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Many animals mimic dangerous or undesirable prey as a defence from
predators. We would expect predators to reliably avoid animals that closely
resemble dangerous prey, yet imperfect mimics are common across a wide
taxonomic range. There have been many hypotheses suggested to explain
imperfect mimicry, but comparative tests across multiple mimicry systems
are needed to determine which are applicable, and which—if any—represent
general principles governing imperfect mimicry. We tested four hypotheses
on Australian ant mimics and found support for only one of them: the
information limitation hypothesis. A predator with incomplete information
will be unable to discriminate some poor mimics from their models. We
further present a simple model to show that predators are likely to operate
with incomplete information because they forage and make decisions while
they are learning, so might never learn to properly discriminate poor mimics
from their models. We found no evidence that one accurate mimetic trait
can compensate for, or constrain, another, or that rapid movement reduces
selection pressure for good mimicry. We argue that information limitation
may be a general principle behind imperfect mimicry of complex traits,
while interactions between components of mimicry are unlikely to provide
a general explanation for imperfect mimicry.
1. Introduction
Mimicry is the phenotypic resemblance of a mimic to a model. Mimicry com-
prises one or more signals that have been selected—by signal receivers—for
their similarity to corresponding signals or cues in their models [1]. In this
context, the signal conveys information that elicits a behavioural response in
the receiver [2]. Traditional mimicry theory assumed that perfect mimicry
was the optimal phenotype. Recent theory has recognized that mimetic resem-
blance need only be good enough to fool the signal receiver [3,4]. However,
when signal receivers suffer the loss of fitness from failing to discriminate
mimics from models (e.g. in deceptive mimicry), the optimal signal receiver
behaviour is perfect discrimination [5]. Thus, the existence of imperfect
mimics can be considered an evolutionary puzzle, since either the mimetic
resemblance and/or receiver behaviour is apparently not optimal [6].

Researchers have proposed numerous explanations for imperfect mimicry.
They can be broadly grouped, based (to some extent) on the adaptive land-
scapes they describe for mimics: human perception, evolving, constraints,
trade-offs, relaxed selection, perceptual or cognitive exploitation and kin selec-
tion [6]. Several of these hypotheses have been extensively tested, while others
are still largely untested for two main reasons: (1) they are relatively recent; and
(2) they are difficult to test because they incorporate multiple signal com-
ponents [6]. Our aim here is to focus on those lesser-tested hypotheses, the
most recent of which is the information limitation hypothesis [7]. While most
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Table 1. Hypotheses addressed by this study and whether our results support the hypothesis. The Exclusive column indicates whether the prediction is exclusive
to the hypothesis, hence can be used to discriminate between this and the other tested hypotheses.

hypothesis prediction exclusive? ref supported?

information limitation more mimics are mistakenly classified as ants when the analysis uses

incomplete information

yes [7] yes

motion-limited

discrimination

poor mimics move faster or spend more time moving than good mimics no [8] no

multicomponent hypotheses

increased deception accuracy in two signals is negatively correlated no [2] no

multitasking accuracy in two signals is negatively correlated no [2] no

backup signala accuracy in two signals is positively correlated yes [2] no

receiver variabilitya accuracy in two signals is not correlated yes [2] yes
aThe backup signal and receiver variability hypotheses are general multicomponent signal hypotheses that do not address imperfect mimicry.
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theoretical approaches to imperfect mimicry assume that recei-
vers operate with the complete knowledge needed to make
optimal decisions, the information limitation hypothesis
considers that optimal receiver behaviour may be to operate
with incomplete information, rather than to bear the cost of
further sampling [7]. Receivers avoid potentially risky
sampling of mimics and thus operate with insufficient infor-
mation to accurately discriminate between poor mimics
and their models. This increases the likelihood of mistaking
mimics for their models, thereby relaxing selection on poor
mimics [7]. Another recently proposed and related hypothesis
argues that selection may be relaxed if mimics are in constant
motion, thereby preventing receivers from adequately asses-
sing visual similarity between mimic and model [8]. We label
this the ‘motion-limited discrimination’ hypothesis.

Mimicry can consist ofmultiple signals, potentially across a
range of sensory modalities [3]. Little is known about how
multiple signals interact, although recent studies have gener-
ated multiple hypotheses addressing these interactions [2].
If one convincing mimetic signal (e.g. behavioural mimicry)
compensates for another less convincing mimetic signal (e.g.
morphological mimicry), the ‘increased deception’ hypothesis
[2,9] argues that this could explain the imperfect mimicry of
the second signal. Accordingly, the hypothesis predicts a nega-
tive association between the accuracy of two mimetic signals
[10]. Similarly, if a mimic’s ability to generate one signal is
constrained by its generation of another (the ‘multitasking’
hypothesis [2]), this could also relax selection and result in
imperfect mimicry of one signal, and again predicts a negative
correlation between the two signals. A positive relationship
between pairs of mimetic signals will result if selection for
accuracy acts similarly on both signals (the ‘backup signal’
hypothesis [2,9]). No relationship is predicted if different
signals are directed at different receivers (the ‘receiver varia-
bility’ hypothesis [2]). Importantly, neither the backup signal
nor the receiver variability hypotheses are able to explain
imperfect mimicry.

Mimicry has been described across awide taxonomic range
[11], with ant mimicry being one of the most commonly
encountered forms [12]. A combination of characteristics such
as aggressiveness, chemical defences, low nutritional value,
group defence and conspicuousness makes ants ideal models
for defensive (or Batesian) mimicry [13]. Consequently, ant
mimicry has evolved independently many times, across as
many as 54 arthropod families [12]. Mimetic traits include
body shape, colour and colour pattern, surface texture, size
and behaviour [12]. Behaviour may be the most conspicuous
feature of ants, and is, therefore, likely to be mimicked [14].
Ant mimics may behaviourally resemble their models in
multiple ways, such as abdominal bobbing, emulating anten-
nae by waving a pair of legs [15] and in the trajectories they
follow while walking (locomotor mimicry) [16].

The aim of this study is to test several recent hypotheses
explaining imperfect mimicry, using locomotor and morpho-
logical ant mimicry as a model system. We assess a number of
poorly tested hypotheses, some mutually exclusive and some
non-exclusive, that pertain to mimicry signal content and
the maintenance of inaccurate mimicry (table 1). Using
ant-mimicking spiders and insects and non-mimicking
arthropods we quantify one behavioural trait (the trajectories
followed while walking) and one morphological trait (body
shape) and generate accuracy scores by comparing them to
ants. While trajectory and body shape are each comprised a
set of multiple traits, we calculate a single score for each
set, allowing them to be compared as simple traits.

We then apply these accuracy scores to assess the predic-
tion of the information limitation hypothesis: that receivers
who incompletely sample potential prey items will fail to dis-
tinguish some imperfect mimics from models. Consequently,
we expect significantly more mimics will be classified as ants
by a limited information analysis than by a full information
analysis. While not explicitly predicted by the information
limitation hypothesis, we expect that misclassifications of
ants and other non-mimetic arthropods will not change sig-
nificantly. In addition, since the information limitation
hypothesis assumes incomplete learning by receivers, we
use a digital simulation of a simple learning model applied
to our trajectory data to explore the conditions under which
the hypothesis might apply. While logic dictates that greater
statistical sampling will increase accuracy, our primary aim is
to demonstrate this in a mimic/model context. Furthermore,
this type of hypothesis testing facilitates the identification
of real-world mimic encounter rates that can increase or
decrease selection on the accuracy of mimicry.

While our data are unable to distinguish between the
increased deception and multitasking hypotheses, we test
their shared prediction: that the accuracy of two mimetic sig-
nals should be inversely correlated. We further assess the
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predictions of the backup signal (a positive correlation between
signals) and receiver variability (no relationship) hypotheses.
Finally, we assess the motion-limited discrimination hypo-
thesis by testing the prediction that poor mimics move faster
or more consistently than good mimics.
publishing.org/journal/rspb
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2. Material and methods
(a) Animals
Avariety of ants and ant-mimicking spiders and insects were col-
lected along the east coast of Australia, from Port Douglas,
Queensland, to Sydney, New South Wales, between April 2017
and November 2018. We also collected arthropods that were
not considered to be mimics in the literature but occurred in
the same locations and habitats as—and had similar body sizes
to—the ants and mimics (we refer to these arthropods as non-
mimics). Specimens were collected from trees and bushes
during daylight hours by visual inspection, searching under
loose bark and by beating vegetation into sorting trays. Spiders
and ants were housed individually in 50 ml plastic jars contain-
ing damp cotton wool for moisture, and spiders were fed twice
per week on fruit flies. Lists of the specimens used for trajectory
and morphometric analysis are available in CSV format in
the electronic supplementary material. For information on the
taxonomic identification, please see electronic supplementary
material, appendix S2.
(b) Trajectory analysis
Weused thepaths followedbywalking animals—their trajectories—
to assess behaviouralmimicry. Here, we briefly summarize the steps
followed to characterize trajectories in preparation for analysis; the
process is fully described in electronic supplementary material,
appendix S3. First, animalswere filmedwalkingonavertical feature-
less board in the laboratory. A vertical board was considered more
ecologically relevant than a horizontal board as themajority of speci-
mens were collected from tree trunks or vegetation. Next, custom
software was used to extract trajectory coordinates from the video
files and write them to CSV files. Finally, the extracted trajectories
were numerically characterized using several indices that rep-
resented aspects of speed or movement and straightness or
sinuosity (see electronic supplementary material, appendix S3 for
details), with all trajectory quantification performed using the R
package trajr [17,18]. The result is a vector of numbers that describes
each trajectory and can be used for trajectory analysis. Sample sizes
are summarized in electronic supplementary material, tables S1
and S2.

We used discriminant analysis to classify the characterized
trajectories as either ‘ant-like’ or ‘not ant-like’. This analysis
identifies the information available to discriminate between the
trajectories of ants and those of other animals. The output is
the ‘predicted’ classification, derived from the properties of the
trajectory. As the data were not homoscedastic (electronic
supplementary material, appendix S5), we used quadratic discri-
minant analysis. All discriminant analyses were conducted with
equal (i.e. uninformative) priors, and with cross validation to
prevent overfitting and make the predictions conservative,
unless otherwise noted.

Testing the motion-limited and multicomponent hypotheses
(increased deception, multitasking, backup signal and receiver
variability) required continuous-valued accuracy scores, with
high values indicating highly ant-like trajectories, and low
values indicating trajectories that were not ant-like. We applied
logistic regression to the characterized trajectories to obtain
these values, using logit-scaled predicted values as mimetic
accuracy scores.
(c) Morphological accuracy
Geometric morphometric analysis was used to characterize the
dorsal and lateral outlines of animals. Outlines were obtained by
photographing specimens dorsally and laterally, then manually
tracing the outlines in Adobe Photoshop. To increase our sample
size, we also used outlines from Kelly et al. [19]. Elliptical Fourier
analysis was applied to the outlines, resulting in a numeric
vector describing each shape (for further details, see [19]). The
Fourier analysis produces output vectors with many dimensions,
sowe applied a principal components analysis both to remove con-
stant dimensions and for dimension reduction, retaining 95% of
the variation. Finally, using the same logic as for characterized tra-
jectories, we applied discriminant analysis to classify shapes as
ant- or non-ant-like, and logistic regression to calculate accuracy
scores. Sample sizes are summarized in electronic supplementary
material, tables S1 and S2.
(d) Hypothesis testing
According to the information limitation hypothesis, some appar-
ently imperfect mimics may be functionally perfect mimics when
discrimination is based on limited information [7]. To test this,
we compared the performance of an analysis that uses all
available information against an analysis that uses limited infor-
mation. To calculate accuracy based on full information, the
discriminant analysis was trained on all samples (models,
mimics and non-mimics). To calculate accuracy with incomplete
information, the analysis was only trained on the model and non-
mimic trajectories, representing a predator that only samples
prey that are very likely to be encountered, and avoids poten-
tially risky mimics. Cross validation was not used for
incomplete analysis, since it is used to classify trajectories that
were not part of the training set. We used a Pearson’s χ2-test
for independence to compare the proportion of mimics misclas-
sified as ants by the fully trained discriminant analysis to the
proportion misclassified by the partially trained analysis (α =
0.05). Pearson’s χ2-test was also used to assess changes in
misclassifications of ants and non-mimics.

To test for the relationship between the accuracy of multiple
signals, we needed a numeric value for mimetic accuracy rather
than a binary ant/not-ant decision, so we used logistic regression
rather than discriminant analysis. We calculated the mean accu-
racy per species for both locomotor mimicry and morphological
mimicry.We then fitted a linear regression to assess the type (posi-
tive or negative) and strength of the relationship between the two
aspects ofmimicry.We used linear least squares to test the relation-
ship between mean and maximum walking speed while moving
(i.e. excluding times when the animal was stopped) and morpho-
logical accuracy, both averaged to species (α = 0.05). Due to the
small sample size, we calculated bootstrap estimates of the 95%
confidence intervals of the correlation coefficients.
(e) Predator learning simulation
When Sherratt & Peet-Paré [7] proposed the information limitation
hypothesis, they observed that predators must make decisions
even while learning to discriminate between prey and models.
To investigate the effect of learning on prey discrimination, we
simulated a decision-making-while-learning process such as a
naive predator may undergo. Every time a prey item is encoun-
tered, the predator’s current knowledge of desirable and
undesirable prey is used to decide whether to attack. If the prey
is attacked, the predator’s decision criteria are updated based on
the actual type of prey. If it is ignored, the predator’s criteria do
not change. Until sufficient desirable and undesirable prey have
been encountered, all prey are assumed to be desirable.We ignored
other factors that would affect real predators’ choices such as
hunger, apparent prey availability and limited memory.
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We created a digital simulation of this model, presenting
defined proportions of different prey types (mimics, models
and non-mimics) to predators in random order. After each
attack, we evaluated how the predator classified all potential
prey. The simulated prey were trajectories, randomly selected
(with replacement) from our samples, and the prey evaluation
was performed as described above for trajectory analysis; trajec-
tories classified as ants were avoided and those classified as
non-ants were attacked. After each attack, we re-evaluated the
mimetic accuracy of all trajectories using a discriminant analysis
trained on just the trajectories that had been attacked so far, to
determine the proportion of trajectories that would be considered
desirable prey at that point in time. We repeated the simulation
1000 times and averaged the results to obtain the proportion of
mimics, models and non-mimics that would be attacked after
every encounter, then plotted the result. We performed this
analysis under two hypothetical scenarios: mimics were abun-
dant in the first scenario at 33% of total prey, and rare in the
second at 5% of total prey. Models and non-mimics were equally
abundant in both scenarios. The first scenario might apply to
more relatively abundant mimics such as hoverflies [20], while
the second could represent relative abundances of ant mimics
(D.J.M. 2018, 2019, personal observation).

All tests and simulations were implemented in R [18].
3. Results
We characterized 160 trajectories from 58 species or morphos-
pecies, comprised 93 mimic trajectories, 36 ant trajectories
and 31 non-mimic trajectories (figure 1). Body lengths
ranged from below 3 mm up to 16 mm, although mimetic
spiders were all shorter than 7 mm. We characterized the
body outlines of 304 specimens: 210 mimics, 42 ants and 52
non-mimics (figure 1). We could not always obtain both lat-
eral and dorsal outlines for specimens, so our dataset
contained 274 dorsal outlines and 184 lateral outlines
(figure 1). We obtained both trajectories and morphometric
data for 15 species of ant mimics (electronic supplementary
material, table S2).

(a) Information limitation
When trained using all trajectories (i.e. using full infor-
mation), 74% of mimics and 94% of non-mimics were
correctly classified as suitable prey, while 47% of were ants
incorrectly classified as potential prey (table 2). When trained
on ants and non-mimics only (i.e. with limited information),
identification of mimics as prey reduced to 56% (i.e. more
mimics were avoided), incorrect identification of ants
decreased to 3% and non-mimic identifications were
unchanged at 94% (table 2). Mimics were significantly more
likely to be misclassified as ants by the discriminant analysis
trained on limited data (Pearson’s χ2 = 6.1, d.f. = 1, p = 0.01).
Misclassifications of ants were reduced significantly in
the limited analysis (Pearson’s χ2 = 16.7, d.f. = 1, p < 0.001).
Misclassifications of non-mimics were unchanged.

Analysis of dorsal body shapes based on full information
correctly identified 99% of mimics and 100% of non-mimics
as suitable prey, and mistakenly identified 7% of ants as
prey. With limited information, 85% of mimics were classified
as prey, while all ants and non-mimics were correctly ident-
ified (table 2). As with trajectories, limited information
resulted in mimics being significantly more likely to be mis-
classified as ants (Pearson’s χ2 = 23.7, d.f. = 1, p < 0.001).
Although the two ants incorrectly classified by the full
information analysis were classified correctly by the limited
information analysis, the change was not significant (Pear-
son’s χ2 = 0.5, d.f. = 1, p = 0.47). All non-mimics were
correctly identified by both analyses. Lateral body shape
analysis also showed similar results. Correct classifications
of mimics as prey were reduced significantly from 100% to



Table 2. Proportions of trajectories or body shapes identified as suitable prey (i.e. not ants), with full or limited information. Limited information consistently
results in an increased rate of misclassifications of mimics, i.e. more mimics are mistaken for ants. However, limited information also generally improves the
classification of ants. Orange backgrounds indicate that more mistakes were made with limited information, and blue backgrounds indicate fewer mistakes.
Statistically significant changes are in bold.

trait trained on ants mimics non-mimics

trajectory full 17/36 (47%) 69/93 (74%) 29/31 (94%)

limited 1/36 (3%) 52/93 (56%) 29/31 (94%)

dorsal outline full 2/28 (7%) 196/198 (99%) 48/48 (100%)

limited 0/28 (0%) 169/198 (85%) 48/48 (100%)

lateral outline full 0/26 (0%) 128/128 (100%) 29/30 (97%)

limited 0/26 (0%) 117/128 (91%) 30/30 (100%)

0

0

0.2

0.4

0.6

0.8

1.0

50

mimics
ants
non-mimics

100 150 200 250 300
encounter encounter

pr
op

or
tio

n 
at

ta
ck

ed

0

0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

(a) (b)

Figure 2. Proportion attacked for different prey types during simulated learning. Predators encounter equal numbers of ants and non-mimics, and encounter mimics
at a rate of either (a) 33% or (b) 5% of total prey. Optimal predator behaviour is to attack all mimics (solid red line) and non-mimics (dashed green) and avoid all
ants (dot-dash purple). Predators are initially naive and attack all prey (not shown). As they encounter ants, they start to build up criteria for prey items to be
avoided. As each prey is encountered, predators either attack and update selection criteria, or ignore, in which case selection criteria remain unchanged. The decision
to attack or not is based on information derived from previous attacks. After each encounter, the proportions of all prey items that would be attacked are recal-
culated. Means ± sample variance from 1000 simulations are shown. (Online version in colour.)
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91% (Pearson’s χ2 = 9.5, d.f. = 1, p = 0.002), all ants were cor-
rectly identified by both analyses, and 1 non-mimic was
mistakenly classified as an ant by the full analysis, but not
by the limited analysis.
(b) Learning and information limitation
Our learning simulations showed that the learning process,
together with relative prey abundances, can affect how preda-
tors choose which prey to attack (figure 2). Under this
learning model, if mimics are relatively common, predators
quickly gain enough information to identify them as prey
in over 70% of potential encounters (figure 2a). A lower rela-
tive abundance of mimics leads to smaller proportions of
prey being attacked for all prey types, but particularly for
mimics, with 58% being attacked (figure 2b).
(c) Multicomponent hypotheses
We related trajectory mimetic accuracy to body outline accu-
racy for 15 species. There was no significant correlation
between behavioural mimetic accuracy and dorsal morpho-
logical mimetic accuracy (adjusted r2 =−0.006, p = 0.36, 95%
confidence interval for r = [−0.4, 0.7], n = 15). Similarly, there
was no significant correlation between behavioural accuracy
and lateral morphological accuracy (adjusted r2 =−0.02, p =
0.42, 95% confidence interval for r = [−0.3, 0.6], n = 15).

(d) Motion-limited discrimination
No measure of speed that we tested correlated significantly
with morphometric accuracy. We tested mean speed (dorsal
accuracy: adjusted r2 =−0.04, p = 0.5, 95% confidence interval
for r (CI) = [−0.5, 0.7]; lateral accuracy: adjusted r2 =−0.07,
p = 0.9, 95% CI = [−0.6, 0.5]), maximum speed (dorsal accu-
racy: adjusted r2 =−0.04, p = 0.5, CI = [−0.7, 0.5]; lateral
accuracy: adjusted r2 =−0.04, p = 0.5, CI = [−0.7, 0.4]),
and proportion of time moving (dorsal accuracy: adjusted
r2 =−0.07, p = 0.9, CI = [−0.4, 0.5]; lateral accuracy: adjusted
r2 =−0.07, p = 0.8, CI = [−0.6, 0.5]). Our findings for each of
the tested hypotheses is summarized in table 1.
4. Discussion
(a) Information limitation
We used discriminant analysis to test the information limit-
ation hypothesis, predicting that limited information about
mimics would result in a higher rate of misclassifications of
mimic trajectories and body shapes, and our results support
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the prediction (table 2). Initially surprising, however, was the
finding that limited information can also result in a signifi-
cantly lower rate of misclassification of ant trajectories
(reduced from 47% to 3%, table 2). This means that predators
are more likely to avoid potentially costly attacks on ants
when they operate with limited information than when they
operate with full information. While our results support the
information limitation hypothesis, it is worth noting that our
analysis differs slightly from the original description of the
hypothesis. The hypothesis was explained in terms of salient
traits ‘overshadowing’ other, less salient traits [7], whereas
we have shown that the interpretation of a single complex
trait (such as trajectory or body shape) may depend on the
amount of information available to the predator. Our results
also indicate that while predators operating with limited
information may reduce attacks on imperfect mimics, a large
proportion of mimics can be distinguished from their
models even with incomplete information. This means that
information limitation does not explain all imperfect mimicry.
 8:20210815
(b) Learning and information limitation
The information limitation hypothesis was explicitly framed
in terms of predator learning, and argued that exploration–
exploitation models might describe predator behaviour [7].
However, exploration–exploitation models are computation-
ally intractable for many real-world problems. Our learning
simulation shows how a naive predator following one
simple rule—avoid anything that seems to be an ant based
on what is already known—unavoidably operates with
incomplete information under some circumstances (figure 2).
By following this rule, predators improve their decision
criteria (i.e. they learn) when they misclassify an ant, but
not when they misclassify, and hence avoid, mimics or non-
mimics. If mimics are relatively uncommon within the
prey community, predators will not obtain the information
required to identify them, resulting in many being misclassi-
fied as models, thereby relaxing selection for more accurate
mimicry. If, however, predators encounter many mimics, par-
ticularly during the early stages of learning, they operate with
more complete information, and are able to correctly classify
most mimics. An experiment with wild birds and artificial
prey found exactly this relationship—imperfect mimics are
better protected at low relative abundances than at high rela-
tive abundances [21]. The authors concluded that higher
encounter rates are required to learn to distinguish imperfect
mimics from their models, which informally describes the
information limitation hypothesis.

In one sense our information limitation result is obvious:
we have shown that a discriminant analysis with insufficient
information performs poorly, and that poorer information
leads to poorer performance. This unsurprising fact is not a
quirk of the way that discriminant analysis behaves, but
rather the nature of a complex discrimination task: any
discrimination mechanism will perform poorly with insuffi-
cient information. In particular, predators or other signal
receivers are subject to this limitation. The performance
of our model is likely to be close to optimal within the simu-
lated ecological constraints. In practice, predators will sample
less before attempting to avoid ants, they will forget over
time, and they may use cognitive short cuts such as relying
on a subset of detectable traits. Hence, we consider that
predators are likely to perform worse than our model,
mistakenly avoiding a higher proportion of mimics. The
importance of adequate sampling to effective decision
making has only been applied recently to the ecology of
mimicry [7], and our learning model shows how this limit-
ation could apply to predators in practice, leading to
relaxed selection for accuracy in mimics.

(c) Multicomponent hypotheses
We looked at the relationship between the accuracy of loco-
motor mimicry and morphological mimicry to test the
predictions of some multicomponent mimicry hypotheses.
If a good signal compensates for a poor signal (the increased
deception hypothesis [2]), or if the generation of one signal
constrains another (the multitasking hypothesis [2]), the
two signals will be negatively correlated. Spider locomotion
depends on muscles contained within the legs, but also on
hydraulic power developed by muscles in the head, and
thus hydraulic power depends on head morphology [22].
Indeed, the constricted morphology of ant-mimicking spiders
limits their ability to jump [22], so it would not be unreason-
able to expect similar constraints on locomotion, or the
inverse: ant-like locomotion constraining the evolution of
mimetic morphology. However, we found that accuracy of
morphology and locomotion were not negatively correlated,
failing to support either hypothesis. The two mimetic signals
were also not positively correlated, which would have
suggested that the same selective forces are acting on both
signals (the backup signal hypothesis [2]). Instead, we
found no relationship, suggesting that the signals are directed
at different receivers (the receiver variability hypothesis [2]).
Of course, we only compared two signal types, so we
cannot rule out correlations between other pairs of signals,
however, this lack of correlation between behavioural and
morphological mimicry is largely consistent with previous
results for hoverflies [9].

(d) Motion-limited discrimination
Finally, we investigated whether mimics that move at high
speeds, or rarely stop, prevent accurate discrimination by pre-
dators, so faster or more active mimics would be less accurate
morphological mimics—the motion-limited discrimination
hypothesis [8]. Our data did not support this hypothesis, as
we found no correlation between speed (or proportion of
time moving) and morphological mimicry. Previous work
found that poor morphological ant mimics had higher escape
speeds than more accurate mimics. The higher speeds
increased the likelihood of escape, thus reducing selection for
greater mimetic accuracy [10]. Broadly similar results have
been found using human ‘predators’, where the ability to
escape reduced the likelihood of mimicry evolving [23]. Our
findings may differ from these because we measured the
speed of walking while undisturbed, rather than escape speed.
5. Conclusion
Do our results help reveal general principles of imperfect
mimicry? Information limitation is not specific to ant
mimics but will apply to any complex mimetic signal that
cannot be learnt by sampling a small number of instances.
While locomotor mimicry might be a particularly ‘complex’
trait in this sense, it seems likely that many other forms of
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mimicry are also complex, hence the information limitation
hypothesis is likely to be widely applicable. On the other
hand, the multicomponent hypotheses tested here depend
on the specific characteristics of the mimic, model or predator,
with limited capacity to describe general principles.

Imperfect mimicry seems to be a sub-optimal phenotype,
but current thinking is that since mimics only need to be
good enough to fool signal receivers, imperfect mimicry is
expected [3,4]. This thinking only moves the problem:
rather than asking why the mimic phenotype is not optimal,
we now need to ask why signal receiver discrimination or be-
haviour is not optimal. The information limitation hypothesis
provides a possible answer to this question: an evolved
improvement in cognitive power or visual acuity cannot over-
come the lack of information brought about by ecological
circumstances. Some imperfect mimicry may simply result
from unavoidable ecological constraints.
.
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