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Antiferromagnetic CuMnAs multi-level memory
cell with microelectronic compatibility
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Antiferromagnets offer a unique combination of properties including the radiation and

magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics

frequency scale in terahertz. Recent experiments have demonstrated that relativistic

spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic

moments. Here we show that elementary-shape memory cells fabricated from a single-layer

antiferromagnet CuMnAs deposited on a III–V or Si substrate have deterministic multi-level

switching characteristics. They allow for counting and recording thousands of input pulses

and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate

the compatibility with common microelectronic circuitry, we implemented the anti-

ferromagnetic bit cell in a standard printed circuit board managed and powered at ambient

conditions by a computer via a USB interface. Our results open a path towards specialized

embedded memory-logic applications and ultra-fast components based on antiferromagnets.
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I
n ferromagnetic materials, all magnetic moments sitting on
individual atoms point in the same direction and can be
switched by running an electrical current through a nearby

electromagnet. This is the principle of recording in ferromagnetic
media used from the 19th century magnetic wire recorders to
today’s hard-drives. Magnetic storage has remained viable
throughout its entire history and today is the key technology
providing the virtually unlimited data space on the internet.
To keep it viable, the 19th century inductive coils were
first removed from the readout and replaced by the 20th century
spin-based magneto-resistive technology1. Twenty first century
physics brought yet another revolution by eliminating the
electromagnetic induction from the writing process in magnetic
memory chips and replacing it with the spin–torque
phenomenon1. In the non-relativistic version of the effect,
switching of the recording ferromagnet is achieved by
electrically transferring spins from a fixed reference permanent
magnet. In the recently discovered relativistic version of the spin
torque2–5, the reference magnet is eliminated and the switching is
triggered by the internal transfer from the linear momentum to
the spin angular momentum under the applied writing current6.
The complete absence of electromagnets or reference permanent
magnets in this most advanced physical scheme for writing in
ferromagnetic spintronics has served as the key for introducing
the physical concept7 for the efficient control of magnetic
moments in antiferromagnets (AFs) that underpins our work.

In their simplest form, compensated AFs have north poles of
half of the microscopic atomic moments pointing in one direction
and the other half in the opposite direction. This makes the
external magnetic field inefficient for switching magnetic
moments in AFs. Instead, our devices rely on the recently
dicovered special form of the relativistic spin torque7,8. When
driving a macroscopic electrical current through certain AF
crystals whose magnetic atoms occupy inversion-partner lattice
sites (for example, in AF CuMnAs or Mn2Au), a local relativistic

field is generated which points in the opposite direction on
magnetic atoms with opposite magnetic moments. The staggered
relativistic field is then as efficient in switching the AF as a
conventional uniform magnetic field in switching a ferromagnet.
This reverses the traditionally sceptical perception of the utility of
AFs in microelectronics and opens avenues for spintronics
research and applications9–12.

In the present paper we focus on the multi-level switching
characteristics of the memory bit-cells patterned into an
elementary cross-shape geometry from a single metallic layer of
the CuMnAs AF deposited on a III–V or Si substrate. The
multiple-stability, reflecting series of reproducible, electrically
controlled domain reconfigurations13, is not favourable for
maximizing the retention and the bit-cell size scalability.
However, in combination with the simplicity of the bit-cell
geometry and unique features of AFs stemming from their zero
net moment, the multi-level nature may provide additional
functionalities, such as a pulse counter, with a utility in
future specialized embedded memory-logic components in the
‘More than Moore’14 internet of things (IoT) applications. The
endurance, retention, and the bit-size scalability are important
parameters governing the development of bistable ferromagnetic
bit-cells for non-volatile magnetic random access memories
(MRAMs). Outside the realm of high-density main computer
memories, the requirements on these parameters might be less
stringent as long as the memories have other merits suitable for
the specific embedded applications. In particular, the components
we perceive are multi-level AF bit-cell chips with each bit-cell
integrating memory and pulse-counter functionalities.

Results
Overview. In the first and second parts of the paper we focus
on the response of our bit-cells to electrical pulses in the
microsecond to millisecond range. To highlight the realistic
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Figure 1 | Antiferromagnetic microelectronic memory device. (a) Scanning transmission electron microscopy image in the [100]–[001] plane of the

CuMnAs epilayer grown on a GaP substrate. (b) Optical microscopy image of the device containing Au contact pads (light) and the AF CuMnAs

cross-shape bit cell on the GaP substrate (dark). Scale bar length is 2 mm. (c) Picture of the PCB with the chip containing the AF bit cell and the input

write-pulse signals (red dots) and output readout signals (blue dots) sent via a USB computer interface.
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prospect of transferring the only very recent scientific discovery8

of the electrical control of AFs from laboratory experiments to
future practical IoT applications, we start in the first part by
describing our implementation of the multi-level CuMnAs
bit-cell in a standard printed circuit board (PCB). In the
following part we present systematic data on the memory-counter
characteristics as a function of the pulse length, duty cycle, and
integrated pulse-time. In the third part of the paper we extend the
measurements to pulse lengths scaled down to a B100 ps range.
These are the limiting pulse lengths accessible electrically and we
demonstrate a reproducible memory-counter functionality with
B1,000 pulses. All combined, our elementary-shape micron-size bit
cells can act as a multi-level memory-counter over the entire range
of electrical pulse lengths downscaled to B100 ps. Finally, in the
discussion section, we summarize the prospects of future research
and applications of the AF spin-orbit torque devices.

Antiferromagnetic bit cell in a USB-connected device. Figures 1
and 2 provide an overview of the basic characteristics of our AF

CuMnAs memory cells. For the purpose of the present study the
cell has a cross shape, 2 mm in size (Fig. 1b), patterned by electron
beam lithography and reactive ion etching from a 60 nm thick,
single-crystal CuMnAs film (Fig. 1a). The material shown
here was grown by molecular beam epitaxy (MBE) on a GaP
substrate15. We recall that, besides basic research, MBE is widely
used in the manufacture of microelectronic devices, in particular
for mobile technologies. We also note that GaP is lattice matched
to Si and that, as shown below, high quality CuMnAs films can be
deposited on both GaP and Si at temperatures between 220 and
300 �C, that is, well below the CMOS circuit tolerance limit which
is typically above 400 �C. Our CuMnAs films are metallic with a
conductivity of 5–8� 103O� 1 cm� 1. The cell write/read signals
can be sent at ambient conditions using a standard PCB
connected to a personal computer via a USB interface (Fig. 1c).

Writing current pulses, depicted by red arrows in Fig. 2a, are
sent through the four contacts of the bit-cell to generate current
lines in the central region of the cross along either the [100] or
[010] CuMnAs crystal axis. The writing current pulses give
preference to domains with AF moments aligned perpendicular
to the current lines7,8, as shown schematically in Fig. 2a by the
white double-arrows. Electrical readout is performed by running
the probe current along one of the arms of the cross (blue arrow
in Fig. 2a) and by measuring the AF transverse anisotropic
magnetoresistance (planar Hall effect) across the other arm8,16.
We note that ohmic anisotropic magnetoresistance (AMR) of
comparable magnitude to our CuMnAs films13 was also utilized
in the first generation of MRAM integrated circuits using thin-
film uniaxial ferromagnets and bridge formation in the read
circuitry, comprising reference and storing cells, for eliminating
thermal and noise effects11,17,18.

The simplicity of the circuitry sufficient to operate the AF bit-
cell is highlighted in Fig. 2b. Apart from the CuMnAs memory
chip it contains only standard transistors and a microcontroller,
powered by a 5 V USB 2.0 socket, for sending the write/read
voltage signals. The device operates at ambient conditions and
shows highly reproducible multi-level switching signals with a
single readout step and no additional output data processing.

Examples of different write-pulse sequences and corresponding
multi-level readout signals obtained with our proof-of-concept
USB device are shown in Fig. 2c,d. In one case a symmetric
pulsing was applied, repeating four pulses with current lines along
the [100] direction followed by four pulses with current lines
along the [010] direction. In the second case, the four pulses with
current lines along the [100] direction are followed by fifty pulses
with current lines along the [010] direction. The results illustrate
a deterministic multi-level switching of the CuMnAs bit cell.

A complementary study performed at the Diamond Light
Source directly associated the electrical switching signal in a
CuMnAs cross structure with 10mm wide arms with the AF
moment reorientations within multiple domains of sub-micron
dimensions13. In the experiment, several pairs of orthogonal,
50 ms writing pulses were applied and the corresponding domain
reconfigurations were detected by means of the photoemission
electron microscopy (PEEM) with contrast enabled by x-ray
magnetic linear dichroism (XMLD). The observed spatially-
averaged XMLD-PEEM signal correlated well with the measured
AMR which also represented a magnetoresistance signal
averaged over many domains. On a sub-micron scale, however,
the XMLD-PEEM images showed a non-uniformity with
domains responding significantly stronger or weaker to the
writing pulses than the spatial average. Consistently, when several
successive writing pulses were applied along the same direction,
the increasing AMR signal of the multi-level bit cell again
correlated well with the increased number of switched domains as
observed in the XMLD-PEEM13.
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Figure 2 | Antiferromagnetic multi-level memory bit-cell. (a) The readout

current (blue arrow) and transverse voltage detection geometry; write pulse

current lines (red arrows) labelled ‘1’ and ‘0’ and the corresponding

preferred AF moment orientations (white double-arrows). (b) Schematics

of the circuitry controlling the write/read functions. Microcontroller (MC)

supplies the AF bit-cell circuit through its adjustable voltage output VOUT;

different writing and reading configurations are realized by switching

transistors T1 to T6 controlled by digital outputs P1 to P6 of the MC;

transversal voltage is sensed differentially by analogue voltage inputs VIN1

and VIN2 of the MC. GND labels ground. (c) A symmetric pulsing with

repeated four write pulses with current lines along the [100] direction

labelled ‘0’ followed by four pulses with current lines along the [010]

direction labelled ‘1’ (red dots); corresponding readout signals (blue dots).

(d) Same as (c) with the four ‘0’ write pulses followed by fifty ‘1’ pulses. All

measurements were performed at room temperature.
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While in the large-facility XMLD-PEEM experiment only a
very limited number of switchings could have been explored,
Fig. 2c,d highlight on hundreds of pulses the level of electrical
control that can be achieved over the multi-domain switching
processes in AFs which, unlike ferromagnets19, are insensitive to
and do not generate dipolar magnetic fields. We now proceed to
exploring in detail the dependencies of the readout signals on the
parameters of writing pulses. The study presented below involves
tens of thousands of switchings with individual pulse lengths
spanning eight orders of magnitude from B10 ms down to
B100 ps. We performed the experiments using laboratory
electrical pulse generators or high frequency set-ups equipped
with rf cables and the AF devices mounted on specially designed
co-planar waveguide with rf access.

Antiferromagnetic memory-counter. We first focus on the
multi-level bit cell characteristics when written by trains of
pulses with the individual pulse length varied from milliseconds
to microseconds. The results, summarized in Fig. 3a–d,
were obtained using the following measurement protocol: Before
each train of pulses (with writing current lines along the [100]
direction), the cell was reset to the same initial state. The
maximum length of the pulse train, including all pulses and
delays between pulses, was set to 100 ms and readout was
performed 5 s after the last pulse in the train. The writing current
was fixed at 46 mA (corresponding to a current density of
2.7� 107 A cm� 2) and the readout current was 500 mA.

In Fig. 3a we compare the dependencies of the readout signal
on the number of pulses for different individual pulse lengths.
The dependencies are highly reproducible as indicated by error

bars obtained from repeated measurements for each pulse train.
The AF bit cell acts as a counter of pulses whose number can be
in hundreds. The separation of the readout signals for different
numbers of pulses, that is, the accuracy of the pulse counting,
increases with increasing individual pulse length and can reach
a single-pulse resolution. The duty cycle was fixed in all
measurements shown in Fig. 3a to 0.025. In Fig. 3b we
show that for a given individual pulse length, the duty cycle
(delay between pulses) can be varied over a broad range without
affecting the readout signal of the counter.

In Fig. 3c,d we plot the readout signal dependence on the
integrated pulse time, that is, on the number of pulses multiplied
by the individual pulse length. Over a broad range of individual
pulse lengths, the dependencies fall onto a universal curve making
the AF memory cell a detector of the integrated pulse time,
as shown in Fig. 3c. The universal trend breaks down for
individual pulse lengths smaller than E50 ms. This can be
explained by heating assisted spin-orbit torque switching in our
devices. By a direct measurement of the heating during the pulse
we observe that in the 2mm cells the heating saturates at pulse
lengths exceeding tens of ms. For these longer pulses, switching
occurs at the saturated temperature, which results in the universal
dependence of the readout signal on the integrated pulse time.
For shorter pulses, the temperature during switching does not
reach saturation and the heating decreases with decreasing pulse
length which results in the lower readout signal. We note that in
all measurements the temperature during switching stays at least
100 K below the CuMnAs Néel temperature (TN¼ 480 K)20.

An accurate detection of the integrated pulse time is feasible for
tens of pulses in our measurements, as shown in Fig. 3d. For pulse
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numbers exceeding one hundred, the readout signal at a given
integrated pulse time drops down from the universal trend
because of the non-saturated heating during the shorter pulses.
The signal reduction gets stronger at lower integrated pulse times
with correspondingly smaller individual pulse lengths. For the
current density used in the measurements in Fig. 3, the readout
signal vanishes for pulse lengths below a microsecond.

Switching pulse lengths from tens of ms to hundreds of ps. Our
measurements show that it is possible to switch AF domains
using current pulse lengths reaching the limiting, B100 ps scale
of electrical generation. This can be achieved in our AF memory
cells with accessible pulse current densities while maintaining the
BmO readout signal. In Fig. 4a we plot a typical dependence of
the measured readout signal on the length of a single writing
pulse. Before each measurement of the given pulse length, the cell
was reset to the same initial state and then the single write pulse
was applied with the current lines along the [100] direction.
The readout signal increases with increasing pulse length. This is
analogous to the dependence on the number of pulses and reflects
the multi-domain nature of the switching. The initial linear
increase of the readout signal with increasing pulse length defines
the signal per pulse length ratio which we plot in Fig. 4b as a
function of the writing current density. For comparison,
we included in the plot data points for a 30 mm-size cell used
in earlier measurements with pulse lengths in the range of
B10� 2–10� 3 s reported in ref. 8, for a 2 mm-size cell described
above, and for an additional 4mm-size cell patterned from a
50 nm thick CuMnAs epilayer on a GaAs substrate. The 30 mm
cell experiments allowed us to explore only a limited range of
current densities before heating damaged the sample. For the

2 and 4 mm cells, much higher current densities can be applied
which allowed us to scale the writing pulse length from
milliseconds8 down to sub-nanoseconds while keeping the mO
level of the readout signal, as illustrated in Fig. 4b. The signal
per pulse length ratio shows an initial steep increase with the
current density followed by a much weaker, nearly linear
dependence. This is consistent with the thermally activated
switching process.

In Fig. 4c, we show memory-counter measurements for
individual pulse length of 250 ps, that is, at the limit of pulse
lengths accessible by electrical generation. We tested counting up
to 1,000 pulses and, as in the case of the Bms and Bms pulses,
we observe a highly reproducible monotonic dependence of the
readout signal on the number of pulses. Note that for individual
data points the error bars were obtained from fifteen independent
measurements which also means that the bit cell was exposed to
B25,000 writing pulses during this study.

Finally we illustrate in Fig. 4d that bit-cells fabricated from
CuMnAs films deposited on Si at 220 �C also show the highly
reproducible multi-level switching characteristics as the devices
fabricated from CuMnAs on GaP or GaAs substrates (cf. with
Fig. 2 and ref. 8). The plot shows an example of a symmetric
pulsing experiment of repeating three writing pulses with current
lines along the [100] direction followed by three pulses with
current lines along the [010] direction. The corresponding
histogram taken from 300 pulses highlights the deterministic
switching of these multi-level CuMnAs/Si bit-cells.

Discussion
The deterministic multi-level memory characteristics described
above have been consistently observed in bit cells fabricated in
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our single-layer antiferromagnetic CuMnAs deposited at low
temperature (220–300 �C) on Si or III–V substrates which opens
the prospect of their utility in micro- and opto-electronics.
The cells have an elementary cross-shape geometry with no
intentional complexities introduced either during the layer
growth or device fabrication. We have completed the excursion
over the entire range of electrically generated pulses in micron-
size AF bit-cells without any specific materials or microstructure
optimization. It implies that these AF bit-cells should respond to
still significantly reduced pulse lengths, consistent with the THz
range of spin dynamics in AFs. While experiments with optically
generated ultra-short pulses are beyond the scope of the present
work, our complete set of electrical measurements provides
the basic feasibility check and quantitative guidelines for
extending the AF spin-orbit torque experiments in CuMnAs
microstructures down to B10–1 ps time scales. This opens a
realistic prospect of future research and applications fully
exploiting the ultra-fast AF spin dynamics and the prospect of
bridging the fields of spin-microelectronics with opto-spintronics
in a single metallic magnetic material.

The envisaged applications of the multilevel AF bit cells are
not, at least in short-term, in the non-volatile high-density
computer memories. Instead, the targeted area is in specialized
embedded applications for, for example, the IoT technologies.
The perceived components comprise multi-level AF bit-cells
where each integrates the memory-counter functionality. This
concept does not impose the stringent requirements on
endurance, retention, and scalability of high-density computer
memories. With this in mind, we performed experiments in
which the output signal was measured seconds after the last pulse
in the train (103–1010 larger times than the pulse length). This
data acquisition time scale is sufficient for a range of envisaged
IoT applications utilizing the embedded AF components. For
some applications, a relatively fast relaxation might be even
favourable since it would provide a straightforward means for
resetting the AF memory-counter even without using the
orthogonal writing current path and thus further simplifying
the bit-cell design.

A systematic study aiming to achieve high endurance and
retention properties of CuMnAs bit cells is not central to the
concept of the multi-level AF memory-counter for embedded
applications and is, therefore, beyond the scope of the present
paper. Nevertheless, from the data accumulated to date we can
comment that our ohmic devices do not suffer from fatigue,
unless biased with excessively large writing currents. Regarding
the retention, we observe a broad variation of relaxation times,
depending on the material synthesis parameters, temperature,
etc. These range from retention persisting over the entire
measurement session to short relaxation times of the order of
seconds. The former has been illustrated, for example, in Fig. 4
and S3 in ref. 8 and applies also to the present data on CuMnAs/
Si devices. A material of the latter property was used in the
measurements of up to 1,000 pulses with individual pulse length
downscaled to 250 ps. The relatively short relaxation time in
seconds allowed us to perform the large number of measurements
with the same (for inferring error bars) or different (for assessing
the counter functionality) trains of pulses without having to
involve the orthogonal current path for resetting the bit-cell.
In the Bms–ms pulse-length measurements we used a material
with a longer retention time and for resetting we employed the
spin-orbit field generated by the orthogonal writing current path
and heating to accelerate the relaxation to the initial state.
We emphasize, however, that in all these measurements the
readout was performed at times exceeding the pulse length by
several orders of magnitudes and relaxation, if present, had no
effect on the reported results.

Methods
CuMnAs growth. CuMnAs films were grown on GaAs(001), GaP(001), or Si(001)
by molecular beam epitaxy at a substrate temperature of 220–300 �C. X-ray
diffraction measurements showed that the films have the tetragonal Cu2Sb
structure (space group P4/nmm). The film and substrate follow the epitaxial
relationship CuMnAs (001)[100]||GaAs/GaP/Si(001)[110], with o1% lattice
mismatch for the GaP and Si substrates. Magnetic measurements confirmed that
the CuMnAs film is a compensated antiferromagnet. The Néel temperature
is 480 K.

Lithography. Microfabrication of our CuMnAs cross-shape cells was done using
electron beam lithography and reactive ion etching. We used metal masks prepared
by lift-off method directly on the surface of CuMnAs films to define the pattern
and protect CuMnAs layer during the reactive ion etching step. We have developed
fabrication recipes enabling us to control the degree of oxidation of the CuMnAs
surface below contact pads that is necessary to control the overall resistance of
the devices.

Data availability. The datasets generated and/or analysed during this study are
available from the corresponding author.
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