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Despite of the fact that the diagnosis of hepatocellular car-
cinoma (HCC) mainly relies on noninvasive approaches
including computerized tomography or magnetic res-
onance imaging,1,2 evaluation of histopathology is still
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indispensable in the clinical care of patients, as pathol-
ogy can not only allow for a definitive diagnosis but
also provide significant prognostication information.3
Moreover, histological subtypes of HCC have been shown

Clin. Transl. Med. 2020;10:e102. wileyonlinelibrary.com/journal/ctm2 1 of 8
https://doi.org/10.1002/ctm2.102

https://orcid.org/0000-0003-4308-7743
mailto:zengyong@medmail.com.cn
mailto:jiajiepeng@nwpu.edu.cn
mailto:ykf13@163.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.102


2 of 8 LIAO et al.

HIGHLIGHTS

∙ HCC pathology can not only allow for a defini-
tive diagnosis but also provide significant bio-
logical information.

∙ Deep convolutional neural network using HCC
histopathological slides can realize the auto-
matic diagnosis of HCC and somatic mutation
prediction.

∙ The deep learning-based histopathology may
serve as a promising tool to free the pathologists
from dull routine practice.

to be related to somatic mutation burdens,3,4 which
suggests the link between HCC molecular features and
histological phenotypes. Recently, the association between
the occurrence of activating mutations and the response
to multiple tyrosine kinase inhibitors or immunother-
apy has been established in HCC patients.5-8 Taken
together, these findings support the establishment of
personalized management for each HCC patient based on
histopathology. However, visual inspection on tissue slides
is typically performed at magnifications from 5× to 40×
in an exhaustive manner, which makes it time-consuming
for a pathologist to interpret the complexity of histopatho-
logical morphology.9 In this study, we constructed a
convolutional neural network (CNN)-based platform
using whole-slide images (WSIs) of hematoxylin and eosin
(H&E)-stained digital slides obtained from The Cancer
Genome Atlas (TCGA) dataset, as well as HCC tissue
microarrays (TMAs) from The Biobank of West China
Hospital (WCH), to realize the automatic diagnosis of
HCC (task 1) and prediction of somatic mutation (task 2).
Generally, two datasets of H&E-stained digital slides

were collected in our studies: (a) WSIs of HCC with
matched adjacent normal tissues from TCGA dataset
(Figure 1A, left panel) and (b) TMAs constructed from 455
HCC samples with 265 matched normal tissues from The
Biobank of West China Hospital (Figure 1A, right panel).
Primarily, a total of 491 WSIs in TCGA dataset were down-
loaded from GDC data portal (https://portal.gdc.cancer.
gov), which consisted of 402 HCC slides with 89 matched
ones of adjacent normal tissue. HCC slides with diagno-
sis other than HCC and those with readability issues were
excluded from further analysis, as well as their matched
normal tissue slides. The corresponding clinical andpatho-
logical data for each WSI in TCGA dataset were down-
loaded from The cBioPortal for Cancer Genomics.10,11 For
the TMA data ofWCH dataset, we used the same inclusion
strategy as that for TCGA dataset. For the use of TMA sam-

ples, each participant in this study provided the informed
consent, which was approved by The Ethics Committee of
West China Hospital. For the construction of CNN mod-
els, we used 80% of the tiles in TCGA dataset for train-
ing and 20% for testing (Figure 1B, left panel, Table S1).
To prevent overlaps between these two sets, we integrated
tiles from the corresponding slide as a whole to one of the
sets. The information of somatic mutations in each dataset
can be found in the Supporting Information. For each task,
we trained a CNN with introducing the structure of deep
residual learning12 (Methods in the Supporting Informa-
tion) to overcome the degradation problem, and the prob-
ability of each slide or TMA dot was generated using two
methods: (a) averaging of the probabilities of tiles from the
corresponding slide (generating Method 1) and (b) sum-
marizing the percentage of positively classified tiles from
the corresponding slide (≥0.5) (generating Method 2). The
architecture of our CNNmodels can be found in Figure S1
andMethods in the Supporting Information. Beforemodel
trainings, each digital slide (WSI or TMA) was prepro-
cessed using OpenSlide library13,14 (Methods in the Sup-
porting Information).
The datasets we used and the whole deep learning strat-

egy were summarized in Figure 1. After excluding slides
according to the inclusion criteria, 393 HCC slides and
88 slides of matched normal tissues were recruited in this
study (Figure 1A, left panel). Eleven TMA slides from 455
HCC patients in WCH dataset (Figure 1A, right panel),
which contained 719 dots including 455 HCC dots and 264
dots of matched normal tissues, were used as the external
validation set (Figure 1B, right panel). The whole TCGA
dataset was split into two sets: training set (408 slides)
for the training of our CNN models (tasks 1 and 2), and
test set (73 slides) for the test of the models (Figure 1B,
left panel). To accelerate the deep learning-based compu-
tational processes, the CNNs were trained and tested on
256 × 256 pixel tiles (Figures 1C and 1D), which resulted
in >950 000 and >120 000 tiles from TCGA dataset and
WCH dataset, respectively (Figure S2).
According to the deep learning-based strategy illustrated

in Figure 1, we first developed a classification CNN that
can distinguishHCC from adjacent normal tissues (task 1).
Details about the number of slides and tiles used in each
set for task 1 can be found in Table S1. Histograms showed
the distribution of probabilities on HCC and normal tiles
for HCC diagnosing (Figure S3). In the test set, less than
10% of tiles were misclassified at a magnification of 5×
(8.6%, Figure S3A, right panel) or 20× (6.1%, Figure S3A,
left panel), and the per-tile classification results at both
two magnifications yielded an area under the ROC curve
(AUC) of over 0.97 (Figure S3B; Table S2). However, in the
external validation set, 12.3% and 21.6% of tiles were mis-
classified at 5× magnification (Figure S3C, left panel) and
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F IGURE 1 Overview of the data and proposed deep learning framework presented in this study. A, Images used for this study were
obtained from the TCGA database (left panel) and theWCH biobank (right panel). B, For the training and test of our CNNmodels, images from
TCGA dataset were divided into a training (80%) and a test set (20%). TMA dots from the WCH biobank consist the whole external validation
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20× magnification (Figure S3C, right panel), respectively.
Despite this fact, per-tile classification at 5×magnification
(Table S2) also showed anAUCof 0.949,whereas classifica-
tion at 20×magnification yielded an accuracy that is signif-
icantly lower than that at 5×magnification (AUC = 0.860;
Figure S3D).
In order to assess the classification accuracy on per-

slide level, the per-tile classification results were aggre-
gated using the two methods previously described to gen-
erate a per-slide classification. Both generating Methods 1
and 2 resulted in an almost error-free classification in the
test set (Figures 2A and S4A; Table S2). Consistent with
the results from per-tile classification, the AUCs achieved
in the external validation set by both two methods at 5×
magnification were significantly higher than those at 20×
magnification (Figures 2B and S4B; Table S2). Neverthe-
less, dots labeled with “HCC” still demonstrated signifi-
cantly higher probabilities of HCC diagnosis at 20× mag-
nification when using the CNN classifier (Figures 2B and
S4B, left panel; Table S2). Next, we analyzed the correlation
between the results obtained from the two magnifications
to investigate the agreement of per-slide (or per-dot) clas-
sification results achieved at different resolutions (5× vs
20×). It was found that in both the two validation sets (test
and external validation), the classification results aggre-
gated at these two magnifications were highly correlated
(Figures 2C, 2D, S4C, and S4D). Althoughhigh consistency
was observed between the results from the two resolutions
when using a binary classifier in the test set (Figures 2E
and 2G ), ∼50% of the TMA dots assigned with a “Nor-
mal” label at 5× magnification showed the opposite clas-
sification outcomes when 20× magnified tiles were used
(Figures 2F and 2H). It is worth noticing that no significant
correlation was found between the accuracy of the classifi-
cation and the WSI (or TMA) size (Figure S5; Spearman’s
correlation coefficient <0.5).
To investigate the capability of CNN in predicting the

mutation status of HCC samples by using histopatholog-
ical images as the only input, gene mutation data for the
matched WSIs of HCC samples from TCGA dataset were
used in CNN training for task 2 (Methods in the Sup-
porting Information). During the training process, we only
selected the mutations with minor allele frequency (MAF)
≥10% among the available tumors in TCGA dataset, which
could ensure that both training and test sets had suffi-
cient images from the mutations (Table S3). In addition,
the CNN network for task 2 was derived from the mod-
ified classification CNN for task 1 by replacing the soft-

max layer with a sigmoid layer (Methods in the Support-
ing Information). Only 20×-magnified tiles were used for
this task because 20× is the requisite to extract predic-
tive features for mutation predictions, whereas 5× can
only demonstrate a random performance.9 The training
process was performed on ∼569 000 tiles from the train-
ing set, and the established mutation-prediction model
was validated on ∼105 000 tiles from the test set (Table
S4). The results from box plot and receiver operating
characteristic (ROC) curves showed that the mutation-
prediction CNN could identify predictable mutations in
seven genes (defined as AUC ≥ 0.7 and two-tailed Mann-
Whitney U-test P < .05), including ALB, CSMD3 (CUB
and Sushi multiple domains 3), CTNNB1, MUC4, OBSCN
(obscurin, cytoskeletal calmodulin, and titin-interacting
RhoGEF), TP53, and RYR2 (ryanodine receptor 2), by
using either per-tile prediction results (Figures S6A and
S6B; Table S5) or the aggregation results (Figures 3A,
3B, S7A, and S7B; Table S5). Among these seven genes,
AUCs for CTNNB1, which is one of the primary oncogenes
involved in HCC development,15 reached the highest value
at 0.903 (Table S5), indicating that mutations of CTNNB1
in the test set were highly predictive by our CNN model
(Figure 3C). It is also noticeable that AUCs for TP53, of
which the somatic mutations contribute to human cancers
in differentways,16,17 reached a value at 0.773 usingMethod
1 (Table S5). The heatmap showed that slides of TP53-
mutated samples could also be easily distinguished from
those of wild-type samples (Figure 3D). The distribution of
probabilities onmutated andwild-type tiles for these seven
predictable mutations in the test set was demonstrated in
Figure S8A, inwhich a higher percentage of positively clas-
sified tiles for eachmutation in themutated samples could
be easily observed.
For the purpose of challenging the mutation-prediction

CNN and testing its generalizability, we then evaluated
this model on TMA dots of HCC samples with avail-
able WES data in the external validation set, which con-
sists of 78 TMA dots from 78 samples, and the validation
was conducted on over 9800 tiles (Table S4). Among the
predictable gene mutations in test set, in four of them,
our CNN model exhibited the predictive capability in the
external validation set: ALB, CSMD3, OBSCN, and RYR2
(Figures S6C, S6D, 3E, 3F, S7C, and S7D; Table S6). For
instance, in both the test set (Table S5) and external vali-
dation set (Figure 3G, Table S6), our mutation-prediction
model also successfully identified samples with mutations
of CSMD3, which is the second most frequently mutated

set. C, For the training, testing, and validation of our models, each slide or TMA dot was tiled into nonoverlapping 256× 256 pixel patches, and
tiles with over 12.5% background were omitted. This process was then followed by the normalization of RGB values. D, Tiles from the training
set were used as the input for the both two CNNmodels (tasks 1 and 2), and the performance of our CNNmodels was tested on tiles from the test
set. To challenge the trained models for tasks 1 and 2 and identify their limitations, both tasks 1 and 2 were also performed on tiles from TMAs
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gene (next to TP53) in lung cancer.18 Meanwhile, themuta-
tions of ALB, a key mediator of hepatocyte function in the
secretion of blood factors, albumin and VLDL, were also
predicted with high AUCs > 0.7 in both the two sets (Fig-
ure 3H; Tables S5 and S6). On the other hand, the other
two mutations that were not predictable in the test set
(TTN and PCLO) could also be predicted in the external
validation set (Table S6). However, mutations of CTNNB1
and TP53, which were predicted with high AUCs in the
test, could not be predicted at this stage (Table S6). These
findings suggested that there were some important dif-
ferences between WSIs and our TMA dots impacting the
evaluation of the TCGA-based model. Despite this fact,
box plot showed significant difference in the probability
of HCC diagnosing between TP53-mutated samples and
those wild-type ones (Figures 3E, S6C, and S7C). The dis-
tribution of probabilities on mutated and wild-type tiles
for these four predictable in the external validation set also
showed a higher percentage of positively classified tiles for
each mutation in the mutated samples than that of wild-
type ones (Figure S8B).
In conclusion, we have provided with a promising per-

spective on HCC diagnosis using CNN, which unam-
biguously distinguished tumor from adjacent normal tis-
sues using WSIs (highest AUC achieved at 1.000), which
even outperformed the AUC of ∼0.99 achieved in our
previous work using image features combined with ran-
dom forest classifier.19 Regarding the performance on
TMAs, there was a gain of ∼0.2 in AUC by the CNN
model compared to results using feature-based approach
at 20× magnification.19 Moreover, compared with Incep-
tion V3 model that showed excellent performance on
WSIs,9 our models cost less memory and time and demon-
strated higher prediction accuracy in both tasks 1 and 2
(Table S7; Figures S9 and S10). However, we noticed a sig-
nificant difference in the results of task 1 between TMA
dots at different resolutions (5× vs 20×). This finding
might be attributed to the fact that, compared with fea-
ture extraction at 5× magnification, more tiles are inun-
dated with some “misleading” features, such as air bub-
bles, dull staining, anduneven staining duringTMAprepa-

ration, leading to a more ambiguous per-tile diagnosis of
HCC, which in turn contributed to a more ambiguous
per-dot HCC diagnosing. The discrepancy between the
TCGA and WCH dataset using the mutation-prediction
CNN might be owing to the fact that only the most rep-
resentative view of each sample was used after patholo-
gists browse through each region in WSIs during TMA
construction, which might lead to the loss of signifi-
cant information on the histopathological characteristics
of tumor samples. Despite these, we do believe that our
work will inspire further studies extending our classifica-
tion model to the specific histological subtypes of HCC
and predicting their genetic alterations. In the future,
studies based on a large scale of HCC samples are also
needed to retrain our CNN-based models and validate our
findings.
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F IGURE 2 Detection of presence of HCC. A and B, The receiver operating characteristic (ROC) curvesof our diagnosing model (AUC
with 95% CI) for distinguishing HCC from adjacent normal tissues in the test set (A, left panel) and external validation set (B, left panel). Box
plots (Mann-Whitney U-test) demonstrated the probability of HCC diagnosis predicted (right panel). The probability of each slide (or dot) was
generated using Method 1. ***P < .001. C and D, Scatter plots showing the correlation between the per-slide classification results obtained at
different resolutions (5× vs 20×) in the test set (C) and external validation set (D). The probability of each slide (or dot) was generated using
Method 1. E and F, Bar plots demonstrating the consistency in the classification results between two magnifications (5× vs 20×) when using
binary classifiers in the test set (E) and external validation set (F). The probability of each slide (or dot) was generated using Method 1. G, A
typical example of raw images in the test set with the corresponding heatmaps obtained by the classification CNN. A high consistency between
the results obtained at two resolutions (5× vs 20×) was observed. H, A typical example of raw images in the external validation set with the
corresponding heatmaps obtained by the classification CNN. Although the dot of normal tissue was recognized at 5× magnification, this dot
has been misclassified using 20×magnified tiles
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F IGURE 3 Gene mutation prediction results in both the test and external validation set. A, Probability distribution of mutations from
WSIs where eachmutation is absent or present in the test set (results aggregated byMethod 1). ns, not significant; *P< .05; **P< .01; ***P< .001.
B, ROC curves of the top 5 predictions in panel (A). C and D, Typical examples of raw images in the test set with the corresponding heatmaps
obtained by the mutation-prediction CNN for CTNNB1 (C) and TP53 (D) predictions in the test set. Significant differences could be observed
in the color density between mutated and wild-type samples. E, Probability distribution of mutations from TMA dots where each mutation is
absent or present in the external validation set (results aggregated byMethod 1). ns, not significant; *P< .05; **P< .01; ***P< .001. F, ROC curves
of the top five predictions in panel (E). F and G, Typical examples of raw images in the test set with the corresponding heatmaps obtained by
the mutation-prediction CNN for CSMD3 (F) and ALB (G) predictions in the external validation set. Significant differences could be observed
in the color density between mutated and wild-type samples



8 of 8 LIAO et al.

AUTH OR CONTRIBUT IONS
YZ, JP, and KY conceptualized and designed the study.
JP, YL, and HL developed the methodology. HL, YL, and
RH acquired the data. HL, YL, WW, XS, ZW, ML, and
LX analyzed and interpreted the data. HL, JP, KY, XL,
and YZ were associated with writing, review, and/or revi-
sion of the paper. YZ, KY, and JP provided administrative,
technical, or material support. LX, ZW, and ZZ performed
pathological experiment. YZ, JP, and KY supervised the
study.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILAB IL ITY STATEMENT
Data are available upon reasonable request. The datasets
used and/or analyzed during the current study are avail-
able from the corresponding author on reasonable request.

ORCID
Kefei Yuan https://orcid.org/0000-0003-4308-7743

REFERENCES
1. European Association for the Study of the Liver. EASL Clinical

Practice Guidelines: management of hepatocellular carcinoma.
J Hepatol. 2018;69(1):182-236.

2. Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma:
ESMO Clinical Practice Guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 2018;29(Suppl 4):iv238-iv255.

3. Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and
histological correlations in liver cancer. JHepatol. 2019;71(3):616-
630.

4. Calderaro J, Couchy G, Imbeaud S, et al. Histological sub-
types of hepatocellular carcinoma are related to gene mutations
and molecular tumour classification. J Hepatol. 2017;67(4):727-
738.

5. Harding JJ, Nandakumar S, Armenia J, et al. Prospective geno-
typing of hepatocellular carcinoma: clinical implications of next-
generation sequencing for matching patients to targeted and
immune therapies. Clin Cancer Res. 2019;25(7):2116-2126.

6. Rebouissou S, Nault JC. Advances in molecular classification
and precision oncology in hepatocellular carcinoma. J Hepatol.
2020;72(2):215-229.

7. Ruiz de Galarreta M, Bresnahan E, Molina-Sanchez P, et al. β-
Catenin activation promotes immune escape and resistance to
anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov.
2019;9(8):1124-1141.

8. Teufel M, Seidel H, Kochert K, et al. Biomarkers associated with
response to regorafenib in patients with hepatocellular carci-
noma. Gastroenterology. 2019;156(6):1731-1741.

9. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classi-
fication and mutation prediction from non-small cell lung
cancer histopathology images using deep learning. Nat Med.
2018;24(10):1559-1567.

10. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics
portal: an open platform for exploring multidimensional cancer
genomics data. Cancer Discov. 2012;2(5):401-404.

11. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of com-
plex cancer genomics and clinical profiles using the cBioPortal.
Sci Signal. 2013;6(269):pl1.

12. He K, Zhang X, Ren S, Sun J. Deepresidual learning for image
recognition. 2016 IEEEConference onComputer Vision and Pat-
tern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90

13. Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M.
OpenSlide: a vendor-neutral software foundation for digital
pathology. J Pathol Inform. 2013;4:27.

14. GoodeA, SatyanarayananM.Avendor-neutral library and viewer
for whole-slide images (Technical Report CMU-CS-08-136). Pitts-
burgh, PA: Computer Science Department, Carnegie Mellon
University; 2007.

15. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations
of the beta-catenin gene are frequent in mouse and human hep-
atocellular carcinomas. PNAS. 1998;95(15):8847-8851.

16. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting
mutant p53 for efficient cancer therapy. Nat Rev Cancer.
2018;18(2):89-102.

17. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human
cancers: origins, consequences, and clinical use. Cold Spring
Harb Perspect Biol. 2010;2(1):a001008.

18. Liu P, Morrison C,Wang L, et al. Identification of somatic muta-
tions in non-small cell lung carcinomas using whole-exome
sequencing. Carcinogenesis. 2012;33(7):1270-1276.

19. Liao H, Xiong T, Peng J, et al. Classification and prognosis pre-
diction from histopathological images of hepatocellular carci-
noma by a fully automated pipeline based on machine learn-
ing. Ann Surg Oncol. 2020. https://doi.org/10.1245/s10434-019-
08190-1

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

How to cite this article: Liao H, Long Y, Han R,
et al. Deep learning-based classification and
mutation prediction from histopathological images
of hepatocellular carcinoma. Clin Transl Med.
2020;10:e102. https://doi.org/10.1002/ctm2.102

https://orcid.org/0000-0003-4308-7743
https://orcid.org/0000-0003-4308-7743
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1245/s10434-019-08190-1
https://doi.org/10.1245/s10434-019-08190-1
https://doi.org/10.1002/ctm2.102

	Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


