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Tetratricopeptide repeat and ankyrin repeat containing 1 (TRANK1) is a robust risk gene of
bipolar disorder (BD). However, little is known on the role of TRANK1 in the pathogenesis
of BD and whether the gut microbiota is capable of regulating TRANK1 expression. In this
study, we first investigated the serum mRNA level of TRANK1 in medication-free patients
with a depressive episode of BD, then a mice model was constructed by fecal microbiota
transplantation (FMT) to explore the effects of gut microbiota on brain TRANK1 expression
and neuroinflammation, which was further verified by in vitro Lipopolysaccharide (LPS)
treatment in BV-2 microglial cells and neurons. 22 patients with a depressive episode and
28 healthy individuals were recruited. Serum level of TRANK1 mRNA was higher in
depressed patients than that of healthy controls. Mice harboring ‘BDmicrobiota’ following
FMT presented depression-like phenotype. mRNA levels of inflammatory cytokines and
TRANK1 were elevated in mice hippocampus and prefrontal cortex. In vitro, LPS
treatment activated the secretion of pro-inflammatory factors in BV-2 cells, which was
capable of upregulating the neuronal expression of TRANK1 mRNA. Moreover, primary
cortical neurons transfected with plasmid Cytomegalovirus DNA (pcDNA3.1(+)) vector
encoding human TRANK1 showed decreased dendritic spine density. Together, these
findings add new evidence to the microbiota-gut-brain regulation in BD, indicating that
microbiota is possibly involved in the neuropathogenesis of BD by modulating the
expression of TRANK1.
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INTRODUCTION

Bipolar disorder (BD) is a recurrent, debilitating mood disorder
with a high heritability (1). Although the exact etiology of BD is
sophisticated, the dominant role of both gene and environmental
factors on the onset and development of BD is widely accepted
(1, 2). With the technological advances in molecular biology,
susceptible genes related to BD have been increasingly identified
(3, 4). For example, several genome-wide association studies
(GWAS) and subsequent independent verifications have
indicated that tetratricopeptide repeat and ankyrin repeat
containing 1 (TRANK1), located on the short arm of
chromosome 3 (3p22.2), is a robust risk gene of BD (3–6). In
postmortem brains of BD subjects, the expression of TRANK1
was elevated compared to that of healthy individuals (7).
TRANK1 protein is secreted mainly by immunocytes and is
widely distributed in body tissues, including hippocampus,
amygdala and other brain regions. Although the implications
of TRANK1 gene in BD remained largely unclear, a newly
published large-scale analyses of mRNA co-expression network
revealed that genes closely interact with TRANK1, such as
glycogen synthase kinase-3 (GSK-3a/b), were engaged in the
modulation of synaptic plasticity, neural growth, as well as
circadian rhythm (6). More recently, an up-stream regulatory
role of GSK-3a/b on TRANK1 transcription has been unraveled
(8), partially via the activation the transcription factor, CCAAT/
enhancer-binding protein-a (C/EBP-a). Blockage of GSK-3a/b
pathways or direct suppression of GSK-3a/b expression
significantly led to reduced expression of TRANK1 in U-251
human glioblastoma cells (8). Therefore, further investigations
on the interactome of TRANK1 with other genetic and
environmental factors relevant to BD help to uncover the
pathogenesis of this intractable psychiatric disorder.

Recently, microbiota inhabiting in the human gastrointestinal
tract has been recognized as a pivotal environmental factor in
regulating physical and mental well-being (9, 10). In previous
studies, we have characterized the alterations in diversity and
compositions of gut microbiota in patients with a depressive
episode of BD when compared to healthy individuals (11, 12).
Classification models derived from specific bacterial species not
only had the potential to distinguish bipolar depression from
health individuals or unipolar depression (11, 12), but also was
capable of predicting the efficacy of mood stabilizing treatment
(11). Notably, we found that compared to healthy individuals,
most bacteria enriched in patients with bipolar depression
belonged to the Bacteroides and Flavobacterium (11), both of
which were gram-negative bacterial family that could produce
lipopolysaccharide (LPS). Interestingly, a negative correlation
between gut microbial diversity and methylation of the aryl
hydrocarbon receptor nuclear translocator-like gene (ARNTL),
a molecular clock gene linked to circadian rhythm, was revealed
in BD patients (13). In our recent review, we have systematically
discussed a hypothesis that gut microbe-derived LPS could
influence the host TRNAK1 expression in BD (14). These
preliminary findings indicate the involvement of the
microbiota-gut-brain regulation in BD. However, currently
available studies on gut microbiota in BD were mainly
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genetically sequencing-based, or performed correlation
analyses between indices of gut microbiota and clinical
parameters, thus precluding the further interpretations of
findings. Also, animal models focusing on the mechanistic
pathways linking the microbiota to the brain are absent in
BD studies.

The microbiota-gut-brain axis is known to operate in a
bidirectional regulation pattern, which mainly consists of the
metabolic, immune, endocrine and automatic nerves pathways
(15). Notably, a neuroinflammatory basis underlying the
development and progression of BD has been recognized
recently (16, 17). Proinflammatory mediators in the peripheral,
such as interleukin-1b (IL-1b), IL-6, and tumor necrosis factor-a
(TNF-a), as well as neuroinflammatory markers in the central
nervous system (activated microglia), are found to be elevated
not only in the acute mood episodes, but also in the remission
phase of BD (16, 18). In previous studies, we also found
abnormal expression of immune checkpoint inhibitors on
peripheral CD8+T cells, such as T cell immunoglobulin and
mucin domain 3 (TIM-3), indicating potential disturbances in
cellular immunity in BD individuals (19, 20). Moreover, the
neuroinflammatory modifications may interact with or be
affected by the unbalanced kynurenine pathways and reduction
in the expression of neurotrophic factors, such as brain-derived
neurotrophic factor (BDNF) (16, 21) . Kynurenine
aminotransferase-2 (KAT-2) is the key role enzyme regulating
the production of neuroprotective kynurenic acid (KYNA) from
kynurenine (KYN) in the tryptophan metabolism (22).
Intriguingly, a most recently published study provided robust
evidence that microbial biomolecules from the intestinal tract
could be transferred to brain and other organs via outer
membrane vesicles (23). Based on these findings, we speculate
that the regulatory role of gut microbiota on host genes in BD
may link to a complicated neuroinflammatory mechanism.

In this study, we first explored the serum expression of
TRANK1 mRNA in patients with BD depression, then
constructed a mice model via fecal microbiota transplantation
(FMT) to investigate the impact of gut microbiota on TRANK1
expression and neuroinflammation. We further in vitro
examined the effects of LPS treatment on microglia, and
inflammatory stimuli on the TRANK1 mRNA expression in
neurons. The impact of TRANK1 overexpression on the
morphology of neurons was also investigated via transfection
with plasmid Cytomegalovirus DNA (pcDNA3.1(+)) vector
encoding human TRANK1. Collectively, this study helps to
reveal that gut microbiota may participate in the BD
pathogenesis by interacting with a robust BD risk gene.
METHODS

In accordance with the Helsinki Declaration, this study was
approved by the Institutional Review Board of the First Affiliated
Hospital, Zhejiang University School of Medicine (#2017-397).
Written informed consent was obtained from all participants
before enrollment.
December 2021 | Volume 12 | Article 789647
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Participants
22 patients meeting the criteria for a depressive episode of
bipolar disorder according to the DSM-IV-TR were recruited
from the Psychiatry Department of our hospital. The diagnosis
was further confirmed by an experienced clinical psychiatrist
using the Mini International Neuropsychiatric Interview (24).
17-item Hamilton Depression Rating Scale (HDRS-17) (25) as
used for assessing the severity of depression and Young Mania
Rating Scale (YMRS) (26) for assessing mania. In our study, an
HDRS-17 score ≥ 14 was considered as a current depressive
episode. All BD candidates were required to be treatment-naive
or drug-free for ≥ 3 months and had no comorbidity with any
other psychiatric disorder. 28 healthy individuals (HCs) without
a history of any psychiatric disorder were recruited. Exclusion
criteria for all subjects included: a) acute or chronic infection; b)
autoimmune diseases or other systematic diseases associated
with immune dysregulation; c) severe physical diseases (e.g.,
cancer, diabetes); d) consumption of prebiotics, probiotics or
antibiotics within 1 month prior to recruitment; e) pregnant or
lactating females or in menstruation.

Peripheral Expression of TRANK1
Peripheral venous blood (1ml) was collected from all participants
in a fasting state at 7:00~8:00 a.m. and immediately used for
detecting mRNA expression. Total RNA from human blood was
isolated using Spin Column Blood Total RNA Purification Kit
according to the manufacturer’s instruction (Sangon Biotech;
Order No. B518653). Reverse transcription was performed using
4×EZscript Reverse Transcription Mix II (EZBioscience; Cat.
No.EZB-RT2GQ) in a 20 ul reaction volume. TRANK1 mRNA
was detected by QuantStudio 5DX Real-Time PCR System using
SYBR Green Fast qPCR Mix (ABclonal, Wuhan, China). Each
sample was tested three times and GAPDH was used as an
internal control. Forward primer (5’-3’) for TRANK1 (human)
was CAGCACTCCACATCTTTCTAGA and reverse primer (5’-
3’) was TTGAGGTAGTCGAATTCAGTGG.

FMT and Behavioral Tests
To determine whether gut microbiota from patients with a
depressive episode of BD was sufficient to cause depression-
like behaviors in mice, FMT from HCs and untreated patients
were performed. The animal experiment protocol was approved
by the Hospital Animal Ethical Committee (Approval No.
#2019-6).

FMT Procedures
At baseline, fecal samples were collected from all participants.
Fecal samples from untreated patients with a depressive episode
of BD (n = 10, age 16–43 years) and HCs (n = 10, age 16–40
years) were randomly chosen to colonize the guts of mice. The
demographic and clinical profiles of these participants were
shown in Supplemental Table 1. Fecal samples for FMT were
handled under anaerobic conditions and detailed procedures for
preparing feces were previously described.[81] Each fecal sample
(0.1 g) was suspended with 1.5 ml of reduced sterile phosphate-
buffered saline, and pools were made from equal volumes of
donor suspensions. Adult (6-8-week-old) male Kunming mice
Frontiers in Immunology | www.frontiersin.org 3
were colonized with pooled samples derived from either BD
patients or HCs. Different groups of recipient mice were
separately bred in different gnotobiotic isolators to prevent
contamination of gut microbiota. Within each individual
gnotobiotic isolator, either ‘BD microbiota’ or ‘healthy
microbiota’ recipient mice were bred in different cages (five
mice per cage). Mice were weighted at the beginning of FMT
experimentation and immediately prior to sacrifice of the mice.
The behavioral tests (including OFT and FST) were performed
on week 1 and 2 after fecal transplantation. Brain samples were
collected immediately when the mice were sacrificed and snap-
frozen in liquid N2 and stored at -80°C.

Mice Behavioral Tests
Before initiation of the experiments, mice were kept in flexible
film gnotobiotic isolators. Mice were fed the same chow and
water with autoclaved treatment under a 12-h light-dark cycle
(lights on at 07:30 AM), a constant temperature of 21-22°C and
humidity of 50-60%. Before each behavioral test, mice were
transferred to the specialized experimental room for
acclimation ≥ 1 h prior to the test. Experimenters who carried
out these tests were blind to the animal groupings between 08:00
and 17:00. A video-computerized tracking system (SMART,
Panlab, Barcelona, Spain) was used to videotape and quantify
the process of behavioral tests.

Open-Field Test (OFT) and Forced Swimming Test (FST)
The detailed procedures for OFT and FST were previously
described.[13] In OFT, the total motion distance was considered
to reflect the degree of locomotor activity, while the proportion
of distance spent in the center (inner 25% part of the total surface
area) was considered as an index of anxiety-like behavior. In FST,
immobility was defined as the absence of all motion with the
exception of movements to keep the mouse’s head over water
surface. Test sessions lasted for 6 minutes and the latter 5
minutes scored for immobility, which was considered as a
proxy of depression-like behavior.

Expression of Molecules of Interest in
Mice Brain Following FMT
Total RNAs from mice brain tissues were isolated using Trizol
reagent according to the manufacturer’s instructions (Invitrogen,
USA). Reverse transcription was performed using an ABScript II
cDNA First Strand Synthesis Kit (ABclonal, Wuhan, China) in a
20 ml reaction volume. The genes of interest were detected by
QuantStudio 5DXReal-Time PCR System using SYBR Green
Fast qPCR Mix (ABclonal, Wuhan, China). Each sample was
tested three times and GAPDH was used as an internal control.
Primers for GAPDH, IL-1b, IL-6, IFN-1b, TIM-3, KAT-2,
TRANK1 and BDNF are listed in Supplemental Table 2.

Effects of LPS Treatment on the TRANK1
Expression in Neurons
BV-2 culture and Treatment
The mice BV-2 cell line (Invitrogen, USA) was cultured in six-
well plates at 37°C with 5% CO2 incubator, supplemented by
high glucose DMEM medium with 10% FBS. BV-2 were
December 2021 | Volume 12 | Article 789647
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stimulated by LPS (100ng/ml) for 24h when cells proliferated to
70~80%. Then, cell supernatant was collected for stimulating
primary CNS neuron, and BV-2 were used to extract RNA for
examining inflammatory cytokines levels (IL-1b, IL-6 and
TNF-a).

CNS Neuron Cultures and Treatment
Sprague Dawley rats were anesthetized and euthanized at E18
days. Hippocampus of fetal rats was immediately dissected and
digested by trypsin into a single-cell suspension. Hippocampus
neurons were counted (0.02*106 cells/cm2) and seeded in six-well
plates coated with poly-D-lysine (10 mg/mL), supplemented by
neuro-basal medium with 2% B27 (Invitrogen, USA), 2.0 mM
glutamax and 2.5% FBS. The neurons were cultured at 37°C with
5% CO2 to day 21 and then were stimulated by the previously
LPS-treated BV-2 suspension for 24h. TRANK1 gene expression
in hippocampus neurons after treatment were measured by
RT-PCR.

RT-PCR
The steps of RT-PCR in BV-2 cells and hippocampus neurons
were in accordance with the section “Expression of molecules
of interest in mice brain following FMT”. Each sample was
tested three times and b-actin was used as an internal control.
Primers for IL-1b, IL-6, TNF-a and TRANK1 are given in
Supplemental Table 3.

TRANK1 Overexpression in Primary
Cortical Neurons
TRANK1 Transfection
To determine the impact of TRANK1 overexpression on
neuronal morphology, pcDNA3.1(+) vector encoding human
TRANK1with a C-terminus FLAG-tag was constructed. Integrity
of the recombinant was verified by Sanger sequencing. Given that
signals of FLAG fluorophore alone failed to provide ideal
resolution for analyzing dendritic spine structures under our
experimental condition, the Venus vector encoding the
EGFP protein was co-transfected in all groups. Briefly, the
recombinant constructs for TRANK1 or control vectors
(i.e., empty pcDNA3.1) were respectively transfected into rat
neurons together with Venus at days in vitro (DIV) 14 using
Lipofectamine 3000 (Life Technologies) according to the
manufacturer’s protocol. Confocal analyses were performed 72
hours after the transfection.

Neuronal Morphology Analysis
The transfected neurons were fixed with PBS (4%
paraformaldehyde plus 4% sucrose) at room temperature and
stained with antibodies against FLAG (Rabbit monoclonal FLAG
antibody, CST, #14793S) and GFP (Chicken polyclonal GFP
antibody, Abcam, #ab13970). Fluorescence positive neurons
were randomly selected for images captured with an LSM 880
Basic Operation (Carl Zeiss) using consistent acquisition
parameters. The dendritic spine analyses were then carried out
as previously described. In brief, Neuron Studio was used to
semi-automatically analyze spines on secondary and tertiary
dendrites. Each experimental group contained at least 15
Frontiers in Immunology | www.frontiersin.org 4
neurons with satisfactory demonstration of at least two
dendrites for averaged analyses.

Statistical Analysis
Clinical and experimental data generated in this study were
analyzed with SPSS 20.0 Statistical Package (IBM, IL, USA).
Categorical data was conducted with chi-square test, while
measurement data was calculated with independent sample t-
test (two-tailed). To analyze the neuronal morphology following
TRANK1 transfection, two-tailed t-test and two-way ANOVA
(multiple comparisons using Fisher’s LSD) were conducted to
calculate the statistical differences between two experimental
conditions. P < 0.05 was set as statistically significant.

RESULTS

Demographic and Clinical Characteristics
of Participants
22 patients with a depressive episode of BD and 28 HCs were
included in this study. No significant difference was found in age,
sex or BMI between these two groups (all P > 0.05). BD patients
scored averagely at 26.64 for HDRS-17 and 20.05 for HAMA.
The detailed demographic and clinical characteristics for
participants were displayed in Table 1.

Elevated Serum TRANK1 mRNA
Expression in Untreated BD Patients
Compared to HCs, patients with BD depression showed an
elevated level of TRANK1 mRNA in peripheral blood (P =
0.002, Figure 1).

Depression-Like Behavior in
“BD Microbiota” Recipient Mice
Mice were transplanted with feces from either unmedicated
patients with BD depression or healthy controls to verify
behavioral consequences. Although no significant differences
were found in OFT central distance (P = 0.289), central distance
(P = 0.336), central time (P = 0.422) or percentage (P = 0.375)
between the twogroups (Figure2), FST immobility time (P<0.001)
and percentage (P < 0.001) were significantly increased in
“BD microbiota” recipient mice than “healthy microbiota”
recipient mice (Figure 2).
TABLE 1 | Demographic and clinical characteristics of participants enrolled for
TRANK1 mRNA test (mean ± SD).

Items BD (n = 22) HC (n=28) P

Gender, female (%) 13 (59.1%) 17 (60.7%) 0.118 #

Age, year-old 19.45 ± 5.69 21.46 ± 1.23 0.907D

BMI, kg/m2 22.35 ± 5.71 21.33 ± 3.09 0.642D

Right-handed, % 100% 100% 1
HDRS-17 26.64 ± 11.05 – –

HAMA 20.05 ± 8.65 – –

YMRS 3.55 ± 2.34 – –
December 2021
 | Volume 12 | Article
BD, bipolar disorder; HC, healthy control; SD, standard deviation; HDRS-17, 17-item
Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale; YMRS, Young
Mania Rating Scale. #Pearson chi-square test; DIndependent sample t test.
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Activated Neuroinflammation and
Enhanced Expression of TRANK1
mRNA in Mice Brain After FMT
We further examined the influence of FMT on brain mRNA
expressions of molecules linking to neuroinflammation,
neurotransmitter production and neural growth. Compared to
Frontiers in Immunology | www.frontiersin.org 5
control mice, “BD” mice exhibited increased mRNA expressions
of IL-6 in the corpus striatum (P < 0.05), IL-1b and IFN-1b in the
prefrontal cortex and corpus striatum (all P < 0.05), and KAT-2
in hippocampus (P < 0.01). Increased mRNA level of BDNF was
observed in the hippocampus of BD mice (P < 0.001). Of
particular note, TRANK1 mRNA expression in the
hippocampus (P < 0.01) and prefrontal cortex (P < 0.05) was
elevated in “BD” mice (Figure 3).

LPS Treatment Activates
Neuroinflammation and Upregulates
TRANK1 Expression in Neurons
To verify the effects of gut microbe-derived components on
microglia and neurons, we performed a study in vitro with LPS, a
typical component of gram-negative bacteria. Following LPS
treatment, the mRNA levels of proinflammatory factors in BV-2
cells, including IL-1b, IL-6 andTNF-a, were significantlypromoted
(allP<0.05,Figure 4A).When stimulated byLPS-treatedBV-2 cell
supernatant, hippocampus neurons of rats displayed an increased
level of TRANK1mRNA (P < 0.05, Figure 4B).

Overexpression of TRANK1 in Neurons
Leads to Decreased Spine Density
Our results indicated that higherTRANK1 expression was possibly
linked to depressive episodes in BD. To identify whether the
increased expression of TRANK1 causes any functional
A1

A4

A2 A3

B1 B2

FIGURE 2 | Behavioral consequences of mice transplanted with fecal microbiota from untreated BD patients or healthy controls (BD mice, n=40; control mice,
n=22). (A) OFT. The total distance (cm), central distance (cm), central time (s) and central time percentage (%), were measured (A1-A4). (B)FST. The immobility time
(s), and immobility time percentage (%), were measured (B1, B2). All data were presented as means ± SEM. *p < 0.001 using independent t tests. FST, forced
swimming test; OFT, open field test.
FIGURE 1 | Peripheral blood levels of TRANK1 mRNA by qRT-PCR in patients
with a depressive episode of BD (n = 22) and healthy controls (n = 28). *p = 0.002.
December 2021 | Volume 12 | Article 789647
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A

B

C

FIGURE 3 | mRNA levels of IL-6, IL-1b, IFN-1b, TIM-3, KAT-2, TRANK1 and BDNF measured by qRT-PCR in hippocampus (A), prefrontal cortex (B) and corpus
striatum (C) of mice colonized with fecal microbiota from healthy controls or untreated patients with a depressive episode of BD (n=10 mice in each group) at the
4th week after fecal microbiota transplantation. All data are presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 using independent sample t-test.
A1

A3 B

A2

FIGURE 4 | Expression of proinflammatory factors in BV-2 cells treated with LPS and the effects of neuroinflammation on TRANK1 expression in neurons. (A) A1,
A2, A3 represented the mRNA levels of IL-1b, IL-6 and TNF-a, respectively; (B) The effects of LPS-treated BV-2 supernatant on the expression of TRANK1 mRNA in
neurons. *p < 0.05 using independent sample t-test.
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consequences, we examined its effects on the morphology and
density of dendritic spines, a potential endophenotype for BD [43].
Primary cortical neurons transfected with TRANK1-
overexpression vector exhibited significantly altered densities of
dendritic spines compared with those transfected with the control
vector (Figure 5A). In brief, the density of total dendritic spines
significantly decreased in neurons overexpressing TRANK1 (P <
0.001, two-way t-test, Figure 5B), probably due to the significant
reduction of the densities of thin and mushroom spines compared
with neurons in the control group (both P < 0.01, two-way
ANOVA, Figure 5B), whereas stubby spine did not alter
obviously. This result is consistent with the previously reported
decrease of dendritic spine density in the postmortem brains of BD
patients (27), suggesting that TRANK1 might participate in the
pathogenesis of BD (depressive episodes) via modulating this
pivotal physiological feature.
DISCUSSION

In the current study, an upregulated circulating TRANK1
expression was firstly reported in patients with BD depression.
Accumulating large-scale GWAS studies have provided adequate
evidence that TRANK1 is a robust susceptible gene of BD (3–6).
Our finding further supports the involvement of TRANK1 in the
BD pathogenesis. The FMT findings in our study revealed that
fecal microbiota from patients with BD depression were
sufficient to elicit depression-like behavior in mice, which may
link to activated neuroinflammation and an elevated expression
of TRANK1. It is noteworthy that TRANK1 overexpression
resulted in decreased dendritic density in primary neurons,
Frontiers in Immunology | www.frontiersin.org 7
which may comprise neuronal morphological basis of
depressive episodes in BD.

In recent years, the implicationsof themicrobiota-gut-brain axis
in the neuropsychiatric disorders have been gradually uncovered
(28). The use of prebiotics, probiotics and FMT as adjuvant
therapies for mentally ill patients is becoming a research hotspot
(28). Some researchers even have proposed the study protocol for
verifying the efficacy and safety of FMT in bipolar patients during
depressive episodes (29). Nonetheless, most of the explorations are
still limited to animal experiments. Previous studies have showngut
microbiota frommentally ill patientswere sufficient toelicit disease-
specific behavioral patterns in recipientmice (30–33). However, no
study has ever explored this phenomenon in BD patients. To
address the effects of BD microbiota on brain function and
behavior, “BD microbiota” or “healthy microbiota” recipient mice
were designed to observe the behavioral consequences in our study.
Compared to “healthy microbiota” recipient mice, increased
immobility time in FST was observed in “BD microbiota”
recipient mice, which was interpreted as depression-like behaviors.

To further determine the brain molecular mechanisms
underlying the behavioral changes, mRNA expression levels of
inflammatory factors, BDNF, KAT-2 and TRANK1were measured
in the hippocampus, prefrontal cortex and corpus striatum of
recipient mice. We found an up-regulation of immune mediators,
such as IL-6, IL-1b and IFN-1b. Neuroinflammation is recently
considered to be involved in the pathogenesis of major psychiatric
disorders, including schizophrenia, BD and major depressive
disorder (MDD) (34–36). Similarities in the pattern of cytokine
networks indicate a common underlying immune dysfunction of
these psychiatric disorders (36). Although no inflammatory
biomarker was independently capable of differentiating mood
A B

FIGURE 5 | TRANK1 overexpression decreases dendritic spine density in rat primary cortical neurons. (A) Representative microphotographs of dendrites from
neurons transfected with either control or TRANK1 overexpression vectors plus the Venus vector (which encodes EGFP protein) at DIV14. Scale bar: 5 µm. (B)
Density of total, stubby-shaped, thin-shaped, and mushroom-shaped spines in neurons overexpressing TRANK1 compared with control neurons. Dendritic spine
density was quantified as the number of spines normalized to 10 mm of dendritic length (**p < 0.001, *p < 0.01, n=15/16 neurons per condition). ns, not significant.
December 2021 | Volume 12 | Article 789647
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phases of BD, a combination of high-sensitivity C-reactive protein/
IL-6, BDNF/TNF-a or soluble TNF-a receptor 1 was identified to
be mood phase-specific in BD (37). In our study, an increased level
of IL-6 and IL-1b indicated the activation of neuroinflammation
due to fecal microbiota transplantation from patients with a
depressive episode of BD. The actions of IFN-1b, however,
include induction of regulatory mediators, decreasing the
secretion of proinflammatory cytokines and modulating cell
trafficking across the blood–brain barrier (BBB) (38). Therefore,
a parallel activation of both proinflammatory and immuno-
suppressive processes reflect a compensatory mechanism of
neuroinflammation in BD. In addition, increased mRNA levels
of BDNF and KAT-2 were detected in “BD microbiota” recipient
mice. BDNF is the dominant neurotrophin in brain, and the
BDNF/TrkB signaling pathway plays an important role in
synaptic maturation, plasticity, neuronal growth and survival
(39). Available findings in relevant to peripheral BDNF levels
amongst BD patients were inconsistent (40–42). In particular,
longer duration of illness was associated with high serum BDNF
level (40). Acute stress treatment may upregulate the expression of
hippocampal BDNF mRNA (43). Therefore, increased
hippocampal BDNF transcripts in recipient mice were possibly
caused by the acute colonization of “BD microbiota”. However,
some researchers pointed out that the neurodevelopmental trait of
BDNF could be attenuated by the underlying neuroinflammation
processes (42). KAT-2 is a key enzyme catalyzing the synthesis of
KYNA from KYN, which was known as the tryptophan metabolic
pathway (44). The tryptophan catabolism can be activated upon
inflammatory stimuli, such as viral invasion, bacterial LPS, and IFN
stimulation (45, 46). Therefore, in “BDmicrobiota” recipient mice,
CNS inflammatory status caused by LPS-induced immune
activation and enhanced IFN-1b stimulation, eventually
promoted the expression of KAT-2 and increased the
concentration of KYNA. Abnormal KYNA level is implicated in
various neuropsychiatric disorders, including schizophrenia (31,
44), Alzheimer’s disease and other illnesses (44). In patients with
BD, an increased CSF level of KYNAwas also reported in previous
studies and was associated with manic episodes and psychotic
features (47, 48). These findings indicated the dysregulation of
KYN-KYNA metabolic pathway was possibly linked to
BD pathophysiology.

The interplay between gut microbiota and host genes
expression has been rarely investigated in the microbiota-gut-
brain regulation. Inspiringly, our study is the first to report that
gut microbiota can influence the CNS expression of TRANK1 in
the hippocampus and prefrontal cortex. Expression of TRANK1
was observed under different pathological conditions, such as
neuroinflammation, disrupted formation and functioning of
blood vessels in the BBB (49). In a rat model of psychosis,
one-week social isolation led to increased mRNA expression of
TRANK1 in the prefrontal cortex and other specific genes
involved in neuroinflammation, formation and integrity of the
BBB, and cerebral blood vessel morphogenesis (49). This is
consistent with our findings that CNS inflammatory profiles
are elevated in “BD microbiota” recipient mice. Moreover, gut
microbial dysbiosis was associated with impaired integrity and
Frontiers in Immunology | www.frontiersin.org 8
increased permeability of the BBB (50, 51). Loss of BBB integrity
was implicated in neuropsychiatric diseases, such as depression,
bipolar disorder and schizophrenia (51). A compromised BBB
may facilitate the entrance of gut microbes-derived components,
such as LPS, into the CNS and activate the neuroinflammation.
In accordance with previous studies (52), we found that in vitro
LPS stimuli could promote the transformation of microglia into
the M1 phenotype and the secretion of proinflammatory factors
(IL-1, IL-6 and TNF-a), which was capable of upregulating the
expression of TRANK1 in neurons. Furthermore, we showed that
overexpression of TRANK1 resulted in loss of dendritic spine
density in cortical primary neurons. In patients with severe
mental illnesses, dendritic spine abnormalities in the prefrontal
cortex have been considered to be neurobiological mechanisms
underlying these diseases (53, 54). Impairment of the dendritic
spine development could lead to cognitive deficits and behavioral
abnormalities in BD (53, 55). Deficits in dendritic spine
morphogenesis link to synaptic dysfunction and synapse loss
(56). In other words, overexpression of TRANK1 is possibly
associated with brain dysfunction by hampering the growth of
dendritic spines and disrupting synaptic functions.

Several limitations in this study need to be mentioned. First,
although we found that circulating TRANK1 mRNA level was
elevated in patients with BD depression, no patients with manic
episodesorothermajorpsychiatric disorders, suchas schizophrenia
and MDD, were included in this study. Therefore, we cannot
conclude that the upregulated expression of TRANK1 was an
exclusive trait of BD depression. Another weakness of our study
is the absence of manic/hypomanic and remissive participants, we
thus are unable to compare the impacts of different conditions on
the gut microbiota, as well as the behavioral patterns following
FMT. Third, lack of examining the gut microbiota in mice
weakened the stringency of this study, though different conditions
in themice brain existed. Fourth, althoughwe observed a regulatory
role of LPS-induced pro-inflammatory environment on TRANK1,
further explorations via inhibiting the LPS-toll-like receptors
interactions and its effects on TRANK1 expression are also needed.

Taken together, the current study revealed an upregulated
circulating TRANK1 expression in patients with BD depression
and a potential regulatory role of gut microbiota on
neuroinflammation and TRANK1 expression in the brain.
Based on the gene × microbiota perspective, our study helps to
better understand the role of TRANK1 in the BD pathogenesis
and its involvement in the gut-microbiota-brain regulation.
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