risk for vascular access occlusion, 
cardiovascular disease (CVD) events, and other sequelae, 
and it is also important to take appropriate measures, such 
as oral rehydration, to prevent dehydration.

PSYCHOLOGICAL EFFECTS: JET LAG SYNDROME

Travel is generally thought to improve quality of life (QOL), 
but there are few epidemiological reports regarding 
how CKD patients’ state of mind is affected by travel. 
Psychological stress due to travel, insufficient sleep, 
autonomic nervous system tone, and disturbed circadian 
rhythm due to time differences may also negatively impact 
fluctuations in blood pressure.[66,67] A proposed mechanism 
for hypertension and CVD events due to jet lag disorder is 
that jet lag syndrome causes circadian rhythm disorder, 
which leads to an elevated level of aldosterone, increased 
autonomic nervous activity, and increased salt sensitivity. 
These result in hypertension and CVD events.[66,67]

Air travel to regions with a time difference of 4–5 h or more 
may result in a transient state of disharmony, defined as jet 
lag syndrome. The diagnostic criteria for circadian rhythm 
sleep disorder and the jet lag type (jet lag disorder) in the 
International Classification of Sleep Disorders, Second 
Edition are adapted from a study by Kario [Table 3].[67]

Circadian rhythms are coordinated by a central 
pacemaker or clock in the suprachiasmatic nucleus of the 
hypothalamus.[68] A peripheral biological clock exists in 
organs, including liver, heart, lung, and kidney.[69] There 
is a relationship between jet lag syndrome and the onset of 
hypertension and CVD events. The proposed mechanism 
involves a disturbance of circadian rhythm, resulting in 
raised aldosterone levels, enhanced autonomic nervous 
activity, salt sensitivity, and ultimately in hypertension 
and CVD events.[67] A survey of 257 bus passengers in 
Japan showed that 88.3% of all bus passengers had an 
increased perception of this disease, with the main reported 
symptoms being difficulty in sleeping (67.3%), intense 
drowsiness during the day (16.7%), reduced ability to 
work (14.4%), and other undefined complaints.[68] Causes 
of jet lag syndrome include insufficient sleep, fatigue, 
hypoxia, altered meal timing, the light‑and‑dark cycle in the 
aircraft, direction of the flight, chronotype (morningness, 
eveningness), and age. A person’s biological rhythm has 
a cycle that is longer than 24 h; therefore, delaying the 
phase of the biological rhythm makes it easier to adjust 
the rhythm. Thus, eastward flights (e.g., from Japan to the 
USA) produce more intense symptoms than westward 
flights (e.g., from Japan to Europe). Individuals with 
an eveningness chronotype adapt more quickly after 
westward flights to Europe and struggle to adapt more 
in the opposite direction. The biological clock within 
healthy human subjects is reset when they experience 
solar light, melatonin is secreted 15–16 h after this reset, 
and physiological sleepiness occurs.[70] Countermeasures 
include sleeping pills, exposure to bright light, melatonin, 
and melatonin receptor agonists. With sleeping pills, it 
is necessary to watch for transient amnesia or traveler’s 
thrombosis, which occurs more readily when alcohol is 
also used. Intense light of 2500 lux or higher alters the 
circadian rhythm. While bright morning light advances 
circadian rhythm, bright light in the evening rewinds 
circadian rhythm. Melatonin, a pineal hormone, acts to 
promote re‑synchronization of the circadian rhythm. If 
melatonin is taken at night, in contrast to bright light, 
then the circadian rhythm is pushed forward, whereas 

Table 3: Diagnostic criteria for circadian rhythm 
sleep disorder, jet lag type (jet lag disorder) in the 
International Classification of Sleep Disorders‑2[67]

Diagnosis must satisfy the following three items
A. Complaint of insomnia or intense drowsiness during the day in 
association with transmeridian travel exceeding at least two time 
zones
B. Impaired function during the day, systemic undefined 
complaints, or physical symptoms such as gastrointestinal 
disorders within 1-2 days after travel
C. This sleep disorder cannot be explained with other currently known 
sleep disorders, physical disease, neurological disease, mental 
illness, medication, or substance abuse

ICSD‑2=International Classification of Sleep Disorders‑2
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it is pushed back if it is taken in the morning. Taking 
melatonin before bedtime reportedly improves untreated 
hypertension.[71]

Regarding the relationship between CKD and circadian 
rhythm, sleep is important for the QOL of patients with 
ESRD, and melatonin is also relevant for this purpose.[72] 
Melatonin is responsible for various biological functions, 
such as suppressing sympathetic nervous activity, 
maintaining endothelial function, bioavailability of nitric 
oxide, apoptosis, and adjusting vascular function; it also 
possesses antioxidant properties.[73‑75] As CKD progresses, 
melatonin levels fall[76] and hemodialysis patients show 
reduced nocturnal melatonin secretion.[77]

This impaired melatonin secretion reportedly involves 
elevated levels of tumor necrosis factor in CKD‑suppressing 
melatonin.[78] Impairment of nocturnal melatonin secretion 
has also been implicated in renal impairment in patients 
with CKD.[79] Melatonin supplements improve QOL and 
sleep quality in hemodialysis patients.[80]

Ramelteon, which is a melatonin receptor agonist used 
as a sleeping aid, is generally regarded as effective in 
relieving jet lag syndrome,[81,82] and it may also be effective 
for hemodialysis patients. Thus, the melatoninergic drugs 
are promising, but large trials in real‑life situations are 
needed.[83,84]

CKD patients have a higher risk of CVD events compared 
with the general population, and it is therefore important 
to avoid disturbances to the circadian rhythm due to 
travel, given the association between altered melatonin 
homeostasis and CKD.

CONCLUSION

Travel leads to a better QOL, and there is a steadily growing 
demand for travel in today’s aging society. CKD patients are 
believed to be at a higher risk than healthy individuals when 
they travel, owing to the aforementioned concerns about the 
impact on their mental and physical well‑being; thus, travel 
is something that should be weighed carefully. However, 
there is almost no epidemiological evidence regarding the 
effect of travel on CKD patients, and the pathophysiology 
of travel‑related illness in this population remains poorly 
understood. In our conventional study,[85] we showed an 
association between disease severity and travel in CKD 
patients in terms of the degree and frequency of the disease, 
but not with respect to the detailed mechanism and risks.

In addition, few reports have investigated the impact of 
travel on CKD patients. Therefore, in the present study, we 
performed a detailed examination based on more recent 

reports and provided updated information. We offer the 
following tips for travelers with CKD. CKD increases the risk 
of traveler’s thrombosis. Low‑molecular‑weight heparin is 
useful for long‑distance travelers only if they are at high risk 
for VTE. CKD patients who remain at high altitudes pose an 
increased risk for progression of CKD, altitude sickness, and 
pulmonary edema. Rifamycin is a recommended treatment 
for traveler’s diarrhea because it is not absorbed into the 
blood. Jet lag syndrome is a risk for hypertension and 
CVD events. The melatoninergic drugs may be effective in 
relieving jet lag syndrome for hemodialysis patients.

Collecting data on patients with renal failure in various 
altered environments will improve our ability to predict 
risk and improve patient safety.
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