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Abstract 

Background:  Illumina DNA methylation arrays are high-throughput platforms for cost-effective genome-wide profil-
ing of individual CpGs. Experimental and technical factors introduce appreciable measurement variation, some of 
which can be mitigated by careful “preprocessing” of raw data.

Methods:  Here we describe the ENmix preprocessing pipeline and compare it to a set of seven published alternative 
pipelines (ChAMP, Illumina, SWAN, Funnorm, Noob, wateRmelon, and RnBeads). We use two large sets of duplicate 
sample measurements with 450 K and EPIC arrays, along with mixtures of isogenic methylated and unmethylated cell 
line DNA to compare raw data and that preprocessed via different pipelines.

Results:  Our evaluations show that the ENmix pipeline performs the best with significantly higher correlation and 
lower absolute difference between duplicate pairs, higher intraclass correlation coefficients (ICC) and smaller devia-
tions from expected methylation level in mixture experiments. In addition to the pipeline function, ENmix software 
provides an integrated set of functions for reading in raw data files from mouse and human arrays, quality control, 
data preprocessing, visualization, detection of differentially methylated regions (DMRs), estimation of cell type pro-
portions, and calculation of methylation age clocks. ENmix is computationally efficient, flexible and allows parallel 
computing. To facilitate further evaluations, we make all datasets and evaluation code publicly available.

Conclusion:  Careful selection of robust data preprocessing methods is critical for DNA methylation array studies. 
ENmix outperformed other pipelines in our evaluations to minimize experimental variation and to improve data qual-
ity and study power.
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Introduction
Illumina Infinium Methylation BeadChip are being 
widely utilized to measure individual CpG methylation 
on an epigenome-wide scale. These arrays use probes 

with two different design chemistries and two fluores-
cence dyes to interrogate bisulfite-modified DNA. Array 
experiments have a number of known sources of techni-
cal variation which may account for a sizeable fraction of 
data variability. Careful selection of data preprocessing 
methods to minimize experimental variation is critical in 
revealing the relatively small methylation changes associ-
ated with study variables, especially the subtle variation 
associated with complex disease phenotypes. Although 
Illumina provides some basic analysis software, large 
scale data analysis has been facilitated by sophisticated 
methods and software developed by the methylation 
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research community. We have contributed to this effort 
by publishing preprocessing methods for background 
correction [1], probe-type bias correction [2], and dye 
bias correction [3] and with each method provided 
comparisons with other available alternatives. Here 
we describe the combination of these methods into the 
ENmix preprocessing pipeline, named after our original 
background correction method, and describe features of 
the extended ENmix methylation analysis software.

It is difficult for even experienced investigators to select 
from among diverse methods and then implement them 
in their own array analysis. To help simplify analysis, 
combinations of different methods are often grouped into 
preprocessing pipelines, offering convenient means for 
investigators to carry out quality control and preprocess-
ing. Although all pipelines improve ease-of-use, their rel-
ative improvements to data quality are more difficult to 
assess, in part because of the lack of reliable quantitative 
methylation metrics with which they can be compared. 
Here we compare the performance of the ENmix pipe-
line to seven other available pipelines (Illumina, SWAN, 
Noob, Funnorm, wateRmelon, RnBeads, and ChAMP) [1, 
4–9] using large datasets that allow us to assess two fun-
damental features: the agreement of methylation meas-
urements in pairs of duplicate samples, and the accuracy 
of measurements.

Methods and materials
Methylation analysis pipelines
The ENmix pipeline performs data preprocessing in a 
stepwise way, including ENmix background correction 
[1], RELIC dye bias correction [3], optional inter-array 
normalization, RCP probe-type bias correction [2], qual-
ity control, filtering of low-quality data points, and impu-
tation. ENmix background correction employs a mixture 
of exponential and truncated normal distributions to 
flexibly model complex methylation signal intensities 
and uses a truncated normal distribution to model back-
ground noise. The RELIC dye bias correction method 
makes use of the internal control probes designed to 
monitor intensity of the red and green color channels. It 
first derives a relative quantitative relationship between 
red and green channels using the log transformed inten-
sity values, and then use this relationship to correct for 
dye bias on whole array. Optional inter-array normali-
zation is recommended for relatively homogeneous 
samples, i.e., where overall intensity value distributions 
are similar between samples. It performs quantile nor-
malization on intensity values separately for methylated/
unmethylated, red/green channel and type I/II probes. 
RCP probe-type bias correction employs a regression 
framework and uses the correlation relationship between 
nearby type I and II probes to calibrate the methylation 

beta values for type II probes. In addition to the preproc-
essing pipeline function, the ENmix R software provides 
a set of functions to facilitate large-scale epigenetic anal-
yses including direct import of IDAT files and Illumina 
manifest files, quality control measures, imputation, sur-
rogate variable analysis for batch effects using internal 
control probes, ICC calculation, epigenetic clocks, differ-
ential methylated region (DMR) analysis, and estimation 
of blood cell proportions (see Supplemental Materials 
and Users Guide at: https://​www.​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​ENmix.​html).

The Illumina pipeline, implemented in GenomeStudio 
Methylation Module and in the minfi software package 
[10], uses a background subtraction method for back-
ground correction. It first calculates the 5th percentile 
of the negative control intensities separately for red and 
green channels and then subtracts it from correspond-
ing color channel intensities for all other probes. Probes 
with intensity values below than the 5th percentile are 
assigned a constant close to 0. For dye bias correction, 
the Illumina pipeline uses the first sample in a dataset 
as a reference to normalize red and green channel inten-
sities for all other samples, so the ratio of intensities 
between color channels for internal control probes is the 
same across all samples.

SWAN is short for subset-quantile within array nor-
malization [4] and is implemented in the minfi software 
package. It assumes that Infinium I and II probes with 
similar surrounding CpG density have similar measure-
ment intensity distributions. The method first separates 
all probes into different groups based on CpG density, 
then using a random subset within each group, derives an 
average quantile distribution between Infinium I and II 
probes, and finally adjusts intensities for each probe type 
separately using a linear interpolation method.

The Noob background correction method utilizes a 
normal–exponential convolution method [11] to model 
methylation signal intensities and uses out-of-band probe 
intensities [5] (intensity reads of Infinium I probes from 
the color channel opposite of their design (Cy3/Cy5) to 
measure non-specific fluorescence) to estimate back-
ground distribution. The dye bias correction procedure 
in the Noob pipeline (implemented in the minfi soft-
ware package) is similar to the Illumina pipeline, but uses 
the average intensities of color channel internal control 
probes across all samples as a reference.

Funnorm is short for functional normalization [6] and 
is a between-array normalization method. It removes 
unwanted variation by regressing out the first few prin-
cipal components derived from the internal control 
probes present on the array. The normalization proce-
dure is performed for the methylated and unmethylated, 
Infinium I and II probe intensities separately. In the minfi 
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implementation of the Funnorm pipeline, Noob back-
ground correction and dye bias correction are performed 
before this functional normalization.

In the wateRmelon R package, the “dasen” option is 
the recommend normalization method [7], which first 
performs background adjustment by adding the offset 
between Type I and II probe intensities to Type I intensi-
ties, and then conducts between-array quantile normali-
zation on methylated/unmethylated, Infinium I/II probes 
separately.

The RnBeads package [8] implements multiple normal-
ization methods available in several other software pack-
ages, such as minfi and Watermelon. The default option 
is also the “dasen” method in wateRmelon package.

The default normalization method in ChAMP pack-
age is the BMIQ method. BMIQ is short for beta-mix-
ture quantile dilation. It is an inter-array normalization 
method to adjust the beta values of Infinium II probes 
into a statistical distribution characteristic of Infinium 
I probes. BMIQ assumes that methylation values for 
probes on the Illumina array follows a three-state beta-
mixture model.

Evaluation data sets
Technical duplicates: As part of an existing Sister Study 
we assayed 128 pairs of technical duplicate blood DNA 
samples from women on 450 K arrays and subsequently 
assayed a separate set of 125 pairs of technical dupli-
cate blood samples on EPIC arrays. Three 450  K array 
sample pairs and two EPIC sample pairs were excluded 
because one of the sample-pair members had low data 
quality, i.e., where low-quality methylation sites (detec-
tion p > 0.000001 or number of beads < 3) per sample 
was greater than 5 percent or the average bisulfite inten-
sity was less than 5500. Written informed consent and 
blood samples were collected at recruitment and the 
study was approved by the institutional review boards 
of the National Institute of Environmental Health Sci-
ences (NIEHS), National Institutes of Health (NIH), and 
the Copernicus Group. Genomic DNA was extracted 
from aliquots of whole blood using an automated system 
(Autopure LS, Gentra Systems) in the NIEHS Molecular 
Genetics Core Facility or using DNAQuik at BioServe 
Biotechnologies LTD (Beltsville,MD). One microgram 
of DNA from each woman was bisulfite-converted in 
96-well plates using the EZ DNA Methylation Kit (Zymo 
Research, Orange County CA). DNA samples were ran-
domly distributed with respect to both plates and arrays, 
with the additional requirement that the two duplicates 
of a sample were always bisulfite-converted on differ-
ent plates and assayed on different arrays. All samples 
were tested for completion of bisulfite conversion, and 
converted DNA was analyzed on Illumina Human450 

Methylation Arrays following the manufacturer’s pro-
tocol. 450  K arrays were assayed at the NIH Center for 
Inherited Disease Research (CIDR) whereas EPIC arrays 
were assayed at the NCI Cancer Genomics Research 
Laboratory.

Standardized methylation control samples: We also 
created and assayed a set of 39 standardized methyla-
tion control samples. Human unmethylated and fully 
methylated DNA was obtained from a commercial 
source (Zymo Research, Irving CA). Unmethylated DNA 
was from the HCT116 double knockout (DKO) cell line 
which lacks both DNA methyltransferases DNMT1 (-/-) 
and DNMT3b (-/-); fully methylated DNA is from this 
same HCT116 DKO that is enzymatically methylated at 
CpG sites. We mixed unmethylated and methylated sam-
ples together in different proportions to create standard-
ized control samples with specific methylation levels: 0, 
5, 10, 20, 40, 50, 60, 80, and 100% methylated. Replicates 
for each methylation level (n = 10, 3, 2, 3, 3, 2, 3, 3, and 
10, respectively) were independently assayed on 450  K 
arrays at CIDR as above.

Evaluation statistics
In the absence of experimental or measurement vari-
ation, technical duplicates should produce identical 
methylation values. Although correlation coefficients are 
often calculated between duplicate samples (e.g., across 
all 450 K CpG sites) to assess concordance, such coeffi-
cients can be misleading. CpG methylation in most tis-
sues is bimodally distributed, with the majority of CpGs 
having methylation near 0 or 100%, and this bimodal dis-
tribution drives most of the correlation. For example, the 
average correlation coefficient for arrays from two unre-
lated individuals is greater than 0.98, making simple cor-
relation coefficients an insensitive statistic with which to 
measure concordance. There are several complementary 
statistics that provide better measures of methylation 
concordance. The first is centered correlation coeffi-
cient, where the population mean methylation level for 
each probe is subtracted, and the correlation is calcu-
lated on the resulting residuals. The expected centered 
correlation coefficient for a pair of unrelated samples is 
0, while the centered correlation for a pair of duplicate 
samples with identical methylation values is 1. The sec-
ond is the absolute methylation difference between repli-
cate measures at each CpG site, averaged across all CpG 
sites. Duplicate samples with identical methylation values 
would have an average absolute methylation difference of 
0. Finally, perhaps the most commonly used statistics to 
evaluate data quality at the individual probe level is the 
intraclass correlation coefficient (ICC), which is related 
to the reliability of DNA methylation measures [12], and 
is directly correlated with study power for individual 
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CpGs [13]. ICC values less than 0.5 are usually classified 
as having poor reliability, whereas those between 0.5 and 
0.75, between 0.75 and 0.9, and greater than 0.9 are clas-
sified as having moderate, good, and excellent reliability, 
respectively. To minimize the impact of low-quality array 
data, we removed data points with high detection P value 
(greater than 10–6) or small number of beads (less than 3) 
before calculating any of the evaluation statistics. Paired 
samples Wilcoxon tests were used to evaluate distribu-
tion differences between ENmix and other pipelines.

Results
Evaluation results
We applied each of the preprocessing pipelines listed in 
the methods to the technical duplicate datasets using 
each pipeline’s recommended default parameter values 
to evaluate how concordance between duplicates were 
improved (See evaluation R code in the Additional file 1). 
Compared to raw data from the duplicate samples run 
on 450 K or EPIC arrays, all pipelines provide improve-
ments in terms of higher centered correlations (Fig. 1A, 
Additional file 1: Fig. S1A, and Additional file 1: Table S1) 
and lower average absolute differences (Fig.  1B, Addi-
tional file 1: Fig. S1B, and Additional file 1: Table S2) for 
duplicate pairs. The ENmix pipeline provided the high-
est centered correlation between duplicates (0.807 for 
450 K and 0.772 for EPIC) followed by the Noob (0.769 
for 450  K and 0.756 for EPIC) and Funnorm pipelines 
(0.765 for 450  K and 0.741 for EPIC). ENmix also pro-
vided the smallest methylation difference between dupli-
cates (0.015 for 450 K and 0.017 for EPIC), again followed 
by Noob (0.018 for 450 K and 0.019 for EPIC) and Fun-
norm (0.019 for both 450  K and EPIC), respectively. In 
direct pairwise comparisons between ENmix and other 
pipelines, ENmix had greater centered correlation than 
any other pipelines for more duplicate pairs (> 87% of 
pairs for 450  K and > 74% for EPIC array; Additional 
file 1: Table S1), and smaller absolute difference than any 
other pipelines for more duplicate pairs (> 89% of pairs 
for 450 K and > 95% for EPIC; Additional file 1: Table S2; 
Paired samples Wilcoxon test p < 1 × 10–8 ;  Additional 
file 1: Table S4).

We calculated ICC in the raw and preprocessed data 
to evaluate whether measurement reliability can be 
improved at probe level by each preprocessing pipeline. 
Figure  1C plots the distribution of ICC across all CpGs 
on 450 K or EPIC array using the duplicate datasets (see 
also Additional file 1: Fig. 1C). It again shows that, com-
pared to raw data, all pipelines can improve ICC distribu-
tions and that the ENmix pipeline performs the best with 
higher overall ICCs. While only 10% of 450  K or EPIC 
CpGs had ICC greater than 0.75 in raw data, the ENmix 
pipeline improved it to 29% for 450 K and 37% for EPIC 

arrays, followed by the Noob and Funnorm (26% for 
450 K and 34% for EPIC) pipelines. In direct comparisons 
between ENmix and other pipelines, the ENmix pipe-
line results in higher ICCs for more than 60% of CpGs 
on the 450 K and more than 57% CpGs on EPIC arrays 
(Additional file 1: Table S3; Paired samples Wilcoxon test 
p < 1 × 10–25, Additional file 1: Table S4).

In raw data, the methylation value distribution has 
four modes (Additional file  1: Fig.  S2), with two modes 
near 0% methylation due to Infinium I and II probe-type 
bias, and two modes near 100% methylation due to that 
same bias [14]. All pipelines mitigate probe-type bias and 
reduce the mode differences between Infinium I and II, 
particularly the more substantial difference in modes 
near 100% methylation. However, only ENmix, SWAN 
and ChAMP pipelines fully adjusted these differences 
(Additional file 1: Fig. S2).

Standardized methylation control samples created by 
mixing isogenic unmethylated and fully methylated DNA 
in various proportions provide an ordered set of nine dif-
ferent methylation beta value distributions, with two to 
ten technical replicates at each methylation level (Addi-
tional file  1: Fig.  S3). Compared to raw data, four pipe-
lines (Illumina, SWAN, Noob and ENmix) maintained 
proper ordering and improved the similarity among rep-
licates samples having the same methylation level. The 
other four pipelines degraded the expected ordering and 
sometimes amplified differences among technical rep-
licates: The default pipelines in R package RnBeads and 
wateRmelon produced distributions with a single narrow 
peak for all samples, Funnorm resulted in a disordered 
series and amplified differences between replicates, and 
ChAMP resulted in disordered and discontinuous dis-
tributions (Additional file  1: Fig.  S3). In order to evalu-
ate whether pipelines affect the accuracy of methylation 
measurements, we compared the methylation levels of 
standardized methylation control samples to the modes 
of the distributions obtained via each pipeline (Fig.  2). 
On average across all nine levels, the ENmix pipeline had 
the smallest absolute difference (0.038) followed by the 
Noob (0.053) and Illumina pipelines (0.063).

To facilitate readers’ ability to replicate our evaluation, 
we make all datasets and the evaluation code available at 
Additional file 1 and GEO (GSE174422 and GSE174390).

Discussion
Although Illumina arrays provide a cost-effective means 
of measuring methylation across the genome, experi-
mental and technical features of the arrays are known 
sources of measurement error and bias [5, 15]. A vari-
ety of data preprocessing methods have been developed 
to improve data quality, and different methods have 
been grouped together into convenient pipelines that 
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facilitate data preprocessing. Comparison of data quality 
improvements provided by different pipelines has been 
problematic because robust objective standards to judge 
improvement have been lacking. Here we introduce the 
ENmix preprocessing pipeline which is based on our pre-
viously published methods for background correction, 
probe-type bias correction, and dye bias correction and 

compare it to seven other existing pipelines. As a basis 
for comparison we use large datasets of duplicate sample 
measurements from both 450  K and EPIC arrays and a 
dataset for standard methylation control samples. These 
datasets provide specific objectively true metrics that 
serve as gold standards for assessing data quality.

Fig. 1  Distribution of mean-centered correlations (A), absolute differences (B), and ICC (C) calculated for Illumina 450 K (125 pairs) and EPIC (123 
pairs) DNA methylation BeadChip in raw data and preprocessed data using various pipelines. Higher correlation, lower difference, and higher 
ICC indicate better performance. More detailed results are shown as violin plots in Additional file 1: Fig. S1. Paired samples Wilcoxon test P values 
comparing ENmix versus other pipeline distributions are shown in Additional file 1: Table S4
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Of the eight pipelines we evaluated, ENmix and Noob 
performed the best, with higher methylation correla-
tion, lower absolute difference, higher ICC and smaller 
deviations from true methylation levels. Both of these 
pipelines use model-based methods for background cor-
rection. The background correction method in the Noob 
pipeline assumes that intensity values are exponentially 
distributed and is based on the RMA method, a method 
originally developed for gene expression data [11]. How-
ever, the exponential distribution assumption may not fit 
some DNA methylation data very well [1]. Unlike gene 
expression profiles where the majority of genes are not 
expressed, the methylation profiles for Illumina DNA 
methylation arrays often have bimodal distributions with 
most CpGs having either high or low methylation. To 
accommodate these complex distributions, the ENmix 
background correction method uses a mixture of expo-
nential and normal distributions to flexibly model array 
methylation signal intensity. The ENmix pipeline consist-
ently outperform Noob in all evaluations, which dem-
onstrated that the mixture distribution model performs 
better than the exponential distribution model for DNA 
methylation data analysis.

The Funnorm pipeline includes all the same meth-
ods used in the Noob pipeline, with an additional step 
of internal control surrogate variable adjustment (SVA) 
based on methylation intensities. Although analyses of 
duplicate samples showed that performance metrics 

for the Funnorm and Noob pipelines are quite similar, 
analyses of the standardized methylation control data-
set showed that performance metrics for Funnorm are 
much poorer than Noob—indicating that the additional 
SVA step in Funnorm is not robust for heterogeneous 
samples. Robustness can be an important issue in DNA 
methylation data analysis because methylation pro-
files can be widely different for different human tissues. 
Numerous studies have shown that age and environmen-
tal exposures can affect a large percentage of CpGs, and 
thus, the overall methylation profiles of same tissue may 
also differ from person to person. Among all pipelines 
evaluated, only ENmix, Noob, Illumina, and SWAN are 
robust to highly heterogeneous samples.

Current Illumina arrays have Infinium I and Infinium 
II probes that utilize two different chemistries, and result 
in methylation distributions with different modes for the 
two probe types. Infinium I probes account for 28% of 
CpGs in the 450  K array and 16% of CpGs in the EPIC 
array. Among the pipelines evaluated here, only ENmix, 
SWAN and ChAMP explicitly address this issue with dif-
ferent methods: SWAN assumes that signal intensities for 
Infinium I and II probes with similar CpG density have 
similar distribution. ChAMP uses the BMIQ method, 
which assumes methylation beta values for Infinium I 
and II probes have similar distribution characteristics 
and follow a three-state beta-mixture model. As noted in 
the ChAMP user’s guide, the BMIQ function may fail if 
a sample’s methylation value distribution is not beta dis-
tributed; this failure was evident in analysis of standard-
ized control samples (Additional file  1: Fig.  S3). ENmix 
uses the RCP method which does not have an overall dis-
tribution assumption, but does assume that nearby (less 
than 50 bp distance) Infinium I and II probes located in 
regions with similar CpG density have similar methyla-
tion levels.

Several packages provide options to utilize identical 
methods for some preprocessing steps, for example, the 
RnBeads package provides many of the same functions 
that are available in wateRmelon, SWAN and minfi. 
We did not explicitly evaluate all available methods in 
each package, and we assume that the performance of 
the same method in different packages are similar, as 
we demonstrated for the “dasen” method in both the 
wateRmelon and RnBeads packages. Another limitation 
of our study is that we only evaluated the preprocessing 
pipelines in each package using their default settings. 
These default options are the developer’s recommended 
settings for most users. Although the default settings 
for the ENmix pipeline were not specifically tuned for 
the databases used in this study, we cannot exclude the 
possibility that adjusting the default setting of ENmix 
or the other pipelines might change their relative 

Fig. 2  Averaged deviations of methylation distribution mode from 
expected methylation level for the 39 standardized methylation 
control samples in raw data and preprocessed data using various 
pipelines. Smaller deviation indicates better performance. Results for 
the “dasen” method (implemented in wateRmelon and RnBeads) were 
not shown because it is not robust in this dataset
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performance. We believe these comparisons to be unbi-
ased, but we provide both the code and the databases 
in order to encourage further comparison and improve-
ment in preprocessing methods.

The ENmix pipeline performs data preprocessing in 
a sequential manner, which is flexible, transparent, and 
easy to use. The default configurations perform dye bias 
correction, background correction, and probe-type bias 
correction. Users can choose to perform quality controls 
steps which include identifying and filtering low-quality 
and outlier samples, probes, data points, and imput-
ing missing values. For relatively homogeneous samples 
we recommend including an extra step of quantile nor-
malization using signal intensity data. To further improve 
data quality and reduce experimental batch effects, we 
also recommend adjusting plate and nonnegative inter-
nal control surrogate variables when performing associa-
tion statistical analysis. In addition to data preprocessing, 
ENmix software also provides many other functions to 
facilitate methylation-related analyses with details pro-
vided in the ENmix user’s guide.

Conclusion
DNA methylation array experiments can introduce 
substantial amount of data variations. Technical dupli-
cates and standardized control samples can be used 
to provide objective evaluations on DNA methylation 
pipelines in terms of robustness and minimizing exper-
imental noise. Our study showed that the performance 
of different preprocessing pipelines can vary widely, and 
thus, it is critical to select appropriate analysis methods 
in DNA methylation studies to reveal relatively small 
methylation changes associated with complex traits. 
ENmix pipeline outperformed other methods in our 
evaluations and resulted in more accurate and robust 
estimates, higher concordance between duplicate pairs 
and higher ICC for individual CpGs.

Abbreviations
ENmix: Exponential–normal mixture model; CpG: 5′-C-phosphate-G-3′; DMR: 
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