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Abstract: Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic
and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via
PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress
transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated
protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although
the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy
remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing
cytokine and myostatin signaling via inhibition of the NF-κB and Smad pathways, respectively.
Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are
likely regulated in different pathological conditions and contribute to the development of muscle
atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem
(satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly,
IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions
and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity,
autophagy, and muscle regeneration.

Keywords: insulin-like growth factor-1; skeletal muscle; hypertrophy; atrophy; cachexia; muscle
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1. Introduction

Studies in various models in cell culture, animals, and humans have evaluated cytokines and
growth factors that can regulate muscle growth. Insulin-like growth factor-1 (IGF-1) is one of the
best-characterized growth factors, and it has been shown to modulate muscle size and play a critical
role in regulating muscle function. IGF-1 is thought to mediate many of the beneficial outcomes of
physical activity [1,2]. In a study analyzing healthy young subjects, circulating IGF-1 levels were
negatively associated with body fat, body mass index (BMI), and total cholesterol and positively
associated with aerobic fitness and muscular endurance parameters (VO2 peak, sit-ups, push-ups,
and repetitive squats) [3]. In contrast, lower IGF-1 levels were associated with various pathological
conditions including chronic diseases, inflammation, and malnutrition [4,5]. Since skeletal muscle cells,
or myofibers, are postmitotic, their size is determined by a balance between synthesis of new proteins
and degradation of old proteins. Under physiological conditions, the rates of protein synthesis and
degradation are balanced and the myofiber size is maintained. In cachectic conditions, on the contrary,
myofiber protein degradation is accelerated and protein synthesis rate is suppressed, resulting in
muscle weakness and fatigue. IGF-1 can regulate both protein synthesis and degradation pathways,
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and changes in IGF-1 signaling in skeletal muscle can greatly affect myofiber size and function.
This review summarizes and discusses different aspects of IGF-1-mediated protein synthetic and
degradation pathways in skeletal muscle and its potential application to therapies to treat patients
with reduced skeletal muscle function. The signaling pathways downstream of IGF-1 discussed in the
following sections are summarized in Figure 1.
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body are bound to IGFBP and IGFALS, and its activity is suppressed. Once IGF-1 binds to IGF-1R, 
IRS-1 and PI3K are recruited and activated. PI3K converts PIP2 to PIP3, which activates PDK1 and 
Akt. Akt activates protein synthesis via activation of ribosomal protein S6 and the translation 
initiation factor eIF4E downstream of mTORC1, and activation of β-catenin and eIF2B downstream 
of GSK3β. Akt can suppress UPS activity via inhibition of FoxO-mediated transcription of E3 
ubiquitin ligases MAFbx/Atrogin-1, MUSA1, and SMART. MuRF1 expression is induced by cytokines 
such as TNF-α via NF-κB pathway. Akt could phosphorylate IκΒ and activate the NF-κΒ pathway, 
although it has not been shown in skeletal muscle and multiple studies have shown IGF-1 activation 
does not alter MuRF1 expression. Myostatin and BMP signaling compete against each other for their 
usage of Smad4. Activation of myostatin inhibits BMP-mediated Smad1/5/8 translocation to the 
nucleus, thus inhibiting MUSA1-mediated UPS activity. Akt can also downregulate ActRIIB and 
inhibit ALK4/5 via unknown mechanisms. Although it has not been shown in skeletal muscle, Akt 
can interact directly with unphosphorylated Smad3 to sequester it outside the nucleus. Several 

Figure 1. IGF-1 signaling pathways. In the figure, the signaling molecules and miRNAs that activate
protein synthesis and/or inhibit protein degradation are shown in green, while the ones that inhibit
protein synthesis and/or activate protein degradation are shown in blue. The majority of IGF-1 in the
body are bound to IGFBP and IGFALS, and its activity is suppressed. Once IGF-1 binds to IGF-1R,
IRS-1 and PI3K are recruited and activated. PI3K converts PIP2 to PIP3, which activates PDK1 and
Akt. Akt activates protein synthesis via activation of ribosomal protein S6 and the translation initiation
factor eIF4E downstream of mTORC1, and activation of β-catenin and eIF2B downstream of GSK3β.
Akt can suppress UPS activity via inhibition of FoxO-mediated transcription of E3 ubiquitin ligases
MAFbx/Atrogin-1, MUSA1, and SMART. MuRF1 expression is induced by cytokines such as TNF-α
via NF-κB pathway. Akt could phosphorylate IκB and activate the NF-κB pathway, although it has
not been shown in skeletal muscle and multiple studies have shown IGF-1 activation does not alter
MuRF1 expression. Myostatin and BMP signaling compete against each other for their usage of Smad4.
Activation of myostatin inhibits BMP-mediated Smad1/5/8 translocation to the nucleus, thus inhibiting
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MUSA1-mediated UPS activity. Akt can also downregulate ActRIIB and inhibit ALK4/5 via unknown
mechanisms. Although it has not been shown in skeletal muscle, Akt can interact directly with
unphosphorylated Smad3 to sequester it outside the nucleus. Several miRNAs have been shown to
regulate IGF-1 signaling. miR-486 is inhibited by the myostatin/Smad pathway, resulting in inhibition of
IGF-1 signaling via PTEN increase. miR-1 and miR-133 target IGF-1 and IGF-1R, respectively, and their
expression is reduced during muscle hypertrophy. IRS-1 could be inhibited by miR-128 and miR-15.
LncIRS1 (not shown in the figure), which is upregulated in hypertrophic muscles, can act as sponge for
miR-15, resulting in activation of IRS-1. Note that studies have shown conflicting evidence on miR-29′s
role in IGF-1 signaling in skeletal muscle, and it may potentiate or inhibit IGF-1 signaling. Pathways
that are unclear and/or not shown in skeletal muscle are shown in dotted lines.

2. Muscle Protein Synthesis and IGF-1 Signaling

One of the most important function of IGF-1 is its regulation of protein synthesis in skeletal muscle
and promotion of body growth. Upon binding to IGF-1, IGF-1 receptor (IGF-1R) phosphorylates an
intracellular adaptor protein insulin receptor substrate-1 (IRS-1), which recruits and phosphorylates
phosphoinositide 3-kinase (PI3K) followed by Akt phosphorylation. The PI3K/Akt pathway
plays a critical role in myotube hypertrophy [6,7], and activation of Akt in rat muscle prevents
denervation-induced atrophy [8,9]. Mammalian target of rapamycin (mTOR) is a downstream target
of Akt, and in mammalian cells mTOR activity is tightly regulated by amino acid availability to the
cells. As amino acids are necessary to build proteins, nucleic acid, glucose, and ATP in the body,
mTOR activity is highly correlated with the anabolic/catabolic balance. The IGF-1/Akt/mTOR pathway
has been shown to be indispensable in promoting muscle hypertrophy [10]. Akt phosphorylates
and inhibits tuberous sclerosis 1 and 2 (TSC1/TSC2), resulting in activation of small G protein Ras
homolog enriched in brain (Rheb) via its binding to GTP. GTP-bound Rheb activates mTOR complex-1
(mTORC1), resulting in phosphorylation of p70S6K, which promotes protein synthesis by activating
ribosomal protein S6, a component of the 40S ribosomal subunit. mTORC1 also phosphorylates 4EBP1,
leading to its release from the inhibitory complex with the translation initiation factor eIF4E, the cap
binding protein, permitting the binding of eIF4E to eIF4G to form the critical translation initiation
complex [11]. When animals were treated with mTOR inhibitor rapamycin, phosphorylation of p70S6K

and the release of 4EBP1 from eIF4E inhibitory complex were blocked, leading to inhibition of surgical
overload-induced muscle hypertrophy [12]. Consistently, the Akt/mTOR pathway was inhibited
during disuse (unloading)-induced atrophy and re-activated after reloading.

Besides mTOR, Akt-mediated phosphorylation of glycogen synthase kinase-3β (GSK3β) is another
critical downstream pathway of IGF-1. In muscle hypertrophic conditions, GSK3β is phosphorylated
and its activity is inhibited, leading to activation of eIF2B and transcriptional activator β-catenin [13,14].
In contrast, GSK3β activity is increased in a dexamethasone (Dex)-induced atrophy model. Local IGF-1
or constitutively active Akt gene transfer inhibited GSK3β, increased β-catenin levels, and prevented
muscle atrophy [15].

In summary, IGF-1/Akt controls two protein synthetic pathways via mTORC1 and GSK3β.
Although these pathways are decreased in various muscle atrophy conditions [16–19], the exact
relationship and interaction between these pathways in skeletal muscle atrophy and hypertrophy
conditions remain to be determined. IGF-1 also affects protein synthesis via myostatin signaling,
and the mechanism is discussed below.

3. Muscle Protein Synthesis: Myostatin

Myostatin is a member of the transforming growth factor-β (TGF-β) superfamily, is secreted
mainly from skeletal muscle, and negatively regulates muscle mass [20]. Myostatin has been found to
be upregulated in cancer, heart disease, HIV, and aging, and systemic administration of myostatin
caused cachexia in rodents. Studies have identified crosstalk between myostatin and IGF-1 signaling
pathways. In cultured myotubes, myostatin inhibited Akt phosphorylation, resulting in decreased
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protein synthesis and reduced cell size [21–23]. In mice deficient in myostatin, total Akt expression
was increased together with increased p70S6K levels [21,24]. These data suggest that myostatin
and IGF-1 signaling counteract each other. Indeed, IGF-1 treatment of cultured myotubes blocked
myostatin-mediated downregulation of Akt and myotube diameter reduction [23]. Accordingly,
the hypertrophic effect of IGF-1 was greater in the myostatin null background [25].

Myostatin signaling is mediated by activin type II receptors (ActRIIA and ActRIIB) and activin
type I receptors (ALK4 and ALK5), leading to phosphorylation of Smad proteins (Smad2 and -3).
Smad2/3 form a complex with Smad4, which is also a co-mediator of the bone morphogenic protein
(BMP) signaling pathway. Therefore, when the myostatin signaling is low, Smad4 becomes more
available to BMP signaling, leading to muscle hypertrophy [26]. Studies have suggested that IGF-1
and myostatin/Smad pathways cross-talk at different levels. Akt activation downregulated ActRIIB in
denervated muscles, and blocked atrophy-inducing effects of constitutively active ALK4 and ALK5 [27].
Studies in cancer cells have demonstrated direct interaction of Akt and Smad3 to sequester Smad3
outside of the nucleus [28], although it remains to be determined whether the same mechanism exists
in skeletal muscle. Although the entire picture of Akt-Smad interaction remains to be determined in
skeletal muscle, these data suggest that the balance between competing IGF-1, myostatin, and BMP
pathways are critical to maintain muscle mass.

4. Muscle Protein Degradation: UPS

The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes,
and studies have shown its importance in development of muscle atrophy [29,30]. Muscle atrophy
F-box (MAFbx)/Atrogin-1 and muscle RING finger 1 (MuRF1) are the best characterized E3 ubiquitin
ligases in skeletal muscle that mediate polyubiquitination of proteins and target them to degradation
by the 26S proteasome. MAFbx/Atrogin-1 and MuRF-1 are shown to be increased in various muscle
atrophy-inducing conditions, including disuse, denervation, inflammation, aging, glucocorticoid
increase, high Ang II, and chronic diseases such as cancer, congestive heart failure, chronic kidney
disease, chronic obstructive pulmonary disease (COPD), and AIDS [31,32]. Interestingly, studies have
suggested that IGF-1 signaling is altered in many of these conditions, and signaling pathways that
regulate MAFbx/Atrogin-1 and MuRF1 are in some part overlapping and regulated by IGF-1 signaling
(Figure 1).

Various studies have shown that MAFbx/Atrogin-1 and MuRF1 expression is differentially
regulated by FoxO and NF-κB pathways. Inhibition of FoxOs prevented MAFbx/Atrogin-1 increase
and protected against muscle atrophy. Although FoxO1 activates both MAFbx/Atrogin-1 and MuRF1
expression in cultured myotubes, the ability of FoxO1 to induce MuRF1 expression is independent of its
DNA binding [33]. Similarly, Senf et al. found that FoxO3a induced MAFbx/Atrogin-1 expression via
promoter activation, whereas MuRF1 activation did not require FoxO3a DNA binding [34]. Transgenic
overexpression of activated IκB kinase β (IKKβ) in skeletal muscle caused profound muscle wasting,
with increased expression of MuRF1 but not MAFbx/Atrogin-1 [35]. In addition, promoter analysis
revealed that MuRF1 expression is regulated by upstream NF-κB binding sites, but not FoxO sites in
disuse atrophy [36].

It is of note that the IGF-1/PI3K/Akt pathway not only activates FoxO, but also NF-κB signaling via
several mechanisms including stimulating p65 transactivation and activation of IKKβ [37]. However,
it is not clear whether activation of IGF-1 in skeletal muscle alters NF-κB activation and MuRF-1
expression. In myofibers, IGF-1 rapidly and strongly reduced Dex-induced Atrogin-1 expression
(~80% reduction after 6 h), whereas MuRF-1 mRNA reduction occurred more slowly (~30% reduction
after 18 h) [38]. Importantly, changes in overall proteolysis with Dex and IGF-1 correlated tightly
with changes in Atrogin-1 mRNA levels, but not with MuRF1. Consistently, systemic Ang II infusion
increased both MAFbx/Atrogin-1 and MuRF-1, whereas IGF-1 inhibited expression and promoter
activity of MAFbx/Atrogin-1, but not MuRF-1 [39].
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Several substrates of MAFbx/Atrogin-1 and MuRF1 have been identified in skeletal muscle.
By yeast two-hybrid screening, eukaryotic initiation factor 3 subunit 5 (eIF3-f) was identified as a
target substrate of MAFbx/Atrogin-1 [40]. MAFbx/Atrogin-1 increased eIF3-f degradation in myotubes
undergoing atrophy in vitro, and overexpression of eIF3-f caused hypertrophy both in vitro and in vivo.
Immunoprecipitation of MAFbx/Atrogin-1 followed by LC-MS/MS analysis in myostatin-treated C2C12
myotubes identified desmin and vimentin as other targets of MAFbx/Atrogin-1 [41]. For MuRF1,
myosin heavy chain (MYH) was identified as its target in Dex-induced myotube atrophy model [42].
In addition, by comparing the WT and transgenic mice expressing a RING deletion mutant of MuRF1,
which binds but cannot ubiquitinate substrates, Cohen et al. found that atrophying muscles showed a
loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from
the myofibril, before loss of MYH [43]. MuRF1 also has been shown to associate with titin and stabilize
the sarcomeric M-line [44]. Moreover, MuRF1 is suggested to regulate muscle energy metabolism by
targeting creatine kinase [45,46]. However, changes in these target substrates in response to IGF-1 have
not been determined in muscle atrophy models.

In addition to well-characterized MAFbx/Atrogin-1 and MuRF1, there are other E3 ubiquitin
ligases that are involved in skeletal muscle protein breakdown and are potentially regulated by IGF-1.
Milan et al. found that a group of ubiquitin ligases were upregulated in denervated or fasted skeletal
muscle, and were blunted in FoxO1, -3, and -4 triple knockout mice (FoxO1,3,4-/-) [47]. These ubiquitin
ligases include muscle ubiquitin ligase of the SCF complex in atrophy-1 (MUSA1), Fbxo31, and Fbxo21
(also known as SMART). FoxO3 overexpression in myotubes was sufficient to induce MUSA1, but
not other ubiquitin ligases. FoxO1 and FoxO3 bind to the promoter regions of MUSA1 and SMART,
and the FoxO3 deletion completely blunted the induction of SMART, but not other ubiquitin ligases.
These data suggest an overlapping and complex regulation of these ubiquitin ligases by FoxO1, -3,
and -4, and therefore by IGF-1.

Nedd4 is a HECT domain ubiquitin ligase that is increased in skeletal muscles after denervation [48,49],
unloading [48], and COPD [50]. Nedd4-null mice showed a reduction of IGF-1 and insulin signaling,
delayed embryonic development, reduced growth and body weight, and neonatal lethality [51].
Furthermore, skeletal muscle-specific Nedd4 null mice were protected against denervation induced
muscle atrophy [52].

Trim32 is a tripartite motif ubiquitin ligase that ubiquitinates and degrades the desmin cytoskeleton,
thin filament (actin, tropomyosin, and troponins), and Z-band (α-actinin) [53]. Downregulation of
Trim32 in hindlimb muscles reduced fasting-induced breakdown of these contractile and cytoskeletal
proteins and muscle atrophy. Furthermore, downregulation of Trim32 in skeletal muscle increased
PI3K/Akt/FoxO signaling, enhanced glucose uptake, and induced myofiber growth [54].

TNF receptor adaptor protein 6 (TRAF6) is a member of the TRAF family of adaptor proteins,
with the unique property to have E3 ubiquitin ligase activity. TRAF6 is upregulated in skeletal muscle
after denervation, starvation, and cancer cachexia development [55,56]. Interestingly, the induction
of MAFbx/Atrogin-1 and MuRF1 was suppressed in TRAF6 null mice, suggesting that TRAF6 is an
upstream regulator of these E3 ubiquitin ligases. Notably, TRAF6 directly ubiquitinates Akt and
inhibits its activity [57]. Although the importance of the potential interaction between IGF-1 signaling
and MUSA1, SMART, Nedd4, Trim32, and TRAF6 in skeletal muscle hypertrophy and atrophy remains
to be determined, IGF-1 signaling pathway components could be novel targets to regulate these E3
ubiquitin ligase activities in skeletal muscle.

5. Muscle Protein Degradation: Autophagy

Another major proteolytic pathway in eukaryotic cells is the autophagy-lysosome system.
Autophagy plays a critical role in removal of damaged organelles such as mitochondria, peroxisomes,
nuclei and ribosomes, as well as in degradation of damaged or misfolded proteins. Another protective
role of autophagy is to provide the degraded cellular components as an energy source to cells
especially in the face of sustained starvation. Various skeletal muscle diseases that manifest atrophy
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and dystrophy such as Pompe disease and Danon disease are associated with lowered autophagic
activity [58]. In addition, skeletal muscle-specific knockout mice for Atg7, which acts as an E1-like
enzyme critical for autophagy regulation, showed profound muscle atrophy and age-dependent decline
in muscle force [59].

Autophagy is regulated by two main pathways that overlap with IGF-1 signaling pathways:
mTOR-mediated inhibitory phosphorylation of unc51-like kinase-1 (ULK1) and FoxO3-mediated
induction of autophagy-related genes. Since IGF-1 activates mTOR (thus, inhibits ULK1) and inhibits
FoxO (thus, inhibits autophagy-related gene expression), it is reasonable to assume IGF-1 inhibits
autophagy, although some conflicting results have been reported on the relative importance of mTOR
and FoxO pathways in regulation of skeletal muscle autophagy. A first group of studies suggested that
mTOR-mediated regulation of autophagy only plays a minor role, at least in skeletal muscle. Only a
small (10–15%) induction of autophagy was observed after rapamycin (mTOR inhibitor) treatment in
cultured myotubes [60], and rapamycin administration or mTOR knockdown did not induce autophagy
in skeletal muscle in vivo [61]. In contrast to these findings, skeletal muscle-specific TSC1-deficient
mice (TSCmKO), which show sustained activation of mTORC1, developed a late-onset myopathy
related to impaired autophagy [62].

Likely independent of mTOR, Akt activation blocked autophagy via inhibition of FoxO3 [60,61].
Blockade of FoxO3 inhibited the starvation-induced autophagy, and these effects are likely mediated
by inhibition of FoxO3-mediated transcriptional activation of autophagy-related genes such as LC3,
Bnip3, Beclin-1, Atg4, and Atg12 [63]. Interestingly, Zhao et al. showed that constitutively-active
FoxO3 increased protein degradation in cultured myotubes, and, surprisingly, approximately 80% of
the effect was mediated by autophagy [60].

These data suggest that both IGF-1/Akt/mTOR and IGF-1/Akt/FoxO pathways inhibit autophagy.
However, few studies have extensively analyzed the effect of IGF-1 in skeletal muscle autophagy,
and conflicting evidence has been presented. Nakashima et al. treated chicken myotubes with
IGF-1 and found that LC3-I to LC3-II conversion, a critical step for autophagosome formation,
was decreased [64]. In contrast, Ascenzi et al. showed that LC3-I to LC3-II conversion, which is
normally decreased during aging, was increased in mice with skeletal muscle-specific overexpression of
IGF-1 [65]. To understand these discrepancies, it is important to note that autophagy involves dynamic
and complicated processes, and it has been a challenge in autophagy research to capture a dynamic
process with static measurements [66]. Neither of the above studies measured the autophagic flux
(i.e., dynamic process of autophagy), therefore more studies are required to understand the role of IGF-1
in regulation of autophagic flux in skeletal muscle in vivo. In other cell types, IGF-1 has been shown
to inhibit autophagy. In human colorectal carcinoma drug-resistant cells, IGF-1 inhibited autophagy
via Akt/mTOR pathway [67]. IGF-1 knockdown increased autophagy via reduction of Akt/mTOR
in aged bone marrow mesenchymal stem cells (BM-MSCs) in hypoxic condition and protected cells
against hypoxic injury [68]. This IGF-1-mediated autophagy reduction is suggested to be involved
in cellular senescence and longevity. Long-term exposure of quiescent human fibroblasts to IGF-1
reduced viability and increased senescent cells, associated with reduced autophagy and dysfunctional
mitochondria. These effects were reversed by rapamycin treatment (mTOR inhibition). Consistently,
autophagy is increased in mouse fibroblasts in vivo with lowered IGF-1 levels [69].

In various muscle atrophy conditions such as disuse and denervation, autophagy has been shown
to be activated [70]. Although IGF-1 has been used in attempts to prevent muscle atrophy in various
models, careful evaluation of autophagy is not always conducted. In models such as cancer cachexia,
in which UPS-mediated protein breakdown in increased, overall autophagic activity is likely decreased
despite the observation of increased autophagy marker such as Beclin-1, p62, and LC3B [71]. Similarly,
in the Ang II-induced muscle atrophy model, autophagy is reduced and likely caused accumulation of
dysfunctional mitochondria and impaired skeletal muscle energy metabolism [72]. In both of these
models, IGF-1 is reduced [73,74] and IGF-1 administration rescued muscle atrophy [39,75,76]. However,
in C26 tumor-bearing mice, neither inhibition nor activation of autophagy rescued the muscle function,
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and both treatments worsened the outcome [77]. The IGF-1 pathway could still be a promising target to
treat muscle atrophy where both autophagy and UPS are activated, and protein synthesis is decreased,
as IGF-1 activation could theoretically normalize all of these pathways. However, more careful
evaluation of IGF-1′s effects on autophagy is necessary for the development of therapies, as both
excessive activation and insufficiency of autophagy could be deleterious to skeletal muscle.

6. Muscle Energy Homeostasis: AMPK and IGF-1

5′-adenosine monophosphate-activated protein kinase (AMPK) is an intracellular sensor of
ATP consumption and acts as a key regulator of skeletal muscle metabolism. When ATP level is
low (thus AMP/ATP ratio is high), AMPK is activated and protein synthesis, which consumes ATP,
inhibited. Furthermore, activated AMPK promotes ATP-producing catabolic processes including
glucose and fat oxidation, UPS- and autophagy-mediated protein degradation [78]. Via these
mechanisms, dominant-negative AMPK overexpression in skeletal muscle or skeletal muscle-specific
AMPK gene deletion increased muscle mass [79–81]. Mechanistically, AMPK targets two major
components of IGF-1 signaling: mTOR and FoxO. AMPK decreases protein translation via activation
of mTORC1 and promotes protein breakdown via activation of FoxO1 and FoxO3, which in
turn increase UPS and autophagy-related genes (Figure 1). Therefore, it is consistent with these
mechanisms that pharmacological or genetic activation of AMPK blocked overloading-induced
muscle hypertrophy [82,83]. However, the role of AMPK in muscle atrophy is unclear. In rodent
muscle unloading-induced atrophy models, both increased and decreased AMPK activity has been
reported [84–87]. In these models, genetic inactivation of AMPK prevented muscle atrophy [88,89].
In contrast, in Ang II-induced muscle atrophy model, AMPK activity is reduced, and pharmacological
and genetic AMPK activation restored muscle mass [90,91]. The proposed mechanistic model is that
elevated Ang II reduces ATP content in skeletal muscle, which is supposed to activate AMPK, while
Ang II inhibits AMPK activation, causing severe ATP depletion and muscle atrophy. It is not clear
whether muscle ATP content is altered in unloading muscle atrophy models and muscle atrophy
is caused in a similar mechanism. Importantly, IGF-1 level is reduced in both of these atrophying
conditions and Akt is inhibited in skeletal muscle, although the role of AMPK (which is known to
inhibit Akt/mTOR and activate FoxO [78,92]) in relation to IGF-1 signaling in atrophying conditions is
not clear.

7. Alternative Splicing of IGF-1 mRNA to Produce a Local Form

In addition to circulating IGF-1 secreted by the liver, peripheral tissues including skeletal muscle
produce IGF-1. Interestingly, some studies suggest distinct roles between circulating and local IGF-1.
The IGF-1 gene contains six exons that are differentially spliced to generate multiple transcript variants
that result in different pre-pro-IGF-1s (Figure 2). Although the different pre-pro-IGF-1s eventually
give rise to the same mature 70-amino acid IGF-1 molecule, it has been shown that these variants have
different stabilities, binding partners, and activity. The first two exons are mutually exclusive for their
use, and each exon has multiple transcription initiation sites, therefore generating different 5′-UTRs
and N-terminal signal sequences. Transcripts containing exon 1 or 2 are referred to as Class 1 and 2,
respectively. Exons 3 and 4 are used in all the variants and encode the B, C, A, and D domains, which are
named based on their similarity to those in insulin. The 3′-end of IGF-1 gene generates three types of
mRNAs with different termination codons, polyadenylation sites, and 3′-UTRs. The C-terminus of
pre-pro-IGF-1, termed as E-peptide domain, thus has the greatest variability within the entire protein.
The E-peptide domain includes part of exon 4 (16 amino acids), with differential inclusion of exon 5
and 6; Ea consists of exon 6 (19 amino acids) and Eb of exon 5 (61 amino acids). Due to alternative
splicing, Ec consists of part of exon 5 (16 amino acids) and part of exon 6 (8 amino acids). Note
that these are terminologies for human IGF-1; rodents’ equivalent of human Ec is termed as Eb, as
they do not express human Eb-equivalent form. Overall, this alternative splicing generates at least 6
pre-pro-IGF-1: Class 1-Ea, Eb, Ec, and Class 2-Ea, Eb, and Ec. Studies have suggested distinct functions
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among these different forms of proteins. For instance, Class 1 proteins have a longer signal peptide
that is potentially myristoylated and may retain the protein in the ER during the translation process,
whereas Class 2 mRNAs are highly expressed in the liver, the primary source of circulating IGF-1.
Therefore, Class 1 peptides represent a locally-produced autocrine/paracrine form, and Class 2 peptides
represent the circulating endocrine form in the body. Bikle et al. demonstrated that muscle atrophy
is more pronounced after ablation of muscle IGF-1 production than when liver IGF-1 production
is inhibited [93], suggesting that local IGF-1 is a crucial factor for muscle hypertrophy. However,
Temmerman et al. demonstrated the deletion of exon 2 (thus Class 2 mRNAs) in mice did not affect
viability, growth, and maintenance of circulating IGF-1 levels [94], and the exact physiological roles
of Class 1 and Class 2 proteins remain to be determined. For the E peptide domain, Annibalini et al.
identified a highly conserved N-glycosylaton site in the Ea domain, which regulated intracellular
pro-IGF-1Ea level via prevention of proteasome-mediated degradation and subcellular localization [95].
Interestingly, Durzyńska et al. found that the predominant forms that are expressed in skeletal
muscle are pro-IGF-1s, which contain E peptide, rather than mature IGF-1. Both glycosylated and
non-glycosylated forms of pro-IGF-1 were expressed in skeletal muscle, whereas non-glycosylated
pro-IGF-1 is more potent to activate IGF-1R [96]. Ascenzi et al. analyzed the effects of IGF-1-Ea
and IGF-1-Eb in skeletal muscle and found that only IGF-1-Ea promoted a pronounced hypertrophic
phenotype in young mice. Interestingly, however, both isoforms of IGF-1 were protective against
age-related loss of muscle mass and force [65]. These data suggest that E domains regulate not only
IGF-1 production and secretion but also its local activity.
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Figure 2. IGF-1 and skeletal muscle atrophy in chronic diseases and aging. In various chronic disease
conditions, such as congestive heart failure (CHF), cancer, chronic obstructive pulmonary disease
(COPD), and chronic kidney disease (CKD), and aging, muscle atrophy develops through various
mechanisms: decreased protein synthesis, increased UPS, and lowered muscle regeneration. Depending
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on the pathophysiological conditions, autophagy could be increased or decreased, and both excessive
and defective autophagy could lead to muscle atrophy. IGF-1 is thought to decrease autophagy, but
the role of IGF-1 regulation of autophagy in chronic disease-induced muscle atrophy is yet to be
determined. IGF-1 stimulates skeletal muscle regeneration via activation of satellite cells. Systemic
(circulating) IGF-1 is predominantly produced in the liver, whereas locally produced IGF-1 likely acts
in a paracrine or autocrine manner. The first two exons of IGF-1 are mutually exclusive and generate
different signal peptides, termed Class 1 (exon 1) and Class 2 (exon 2). The mature IGF-1 peptide is
coded in exons 3 and 4 (B, C, A, and D domains). Three types of C-terminus E-peptides are generated
by alternative splicing. Ea is from exon 6, Eb is from exon 5, and Ec is from part of exons 5 and 6. Class
2 IGF-1 is mainly expressed in the liver (considered to be the systemic isoform), and Class 1 IGF-1 is
mainly expressed in peripheral tissues including skeletal muscle. Both systemic and local IGF-1 levels
are decreased in various chronic disease conditions, and the combination of these reductions affect
protein synthesis, UPS activity, autophagy, and muscle regeneration and regulate the development of
muscle atrophy.

8. IGF-1 Binding Proteins in Skeletal Muscle

IGF-1′s actions are regulated by six IGF-1-binding proteins (IGFBPs), which serve as IGF-1
transport proteins. Approximately 98% of IGF-1 exists as a bound form to one of the IGFBPs, with
IGFBP3 accounting for 80% of all the binding. The binding of IGF-1 to IGFBPs is either in a binary
complex (an IGF-1 and an IBFBP), or a ternary complex consisting of an IGF-1, an IGFBP and an IGF
binding protein acid labile subunit (IGFALS). The binding of IGF-1 to IGFBPs and IGFALS significantly
prolongs the half-life of IGF-1 in circulation. The half-lives of unbound IGF-1, IGF-1 in a binary complex,
and IGF-1 in a ternary complex are less than 10 min, 25 min and more than 16 h, respectively [97–99].
Therefore, circulating levels of IGF-1 are greatly affected by IGFBPs and IGFALS. IGFBP3 gene deletion
resulted in 40% decrease in serum IGF-1. IGFALS knockout mice showed 60% reduction in serum
IGF-1, and also 90% reduction in IGFBP-3 [100]. As IGFBPs bind to IGF-1 with equal or greater
affinity compared to IGF-1R, the binding of IGFBPs to IGF-1 is crucial for the regulation of IGF-1′s
availability to peripheral tissues. Another important function of IGFBPs is to prevent the potential
interaction of IGF-1 with insulin receptor (IR). Since IGF-1R and IR are structurally similar and IGF-1
can bind to IR with lower affinity, IGF-1 could cause hypoglycemic effects if it can freely access to
the IR [101,102]. IGFBP3 is expressed in the liver and peripheral tissues, and its hepatic expression is
regulated by GH, allowing the coordinated regulation of circulating IGF-1 and IGFBP3 levels. When
bound to IGF-1, IGFPB3 blocks its binding to IGF-1R, thereby impairing the downstream signaling.
Furthermore, IGFBP3 has been shown to exhibit antiproliferative and proapoptotic actions via an
IGF-1/IGF-1R-independent mechanism [103]. Studies suggest different roles of IGFBPs in regulation of
skeletal muscle function depending on muscle type, age, and atrophy conditions. In a study analyzing
the expression of mouse IGFBPs at different ages [104], IGFBP4 and -5 were found to be increased with
age, whereas IGFBP3 and -6 were regulated differently between males and females: IGFBP-3 decreased
with age in males but increased in females, while IGFBP-6 decreased with age in females and remained
unchanged in males. Transgenic overexpression of IGF-1 did not alter expression of any of the IGFBPs.
Huang et al. analyzed two independent datasets of gene profiles in pancreatic tumors, and found that
IGFBP3 was dramatically increased in pancreatic ductal adenocarcinoma, which causes cancer cachexia
with high prevalence. The conditioned medium from pancreatic cancer cells contained high IGFBP3
and caused significant myofiber wasting, which was prevented by IGFBP3 knockdown or neutralizing
antibody [105]. These results indicate that IGFBPs inhibit IGF-1′s action to induce muscle growth
and hypertrophy. Consistently, global overexpression of IGFBP5 in mice caused a severe reduction in
prenatal and postnatal growth, resulting in increased neonatal mortality and decreased skeletal muscle
weight [106]. Similarly, AAV-mediated overexpression of IGFBP2 in skeletal muscle reduced muscle
mass and induced a slower muscle phenotype [107]. On the other hand, mice lacking IGFBP3, -4, or -5
developed normally and only IGFBP4 deficient mice showed a modest (85–90% compared to wild type)
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growth retardation [108], suggesting that other IGFBPs compensate for the loss of IGFBP5. Indeed,
triple knockout of IGFBP3, -4, and -5 had significantly smaller body and quadriceps weight (78% and
60% of wild type, respectively). The triple knockout mice showed lower circulating levels of IGF-1
(45% of wild type) and had lower IGF-1 activity measured by IGF-1R phosphorylation in the cells
treated with the serum of the animals (37% of wild type). Interestingly, ERK/MAPK phosphorylation
was decreased in the skeletal muscle of triple knockout mice, whereas Akt phosphorylation was not
altered [108]. Although these studies indicate that IGFBPs inhibit IGF-1 signaling locally, whether or
how IGFBPs affect the outcome of IGF-1 signaling, such as protein synthesis, protein degradation,
and autophagy, remains to be elucidated.

9. Skeletal Muscle-Specific IGF-1/IGF-1R Gene Deletion Studies

Liver is the major source of circulating IGF-1, and liver-specific IGF-1 gene deletion resulted in
70–80% reduction in serum IGF-1 levels [109,110]. These studies showed normal growth of the animals
and threw into question the requirement of circulating IGF-1 for postnatal body growth. However, a
later genetic study using a mouse strain with conditional liver-specific IGF-1 expression in IGF-1 null
background demonstrated that IGF-1 from the liver contributes approximately 30% of the adult body
size [111]. These studies indicate that liver-derived circulating IGF-1 certainly plays a significant role
in growth of animals, although it cannot explain all of IGF-1′s growth promoting function in the body.

Transgene, AAV, or electroporation-mediated overexpression of a locally-acting isoform of IGF-1
in skeletal muscle increased muscle mass, myofiber cross sectional area (CSA), and maximum isometric
force [112–114]. These animals were protected against aging-associated loss of muscle mass [113],
Dex-induced atrophy [115], and Ang II-induced atrophy [39,76], whereas disuse atrophy was not
prevented [116].

To define the roles of growth hormone (GH) and IGF-1 signaling in skeletal muscle, Mavalli et al.
treated primary myoblasts with GH and IGF-1 [117]. Utilizing GH receptor (GHR) and IGF-1R deficient
myoblasts, the authors found that, although both GH and IGF-1 induced myoblast proliferation
and fusion, the effect was primarily mediated by IGF-1. Both skeletal muscle-specific GHR and
IGF-1R knockout mice exhibited reduced myofiber size and number, and impaired muscle force,
which are associated with diminished myoblast fusion. Interestingly, muscle-specific GHR deficient
mice developed marked peripheral adiposity, insulin resistance, and glucose intolerance, none of
which were observed in muscle IGF-1R knockout mice. These data suggest that GH’s action to promote
muscle development is mainly mediated by IGF-1, whereas GH facilitates normal insulin action in
skeletal muscle independently from IGF-1, leading to changes in global nutrient metabolism. While
the study by Mavalli et al. used a cre strain driven by the mef-2c-73k promoter, which is active from an
embryonic stage, O’Neill et al. generated skeletal muscle-specific IGF-1R-null mice using the skeletal
muscle actin promoter, which is active in differentiated muscle cells, and found that these mice did
not show altered body weight or muscle mass [118] In the same study, O’Neill et al. generated mice
with muscle-specific double knockout of IGF-1R and IR (MIGIRKO). These animals showed a marked
decrease in skeletal muscle mass and fiber size and died earlier (between 15 and 25 weeks), likely
due to respiratory failure. Surprisingly, however, glucose and insulin tolerance were not affected in
MIGIRKO mice, instead these animals showed increased basal glucose uptake in muscle.

10. IGF-1, Satellite Cells and Skeletal Muscle Regeneration

Skeletal muscle stem cells, or satellite cells (SCs), are normally quiescent and located between the
basal lamina and sarcolemma of the myofiber. During growth and after muscle damage, a myogenic
program of SCs is activated, and SCs self-renew to maintain their pool and/or differentiate to form
myoblasts and eventually myofibers.

IGF-1 has been shown to increase both proliferation and differentiation of cultured myoblasts [119].
When cells are in the proliferative stage, IGF-1 increased the expression of cell-cycle progression
factors, whereas IGF-1 promoted myoblast differentiation when cells are withdrawn from the cell cycle
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by myogenic regulatory factors such as myogenin. L6E9 cell line is a subclone of the parental rat
myoblast cell line L6, and does not express IGF-1 whereas IGF-1R expression is intact. Utilizing these
cells, Musaro et al. demonstrated that IGF-1 overexpression in differentiated L6E9 cells resulted in
pronounced myotube hypertrophy and myogenin induction [120]. PI3K/Akt and MAPK pathways
have been shown to mediate downstream signaling of IGF-1 in these cells, although the relative
importance of these pathways seems to differ depending on the model systems analyzed. Blockade
of MAPK inhibited IGF-1-mediated L6A1 myoblast (another subclone of rat neonatal myoblast cell
line L6) proliferation, whereas blockade of PI3K or mTOR abolished myoblast differentiation [121].
In contrast, SCs isolated from muscle-specific IGF-1 transgenic mice showed enhanced proliferative
capacity in vitro, and the effect was mediated by activation of PI3K/Akt, independent of MAPK,
and downregulation of the cyclin-dependent kinase inhibitor p27Kip1, supporting the role of IGF-1 in
regulation of the cell cycle in SCs [122].

In addition to the above-mentioned in vitro studies, a series of in vivo studies have shown the
importance of IGF-1 signaling in SC function. Barton-Davis et al. proposed that the increase in
skeletal muscle mass and strength in mice that overexpress IGF-1 specifically in skeletal muscle is
primarily due to the activation of SCs and increased regeneration [112]. In mice treated with hindlimb
gamma-irradiation to prevent SC proliferation, approximately half of IGF-1′s hypertrophic effect
was prevented. However, a following study by Heslop et al. showed hindlimb gamma-irradiation
does not completely abolish SC function [123], questioning whether the observation in the study by
Barton-Davis et al. is due to depletion of SCs. More recent studies presented conflicting evidence
whether SCs are required for muscle hypertrophy [124,125], indicating the importance of careful
evaluation and selection of appropriate animal model to address the in vivo contribution of SCs to
muscle hypertrophy and the role of IGF-1.

Another consideration needs to be given when analyzing IGF-1′s role in SCs is the potential
isoform-specific effects of IGF-1. By differential screening, IGF-1 mRNA with the Ec form of E peptide
domain (see Section 7) was identified as the transcript that is increased in exercised muscle compared
to the resting state, and named mechano-growth factor (MGF). MGF has been shown to stimulate SCs
to re-enter the cell cycle and proliferate, facilitating new myofibers to replace damaged myofibers [126]
In addition, impairments of IGF-1 splicing to produce MGF were observed during muscle wasting
and age-related decline of muscle regeneration [127–129]. Attention needs to be drawn to the usage
of the MGF terminology, as some studies use it in referring to the Ec portion of the peptide alone,
not including the IGF-1 mature peptide (to avoid any confusion, it is called the Ec peptide in this article).
Yang et al. showed that, unlike mature IGF-1, the Ec peptide inhibited C2C12 myoblast terminal
differentiation, while increasing proliferation in IGF-1R-independent manner [130]. Furthermore,
the Ec peptide increased the proliferative lifespan and delayed senescence of SCs isolated from healthy
human subjects [131], and increased the number of primary cultured muscle progenitor cells isolated
from patients with muscular dystrophies (CMD, FSHD) and amyotrophic lateral sclerosis (ALS) [132].
However, a contradictory study has been reported [133], in which investigators failed to show any
effect of the Ec peptide on C2C12 or primary human myoblasts. A study investigating another IGF-1
isoform class 2 IGF-1-Ea showed that this isoform exerts its hypertrophic effect only when the muscles
are in growing status (e.g., during postnatal development or during regeneration) [130]. These studies
suggest that IGF-1′s effects on SCs differ between isoforms, but no study has been conducted to
compare the isoform-specific effects of IGF-1 on muscle regeneration and atrophy in vivo.

IGF-1 seems to regulate SCs in concert with other myogenic factors. The morphogenic factor sonic
Hedgehog (Shh) has been reported to be expressed in adult myoblasts and to promote their proliferation
and differentiation [134,135]. Both Shh and IGF-1 enhanced Akt and MAPK phosphorylation and
myogenic factor expression levels in C2 myoblasts in a dose-responsive manner, having additive
effects. In cultured myoblasts isolated from mice with a muscle-specific knockout of Smoothened
(Smo), a component of the Shh receptor, IGF-1-induced Akt and MAPK phosphorylation and myogenic
differentiation were significantly blocked. Interestingly, Smo physically associates with the IGF-1R,
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the p85 regulatory subunit of PI3K, and IRS1 in a Shh and IGF-1 dose-responsive manner, indicating
that mutual regulation of Shh and IGF-1 occurs at the receptor complex level [136].

Another potential mechanism whereby IGF-1 affects SC function is via regulation of autophagy.
Zecchini et al. showed that autophagy is required for neonatal myogenesis and muscle
development [137]. Atg7 is an E1-like activating enzyme that regulates fusion of peroxisomal
and vacuolar membranes during autophagy, and Atg7 knockdown in SCs caused severe reduction in
neonatal myogenesis. Interestingly, the expression of GHR and IGF-1 were reduced in the skeletal
muscle of these animals. In primary cultures of neonatal SCs, the defective autophagy decreased
proliferation and differentiation, and GH’s action to promote myotube growth was completely abolished.
As discussed in Section 5, IGF-1 likely reduces autophagy in skeletal muscle. In addition, IGF-1 is
known to be reduced in various muscle atrophy conditions. However, it is not clear whether reduced
IGF-1 results in an increased autophagy in these conditions, or whether altered autophagy affects the
SC functions in these atrophy conditions.

11. Atrophy-Related miRs and Their Potential Regulation of IGF-1 Signaling

Various non-coding RNAs have been proposed to regulate IGF-1 signaling in skeletal muscle.
Using miRNA arrays, Li et al. found miR-29b as the only miRNA whose expression was increased
in five different in vivo murine muscle atrophy models (denervation, Dex-treatment, fasting, cancer
cachexia, and aging) as well as three in vitro atrophy-inducing cell culture models (C2C12 myotubes
treated with dexamethasone, TNF-α, and H2O2) [138]. miR-29b overexpression promoted muscle
atrophy, while miR-29b inhibition prevented denervation-induced muscle atrophy. Importantly,
the authors found that miR-29b targets two members of the IGF-1/Akt/mTOR pathway, IGF-1 and PI3K
(p85α). miR-29b agomir decreased Akt activity and activated FoxO3A, as well as decreased mTORC1
and p70S6K both in vitro and in vivo. However, conflicting evidence was presented by Goodman et al.,
showing that Smad3 gene transfer to skeletal muscle decreased miR-29 promoter activity, whereas
Akt/mTOR activity was decreased and skeletal muscle atrophy was induced [139]. Furthermore,
in a mouse model of CKD-induced muscle atrophy, miR-29 was decreased in skeletal muscle [140],
and exosome-mediated miR-29 transfer prevented muscle atrophy [141]. In these studies, phosphatase
and tensin homolog (PTEN), which suppresses IGF-1 pathway, and transcriptional repressor Yin Yang
1, which suppresses IGF-1 transcription [142], were shown to be targets of miR-29. It is not clear
the potential reasons of these discrepancies, although it is interesting that multiple IGF-1 signaling
pathway molecules are potentially targeted by one miRNA, and studies are required to investigate its
relationship with other miRNAs discussed below.

During myogenesis, the expression of miR-1 and miR-133 are greatly induced [143], whereas these
miRs are reduced during muscle hypertrophy [144]. In C2C12 myoblasts, miR-1 and miR-133 are
shown to inhibit the IGF-1 pathway by targeting IGF-1, IGF-1R and HSP70 [145–147], although their
roles in skeletal muscle remain to be determined.

miR-128a is highly expressed in brain and skeletal muscle, and it has been shown to target
IRS1 [148]. Inhibition of miR-128a in C2C12 myotubes increased IRS1 protein and Akt activity, resulting
in increased the size of the myotubes. Furthermore, administration of antisense miR-128a caused
skeletal muscle hypertrophy in mice.

miR-486 is encoded in the intron of the Ank1.5 gene, which functions to connect sarcomeres
to the sarcoplasmic reticulum [149,150], and is co-expressed with Ank1.5 mRNA [151] miR-486 is
found to target PTEN and FoxO1. PTEN dephosphorylates PIP3, and thus inhibits PI3K’s activity to
phosphorylate PIP2 to produce PIP3, resulting in inhibition of Akt. It is suggested that myostatin
inhibits miR-486; overexpression of miR-486 induced myotube hypertrophy via activation of Akt [152]
and restored Akt activity and muscle mass in CKD-induced muscle atrophy model [153].

Long noncoding RNAs (lncRNAs) are novel class of regulatory RNAs, which are involved
in numerous biological processes via interaction with mRNAs and miRNAs, such as miRNA and
lncRNA competition for the same mRNA target, and lncRNAs acting as decoys (or sponges) for
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miRNAs [154]. By RNA sequencing of hypertrophic and leaner broilers, Li et al. identified a novel
lncRNA, termed lncIRS1, is upregulated in hypertrophic muscles. LncIRS1 promoted proliferation and
differentiation of myoblasts in vitro, and muscle mass and myofiber size in vivo [155]. Mechanistically,
lncIRS1 acts as a molecular sponge for miR-15a, miR-15b-5p, and miR-15c-p, all of which interact with
IRS1 mRNA. Increased lncIRS1 inhibits the activity of these miRs, leading to activation of IRS1 and
muscle hypertrophy.

These studies strongly suggest the involvement of different miRs in IGF-1-mediated hypertrophy
and atrophy prevention. However, some conflicting studies have been published as in the case of
miR-29, and further studies are required analyzing these miRs in specific hypertrophy and atrophy
models, especially in human patients.

12. IGF-1 Changes in Chronic Conditions and Aging-Associated Sarcopenia

Local overexpression of IGF-1 has successfully rescued muscles in various chronic and experimental
muscle atrophy models including Dex injected rats [115], age-related muscle atrophy [113], hindlimb
suspension [156], and Ang II infusion in rodents [39,74,76], as well as in the mouse models of ALS [157]
and muscular dystrophy [158–160]. Rheumatoid arthritis (RA) is associated with low muscle mass
and density, and skeletal muscle of RA patients have been shown to have lower levels of IGF-1,
which were associated with the severity of the disease, low appendicular lean mass, and lower myofiber
CSA [161]. In a rat RA model, both circulating and skeletal muscle IGF-1 were decreased, the animals
showed lower muscle mass, and subcutaneous injection of IGF-1 (100 µg/kg; twice daily for 12 days)
increased body and hindlimb muscle weight without changing arthritis. RA increased skeletal muscle
MAFbx/Atrogin-1, MuRF1, IGFBP3, and IGFBP5 expression, and IGF-1 treatment attenuated the
increase of MAFbx/Atrogin-1, MuRF1, and IGFBP3, but not IGFBP5 [162]. Although a decrease in
circulating and skeletal muscle IGF-1 has been reported in various chronic conditions, including cancer,
congestive heart failure, chronic kidney disease, and COPD, and aging [5,163] (Figure 2), more studies
are required to determine whether IGF-1 administration could be a therapeutic approach to treat
muscle atrophy in these patients (discussed below).

In rats bearing AH-130 hepatomas, IGF-1 mRNA expression in hindlimb muscles progressively
decreased, whereas that of IGF-1R and IR increased [73]. Circulating and hepatic IGF-1 levels were
also decreased in this model, and these changes were associated with increased MAFbx/Atrogin-1 and
MuRF1 expression in skeletal muscle. In the ApcMin/+ mice, a model of colorectal cancer that develops
cachexia, muscle IGF-1 mRNA expression was decreased with suppressed mTOR targets [164]. Similar
results were observed in humans, as muscle IGF-1 mRNA was decreased in gastric cancer patients [165].
Interestingly, the reduction of IGF-1 was observed irrespective of the weight loss, suggesting that IGF-1
downregulation precedes cachexia development. In the rat AH-130 hepatoma model, subcutaneous
injection of IGF-1 for 16 days attenuated the loss of lean mass at low-dose (0.3 mg/kg/day) and high-dose
(3 mg/kg/day), with improvement of spontaneous activity, food intake, and mortality at low-dose
treatment [75]. However, in the same animal model, the parenteral administration of IGF-1 did not
alter E3 ubiquitin ligase expression or muscle atrophy [73]. The same group of authors also found
that phosphorylation of Akt was comparable or increased in skeletal muscle of mice bearing AH-130
hepatomas or C26 colon adenocarcinomas, with hyperphosphorylation of GSK3β, p70S6K, and FoxO1
and reduced eIF2α phosphorylation. Electroporation-mediated IGF-1 gene transfer to the hindlimbs of
these animals did not alter myofiber size and muscle mass [166]. These data suggest that IGF-1′s effect
to treat cancer-induced muscle atrophy may depend on the cancer type, animal species, and/or the
route and dose of administration.

Low circulating IGF-1 levels have been associated with an increased risk and worse prognosis of
cardiovascular diseases in human patients [167–169]. Deficiency in liver-derived IGF-1 caused
impaired contractility of cardiac myocytes and compensatory hypertrophic response [170,171].
Importantly, skeletal muscle atrophy is a hallmark of rodent myocardial infarction models of congestive
heart failure. In skeletal muscles of these animals, Akt/mTOR/p70S6K signaling is decreased and
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MAFbx/Atrogin-1 is increased [76,172], and transgenic overexpression of IGF-1 inhibited muscle
atrophy [167]. Interestingly, skeletal muscle-specific Akt activation decreased cardiac myocyte
hypertrophy, decreased interstitial fibrosis, and restored contractile function in the heart, suggesting
skeletal muscle to cardiac communication [173].

In experimental models of CKD, UPS-mediated protein degradation is increased with impaired
insulin and IGF-1 signaling [174,175]. Interestingly, SC proliferation and differentiation are impaired
in CKD mouse model, and Akt activity was decreased. Kido et al. proposed that advanced glycation
end-products (AGEs), which is accumulated in patients with CKD, increases fibroblast growth factor
23 (FGF23) and its receptor Klotho-mediated suppression of insulin/IGF-1, leading to inhibition of S
differentiation. In addition to UPS activation and SC inhibition, CKD was associated with increased
autophagy in skeletal muscles of human CKD patients [176]. These pathways can be initiated by
complications associated with CKD, such as metabolic acidosis, defective insulin and IGF-1 signaling,
inflammation, increased angiotensin II levels, abnormal appetite regulation, and impaired microRNA
responses [175]. Whether IGF-1 administration can rescue CKD-mediated skeletal muscle atrophy
remains to be determined.

Muscle dysfunction is one of the most relevant systemic manifestations of patients with COPD,
and lower limb muscle atrophy is frequently observed in COPD patients [177]. Survival in patients
with COPD is negatively associated with skeletal muscle dysfunction and lower mass, and COPD
exacerbations rapidly induce loss of muscle mass and function [178–181]. As in other cases of
muscle atrophy, UPS-mediated protein degradation is activated in COPD skeletal muscles [50,182].
In addition, SC senescence and reduced regenerative capacity were reported in SCs isolated from COPD
patients [183,184], suggesting the lower SC funciton contributes to muscle atrophy in COPD. However,
the contribution of IGF-1 in COPD patients is not clear. Circulating levels of IGF-1 were reported to
be unchanged in COPD patients [185], and in cachectic vs. non-cachectic patients with COPD [186].
However, IGF-1 levels were decreased during periods of acute exacerbation [187], which is known
to result in muscle atrophy. More careful evaluation of IGF-1 levels and signaling is necessary for
these patients.

Aging-associated decline in skeletal muscle mass, quality, and strength mostly occurs in type 2
(fast-twitch) muscle fibers and is associated with marked infiltration of fibrous and adipose tissues in
the muscle [188]. Both circulating and local IGF-1 levels are reduced in aging [189], with decreased
Akt/mTOR/p70S6K in skeletal muscle [9,189,190]. AAV-mediated IGF-1 gene transfer prevented
aging-related muscle changes in old mice [191], and, conversely, deletion of liver-specific IGF-1 at one
year of age dramatically impaired health span of the mice [192]. Furthermore, the age-related reduction
in IGF-1 levels are accompanied by increased IGFBP levels, further decreasing IGF-1 availability to
peripheral tissues. Contrary to these findings, Sandri et al. reported only modest to no changes in
IGF-1/Akt/mTOR pathway in old human subjects [193].

13. Conclusions

We review the role of IGF-1 and its downstream signaling in skeletal muscle atrophy associated
with various chronic diseases and aging. IGF-1 regulates skeletal muscle protein synthesis and protein
degradation via the UPS and autophagy, and multiple pathways and mechanisms have been identified
(Figure 1). IGF-1 has also been shown to activate satellite cell proliferation, although the involvement
of these cells in atrophy development in in vivo animal models and human patients remains to be
elucidated. One of the difficulties in IGF-1 research in skeletal muscle is that IGF-1 regulates numerous
biological pathways, and these pathways likely interact with each other. For instance, growing
evidence suggests the involvement of different miRNAs in IGF-1 signaling, and, considering that each
miRNA can target multiple mRNAs, careful examination of changes and biological functions of these
miRNAs will be required. Furthermore, it is possible that delivering a specific isoform of IGF-1 may
be required to have effective activation of downstream signaling. The role and relative importance
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of IGF-1 signaling likely differs between muscle atrophy models, and further studies are required to
develop effective strategies to apply IGF-1 to treat muscle atrophy in human patients.
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