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Abstract

Background: Genomic instability caused by mutation of the checkpoint molecule TP53 may endow cancer cells
with the ability to undergo genomic evolution to survive stress and treatment. We attempted to gain insight into
the potential contribution of ovarian cancer genomic instability resulted from TP53 mutation to the aberrant
expression of multidrug resistance gene MDR].

Methods: 7P53 mutation status was assessed by performing nucleotide sequencing and immunohistochemistry.
Ovarian cancer cell DNA ploidy was determined using Feulgen-stained smears or flow cytometry. DNA copy number
was analyzed by performing fluorescence in situ hybridization (FISH).

Results: In addition to performing nucleotide sequencing for 5 cases of ovarian cancer, TP53 mutations were analyzed
via immunohistochemical staining for P53. Both intensive P53 immunohistochemical staining and complete absence of
signal were associated with the occurrence of TP53 mutations. HE staining and the quantification of DNA content
indicated a significantly higher proportion of polyploidy and aneuploidy cells in the TP53 mutant group than in
the wild-type group (p < 0.05). Moreover, in 161 epithelial ovarian cancer patients, multivariate logistic analysis
identified late FIGO (International Federation of Gynecology and Obstetrics) stage, serous histotype, G3 grade and
TP53 mutation as independent risk factors for ovarian cancer recurrence. In relapse patients, the proportion of
chemoresistant cases in the TP53 wild-type group was significantly lower than in the mutant group (63.6% vs. 91.
8%, p < 0.05). FISH results revealed a higher percentage of cells with >6 MDRT copies and chromosome 7 amplication
in the TP53 mutant group than in the wild-type group [11.7 £2.3% vs. 3.0+ 0.7% and 2.1 £ 0.7% vs. 0.3 + 0.05%,
(p < 0.05), respectively]. And we observed a specific increase of MDRT and chromosome 7 copy numbers in the
TP53 mutant group upon disease regression (p < 0.01).

Conclusions: TP53 mutation-associated genomic instability may promote chromosome 7 accumulation and
MDR1 amplification during ovarian cancer chemoresistance and recurrence. Our findings lay the foundation for
the development of promising chemotherapeutic approaches to treat aggressive and recurrent ovarian cancer.
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Background

Genomic evolution is one of the basic features of human
cancers and endows malignant cells with the ability to
survive and tolerate rigorous microenvironments, such
as anoxia, ischemia and starvation, as well as resist
attacks from immune cells [1-4]. Therefore, during
chemotherapy, cancer cells undergo genomic changes to
adapt to chemotherapeutics, a phenomenon referred to
as single- or multi-drug chemoresistance [5, 6]. Accord-
ing to Darwinian evolutionary theory, evolutionary
process can be attributed to the presence of genetic mu-
tations between parental and offspring generations [7].
Thus, somatic mutations, and the consequent genomic
instability may be an important driving force for the
development of chemoresistance in malignant tumors.
Genomic instability is defined as an increased rate of
DNA alterations [8]. TP53 is a checkpoint molecule that
maintains genomic stability, prevents cell mitosis and
induces apoptosis following abnormal chromosome seg-
regation or chemical damage to DNA sequences [9, 10].
The absence or mutation of TP53 promotes two types
of genomic instability, chromosomal and amplification
instability, resulting in daughter cells that exhibit large
amount of aneuploidy or abnormal chromosomes [11,
12]. Moreover, other related genes, such as pyruvate
kinase isoform M2 (PKMZ2), breast cancer 1 (BRCAI)
and homolog of the Schizosaccharomyces pombe cell
cycle checkpoint gene (RAD17), are affected by gen-
omic instability caused by TP53 gene mutation, result-
ing in an improved microenvironment that facilitates
the ability of a cell to endure [13, 14]. Thus far, TP53
gene mutations have been verified in more than 50%
ovarian cancer patients, primarily in patients with
high-grade serous carcinoma whose prognosis is worse
[15, 16]. In a recent rigorous reassessement, 100% of
high-grade serous ovarian cancers exhibited 7P53 mu-
tations [17].

The evolutionary behavior of ovarian cancer includes
short-term recurrence after anti-cancer treatments,
which is the primary reason for poor prognosis. This
recurrence is not only closely linked to a late FIGO
stage and a high pathological grade, but is also fueled
by chemoresistance [18, 19]. TP53 mutations impart
oncogenic proprieties, as exemplified by genomic in-
stability, the deregulation of cell cycle progression, and
multiple chemotherapeutic resistance [13, 20]. In
addition, overexpression of the multi-drug resistance
gene MDR1 confers multi-drug resistance in almost all
the solid tumors via the PI3K/Akt/Nrf2, Wnt/p-catenin,
and HIF-1a/MDRI1 pathways [21-24]. Along this line,
it has been revealed that MDR1 and epithelial-
mesenchymal transition (EMT) were present in the
P53-null breast cancer cell line MCF-7, which was re-
sistant to doxorubicin [25]. However, whether aberrant
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expression of the MDRI gene is associated with cancer
genomic instability caused by TP53 gene mutation re-
mains unknown and requires in- depth exploration.

In the current study, we analyzed the relationship
between TP53 gene mutation and the evolution of che-
moresistance in detail in ovarian cancer patients. We
found that TP53 mutation promoted chromosome an-
euploidy and induced MDRI amplification instability.
What’s more, these patients were prone to relapse after
chemotherapy. Thus, our data advocated to formulate
clinically individualized treatments for ovarian cancer
patients.

Methods

Study population

A total of 161 epithelial ovarian cancer patients were
recruited from the Department of Obstetrics and
Gynecology, Ren Ji Hospital, Shanghai, China, between
June 2003 and December 2009. Patients met the follow-
ing criteria: no neoadjuvant chemotherapy, treatment
with cytoreductive surgery, a diagnosis of epithelial ovar-
ian cancer confirmed by pathology and a standardized
platinum-based chemotherapy after surgery. This re-
search was approved by the Ethics Committee (No.
RJ2015-087 k) of Ren Ji Hospital, Shanghai Jiao Tong
University, School of Medicine, and informed consents
were obtained from all patients or their direct relatives.
The following information was recorded: clinicopatho-
logical characteristics, chemoresistance to platinum and
patient prognosis. Patients’ survival time was defined by
the time from diagnosis until the date of death, or the
last day of follow-up for surviving patients.

TP53 mutation analysis

Paraffin-embedded cancer specimens were dewaxed,
rehydrated and stained with hematoxylin and eosin
(HE) to identify the cancerous regions. An LMD6500
Laser Microdissection System (Leica, Wetzlar, Germany)
was used to capture cancer cells, and DNA was extracted
using a QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia,
CA, USA). DNA samples were then analyzed using a
Qubit dsDNA HS Assay Kits (Life Technologies,
Waltham, MA, USA). Targeted exon sequencing was
performed with a MiSeq Reagent Kit v2 (Illumina, San
Diego, CA, USA), which enables the detection of low
levels of mutation from smaller amounts of DNA.
Subsequently, we prepared amplified DNA libraries
with a Gene Read DNA Libraries I Core Kit (Qiagen,
Valencia, CA, USA), and all libraries were diluted to
the designed range for cluster generation via the Illu-
mina platform. Deep-sequencing was then performed
using MiSeq (Illumina, San Diego CA, USA).
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Immunohistochemistry

Paraffin-embedded tumor tissue sections (4 pm) were
collected on slides, and antigen retrieval was conducted
by microwaving the samples at >90°C after they were
dewaxed and rehydrated. Slides were then blocked with
5% bovine serum albumin (BSA) for 1 h to reduce non-
specific binding. The specimens were incubated with
the following primary antibodies for 2 h at 1:100 dilu-
tion: monoclonal mouse anti-human P53 (Clone DO-7,
SANTA CRUZ, Dallas, Texas, USA) or monoclonal
mouse anti-human MDR1 (SANTA CRUZ, Dallas,
Texas, USA). Specimens were then incubated with a
secondary antibody horseradish peroxidase (HRP)-conju-
gated goat anti-mouse IgG polyclonal antibody (Zhongshan,
Beijing, China, dilution of 1:100) for 1 h. 3,3’-diaminobenzi-
dine tetrahydrochloride (DAB; Zhongshan, Beijing, China)
was used as a chromogen, and hematoxylin was used to
counterstain the slides. Semiquantitative staining evaluation
which included the fraction and intensity of stained cells,
was performed by two pathologists in a blinded fashion.

Quantitative analysis of cellular DNA

DNA smear image cytometry was performed on 20 pa-
tients with epithelial ovarian cancer. Deep-frozen cancer
tissues were first cut into 8 pm-thick frozen sections.
Laser capture microdissection was performed to dissect
the cancer islets, which were digested with 0.25% trypsin
(Biyuntian, Beijing, China) and 0.2% collagenase IV
(Sigma-Aldrich, St Louis, MO, USA). Samples were fil-
tered through a 70 um screen mesh, fixed for 1 h in
Bohm-Sprenger liquid (Mike Audi Corporation, Xiamen,
China) and smeared to prepare single-cell-layer slides.
The slides were then stainedwith Feulgen DNA dye
(Mike Audi Corporation, Xiamen, China) for 75 min.
DNA images were captured with a microscope, and data
were analyzed withMotiCytometer and MotiClassify
software (Mike Audi Corporation, Xiamen, China).

Cell cycle analysis

We collected additional fresh cancer tissue samples from
50 patients, microdissected the cancerous regions and
digested the samples as described aboveto prepare ovar-
ian cancer cell suspensions. Cells were then fixed with
70% ethanol overnight, and stained with propidium iod-
ide (PI, 10 pg/ml) containing RNase (1 mg/ml) at 4°C
for 30 min. Flow cytometry analysis of cellular DNA
content was performed using a FC500 MPL flow cyt-
ometer (Beckman Coulter, Brea, CA, USA) with a total
of 10,000 events per sample.

Fluorescence in situ hybridization

After paraffin-embedded tumor slides were dewaxed,
fixed and rehydrated, samples were denatured via micro-
wave exposure, and digested with pepsin (Sigma-Aldrich,
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St Louis, MO, USA). Then, slides were labeled with
MDR1/CEN7 (centromere of chromosome 7) dual-
fluorescent probes (Zytolight, Bremerhaven, Germany),
mounted with rubber cement (Best-Test, Galesburg, IL,
USA), and allowed to hybridize at 37°C overnight. The
next day, the slides were stained with DAPI and analyzed
with a Leica DM2500 fluorescence microscope.

Statistic analysis

Differences in survival based on clinicopathological
characteristics were assessed using a log-rank test. Cor-
relations between the presence of TP53 mutation and
clinicopathological factors were analyzed using Fisher’s
exact test, while nucleus diameter, DNA index and copy
number were analyzed using Student’s ¢-test. The rela-
tionships among ovarian cancer clinicopathological
characteristics, TP53 mutation and recurrence were an-
alyzed by performing multivariate logistic regression
analysis. All analyses were performed with SPSS 19.0 soft-
ware, and p < 0.05 was considered statistically significant.

Results

The relationship between the presence of TP53 mutation
and patient clinicopathological characteristics

This study included 161 epithelial ovarian cancer pa-
tients recruited from the Department of Obstetrics and
Gynecology at Shanghai Ren Ji Hospital. To confirm P53
immunostaining as a surrogate marker for the presence
of TP53 mutation [26, 27], TP53 nucleotide sequencing
and P53 immunostaining results were compared on
samples obtained from 5 serous ovarian cancer patients.
Next-generation sequencing analysis identified non-
synonymous 7P53 mutations in 4 high-grade patients,
while 1 low-grade patient exhibited wild-type TP53
(Table 1). Of the 4 patients with mutant TP53, 1 patient
contained a nonsense mutation leading to the complete
disruption of P53 expression, evidenced by negative
staining for P53, which was referred to as a class I muta-
tion. 2 patients exhibited a missense mutation or a
frameshift mutation, resulting in partially damaged P53
function and a strong positive signal of P53 staining
(moderate-to-strong staining cells in greater than 60%
fraction), referred to as a class II mutation. Additionally,
1 patient exhibited a class III mutation comprising a
frameshift mutation with <10% 7P53 mutation abun-
dance. Immunohistochemistry showed positive staining
for P53 (10%-50% moderate staining cells) (Fig. 1). The
patient with wild-type TP53 displayed weak positive
staining for P53 (<10% positive cells). As the patient
with a class III mutation contained only a small amount
of TP53 mutant tissue within the entire tumor, and
nearly unimpaired P53 protein function, this sample was
approximately classified into the TP53 wild-type group,
whereas class I and class II mutations were considered
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Table 1 DNA Sequencing and IHC Results
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Sample TP53 Mutation by Sequencing Class of Mutation IHC Results Proportion of Tumor cells (%)
1 R306 (abundance: 61.5%) Il ++ 80
2 P190 (abundance: 5.7%) Il + 90
3 Negative Wild-type + 75
4 Exon 8 C> T (abundance: 33.8%) [ - 85
5 R282W (abundance: 88.4%) Il +++ 80

IHC immunohistochemistry

P53 nuclei staining: -, complete absence of staining; +, <10% of tumor cells with faint staining intensity; +, 10%-50% of tumor cells with faint staining intensity;
++, >50% of tumor cells with moderate staining intensity; +++, >50% of tumor cells with strong staining intensity

as the TP53 mutant group. Based on the results of the
above analysis, P53 IHC may be used as a surrogate
marker of TP53 mutation, and immunohistochemistry
was performed for all 161 patients to identify the pres-
ence of TP53 mutation in our subsequent studies. A
total of 123 patients harbored mutant 7P53, while 38
patients exhibited wild-type TP53. The clinical charac-
teristics of these patients are listed in Table 2. Parity,
peritoneal metastasis, FIGO stage, tumor grade, CA125
level, the presence of residual tumor, and chemoresis-
tance to platinum were related to the prognosis of
ovarian cancer patients. Moreover, TP53 mutant pa-
tients tended to have low parity, increased peritoneal
metastasis, late FIGO stage and high tumor grade.

The analysis of TP53 mutations and patient prognosis

After chemotherapy, in the TP53 mutant group, the per-
centage of patients demonstrating complete, partial and
no remission was 67.5% (83/123), 22.8% (28/123) and
9.7% (12/123), respectively, while in the wild-type group,
the percentage of complete, partial and no remission
was 76.3% (29/38), 21.1% (8/38) and 2.6% (1/38), re-
spectively. There was a significant difference (p <0.01) in

the number of no remission patients between the two
groups (Fig. 2a). Kaplan-Meier analysis revealed longer
overall survival (OS) of patients in the TP53 wild-type
group (82.59 + 10.50 months) than those in the mutant
group (49.41 +4.72 months) (p < 0.05) (Fig. 2b). The 5-
year survival rates were not statistically significantly dif-
ferent between the wild-type group (58.2%) and the
mutant group (46.7%), and multivariate analysis re-
vealed late stage, the presence of serous cancer and G3
grade to be independent predictive factors for 5-year
survival. In patients with complete remission, the rate
of 5-year progression-free survival (PFS) in the wild-
type group (51.7%, 15/29) was higher than in the mu-
tant group (37.3%, 31/83) (p<0.05) (Fig. 2C). In
addition, in relapse patients, stages IIb ~ Illc accounted
for 83.3% (60/72) of patients, serous cancer was present
in 55.6% (40/72) of patients,G3 grade was detected in
51.4% (37/72) of patients and 7P53 mutations (class I/
II) were evident in 84.7% (61/72) of patients. Multivariate lo-
gistic analysis revealed late FIGO stage, serous cancer, G3
grade and TP53 mutation to be independent factors of ovar-
ian cancer recurrence. The proportion of cases resistant to
TP (paclitaxel and cisplatin) chemotherapy (including partial
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Fig. 1 Immunohistochemistry results for 4 ovarian cancer samples harboring TP53 mutations. a: the patient with a TP53 nonsense mutation
exhibited negative P53 staining; b: the patient with a low abundance (5.7%) of TP53 frameshift mutation exhibited faint P53 staining; ¢: the
patient with a TP53 frameshift mutation exhibited moderate P53 staining; d: the patient with a TP53 missense mutation exhibited strong P53
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Table 2 Clinicopathological Characteristics and TP53 Mutational Analysis

Characteristics Number of total patients (%) pe Number of TP53 Mutations (%) pd
Parity 0.019* 0.042*
0-1 77 478 59 480
23 66 410 57 46.3
>3 15 9.3 7 5.7
Peritoneal metastasis 0.004* 0.027*
yes 89 553 79 64.2
no FIGO stage 71 441 0.025% 44 358 0.024*
I 55 34.2 33 268
Il 18 1.2 17 138
Il 80 49.7 66 53.7
vV 7 43 7 57
Histotype 0.954 0.114
Sserous 91 56.5 70 56.9
mucinous 22 13.7 16 13.0
endometrioid 23 143 13 106
clear cell 16 9.9 15 122
undifferentiated 9 56 9 73
WHO grade 0415 0.068
Gl 33 20.5 22 179
G2 57 354 39 31.7
G3 69 429 62 504
Tumor grade® 0.003* 0.002*
low-grade 57 354 33 26.8
high-grade 101 62.7 90 732
CA125 (Uml™) P 0.001* 0508
<206.52 86 534 51 415
>206.52 46 286 39 317
Residual tumor (cm) <0.0001* 0.102
<05 119 739 86 69.9
>0.5 40 24.8 37 30.1
Platinum resistance <0.0001* 0.161
yes 36 224 33 26.8
no 123 764 90 73.2

a: In accordance with morphological and molecular genetic analysis, EOC was divided into two categories [28]
b: Based on patient survival, the cutoff value of CA125 calculated with a receiver operating characteristic (ROC) was 206.52 (Uml-1)

c: p value for clinicopathological characteristics
d: p value for TP53 mutation
*p < 0.05

and no remission) after relapse in the wild-type group was
63.6% (7/11), compared to 91.8% (56/61) in the mutant
group (p < 0.05) (Fig. 2¢).

The relationship between TP53 gene mutation and DNA
abnormalities in cancer cell nuclei

HE staining revealed the relative uniformity of cancer
cell nucleus size in the TP53 wild-type group, and the
ratio of the largest and smallest nuleus diameters was

3.4+ 0.3, which was remarkably smaller than the diam-
eter ratio of 54 +0.8 for the mutant group (p<0.05)
(Fig. 3a). Quantitative detection of the DNA index with
DNA-specific dye was performed in ovarian cancer cell
smears from 20 epithelial ovarian cancer patients. The
incidence of polyploidy (>2-fold) and aneuploidy (1.1-
1.9-fold) in the mutant group was 78.2+7.0%, which
was significantly higher than that in the wild-type group
(56.0 £ 3.8%, p < 0.05) (Fig. 3b). In addition, PI was used
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to stain ovarian cancer cell nuclei in samples from 50
patients, and the incidence of polyploidy and aneuploidy
in the TP53 mutant group was much higher than that in
the wild-type group (p < 0.01) (Fig. 3c).

The correlation between TP53 mutation and MDR1 copy
number aberration

MDRI1-FISH revealed the proportions of 5-6 copy and
>6 copy cells to be 33.0+5.6% and 3.0 £ 0.7%, respect-
ively, in the TP53 wild-type group, which were signifi-
cantly lower than those in the mutant group (37.8 £ 7.9%
and 11.7 + 2.3%, respectively) (p <0.05) (Fig. 4a). More-
over, much larger numbers of cancer cells exhibiting
chromosome 7 amplification (copy number >4/cell), on
which the MDRI gene is located, were observed in the
TP53 mutant group (2.1+0.7)% than in the wild-type
group (0.3 +0.05)% (p < 0.01) (Fig. 4b).

Analysis of MDR1 copy number and expression in
recurrent ovarian cancer tissues

Immunohistochemistry was performed on samples ob-
tained from patients whose cancers had relapsed after
complete remission following chemotherapy, and the ra-
tio of patients exhibiting elevated expression of MDR1
in relapsing tissues compared with in the treatment-
naive lesions in the TP53 mutant group was 88.5% (54/
61 cases), which was significantly higher than the ratio
for the TP53 wild-type group (36.4%, 4/11 cases) (p <
0.01) (Fig. 5). In addition, the FISH results were con-
sistent with the IHC results. The proportions of can-
cer cells containing 5-6 copies and >6 copies of MDRI
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in the TP53 wild-type recurrent group were 36.0 +
8.0% and 3.6 £ 0.7%, respectively, with no differences
detected in the pre-treatment samples. However, in
the mutant group, the proportions of cells containing
5-6 copies and >6 copies of MDRI were 46.0 + 10.3%
and 14.2 +2.7%, which were significantly higher than
the proportions of cells in the corresponding primary
tissues. Furthermore, in the 7P53 mutant relapse
group, the proportion of cancer cells with >4 copies of
chromosome 7 was significantly higher (5.4+0.8)%
than the proportion before recurrence (p<0.01). In
comparison, there was no obvious change for the copy
of chromosome 7 in the wild-type relapse group (0.5 +
0.07)%. Centromere FISH analysis revealed the accu-
mulation of chromosome 7 in TP53 mutant patients
during cancer evolution.

Discussion

Multi-drug resistance contributes to ovarian cancer
relapse following the initial chemotherapy response
[29, 30]. Despite of increased doses of first-line
chemotherapy drugs (such as platinum and paclitaxel)
or the application of second-line chemotherapy drugs
(such as topotecan, gemcitabine, liposomal doxorubicin
and docetaxel), patient prognosis is poor and the average
duration of survival is less than 1 year [31, 32]. Aberrant
MDRI expression has been observed in most chemoresis-
tant tumors. A better understanding of the molecular
mechanism linking MDRI and TP53, the most common
mutated gene in ovarian cancer, may facilitate accurate
prediction of the efficacy of standard chemotherapy and

A TP53 wild-type

TP53 mutant-type

Fig. 4 MDR1 and chromosome 7 copy numbers were detected via FISH in two group samples. a: MDR1-FISH revealed MDRT copy numbers in
the two groups, red indicates MDR1, and chromosome 7 centromeres are stained in green; b: the green-staining for chromosome 7 centromeres
in the two groups
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TP53 wild-type

TP53 mutant-type

Fig. 5 Changes in MDR1 expression in primary and recurrent lesions between the TP53 wild-type and mutant groups detected by immunohistochemistry.
First row: TP53 wild-type group, second row: TP53 mutant group. The first column indicates P53 expression, the second column indicates
MDRT1 expression in primary lesions, and the third column indicates MDR1 expression in relapse tissues. (x200)
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aid in the formulation of a rational, individualized proto-
col for preventive interventions in selected patients to re-
duce relapse and improve 5-year survival.

In the current study, we validated the use of immuno-
histochemical analysis to identify the presence of TP53
mutation in ovarian cancer, in accordance with previ-
ously published data from Yemelyanova [26]. TP53 mu-
tation closely correlated with immunohistochemical
staining patterns for P53 (strong and diffuse expression
and complete lack of expression). P53 overexpression, as
revealed by immunostaining, was associated with mis-
sense or frameshift mutations in 7P53, whereas non-
sense mutations resulted in protein truncation and a
complete lack of immunostaining. Importantly, in
addition to non-mutant 7P53 tissue, some ovarian can-
cer samples contained a low-abundance frameshift TP53
mutation that resulted in weak (<10%) positive or posi-
tive (10%-50%) signals for P53 staining. Such samples
were generally considered as wild-type TP53. There are
two possible explanations for this phenomenon. First,
direct sequencing may not be the most accurate gene
testing method (massive parallel sequencing increases
the accuracy of somatic mutation detection), and thus
our detection of the low-abundance mutant tissue was a
coincidence. Second, the presence of a low-abundance
mutation in a tiny region of tumor tissue still results in
adequate P53 protein function without impairment. In
previous studies, the overall sensitivity for TP53 muta-
tion detection based on P53 immunostaining in high-
grade serous ovarian cancer was 99%, and for epithelial
ovarian cancer, the accuracy of TP53 mutation diagno-
sis based on immunohistochemistry was as high as 95%
[26, 27].

Based on our findings, regardless of the presence of
TP53 mutations, most relapse cases were first diagnosed

as stage IIb-IIlc. The reason may be that tumor reduc-
tive surgeries can not completely remove cancer cells,
and the remaining tumor cells seed recurrence. Add-
itionally, according to our analysis, the primary reason
for chemotherapeutic drug resistance and the relapse of
ovarian cancer was P53 dysfunction caused by a gene
mutation (class I/II mutation). The pathological grades
among these TP53 mutant relapse cases were generally
higher than the grades for the wild-type relapse patients,
and in terms of the histotype, mutant relapse were gen-
erally associated with non-serous cancer. Regarding che-
moresistant behavior, drug resistance in the wild-type
group primarily occurred during the first chemotherapy
treatment after surgery (based on the proportions of par-
tial and no remission patients), while in the mutant
group, chemoresistance also emerged during the second
chemotherapy treatment after relapse, with the excep-
tion of the high relapse ratio during the first chemother-
apy period. The subsequent chemoresistance in the
TP53 mutant group may represent adaptive evolution as
a result of the selective environmental pressure on ovar-
ian cancer cells after the first round of chemotherapy. In
addition, this result is the direct evidence of accelerating
tumor chemoresistance evolution once P53 function is
impaired.

A relationship between the presence of P53 mutation
and the 5-year survival of ovarian cancer patients has
been reported in many studies. In a recent analysis, the
hazard ratio (HR) of P53 status on survival was only
1.47 (95% CI: 1.33-1.61), and HR differed with various
conditions (such as late stage and serous cancer cases).
Even in late stage cases (stages III, IV), the HR for TP53
mutation decreased to 0.91 (95% CI: 0.59-1.39), indicat-
ing a possible protective effect, and serum P53 autoanti-
bodies [HR: 1.09 (95% CI: 0.55-2.16)] were not
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associated with OS [33, 34]. This result is likely attribut-
able to the constrained P53 function in high-grade
tumors and in late-stage serous ovarian cancer, a hy-
pothesis that need to be tested in future studies. In the
current study, 7P53 mutation was not an independent
factor for the 5-year survival compared with other
factors (stage, grade and histotype) according to our
multivariate analysis. In contrast, wild-type TP53 was a
crucial factor that correlated with disease progression by
preventing chemoresistance in ovarian cancer cells. Des-
pite the proposal that 7P53 mutations impact ovarian
cancer recurrence in certain studies, in current study,
the in-depth delineation of TP53 mutation and MDRI
copy number analysis permitted us to identify a new
mechanism by which recurrence of ovarian cancer is ac-
celerated through the evolution of chemoresistance due
to TP53 mutation. Once TP53 is mutated, cancer cells
with DNA damage are not able to activate the apoptosis
program. Instead, cells remain in the G1 or G2 phase in
anticipation of DNA repair [35, 36], enabling cancer cells
to augment their drug resistance capacity. Notably, can-
cer cell DNA content and nucleus size were markedly
different in the 7TP53 mutant and wild-type groups,
reflecting remarkable increases in the amounts of cells
exhibiting polyploid and aneuploid DNA in the TP53
mutant group, which resulted in exacerbated genomic
instability and a high degree of malignancy. Further-
more, we detected larger numbers of cancer cells with
>6 MDRI copy numbers and >4 copies of chromosome
7 in the TP53 mutant group. Regardless of the chemo-
therapeutic choice, MDRI copy number in the mutant
group was higher than the wild-type group. Based on
these results, we predicted that cancer cells with high
MDRI copy numbers that were confronted with a select-
ive environmental pressure (for example, chemotherapy
after surgery) were more likely to survive and seed re-
currence. To investigate this hypothesis, we compared
MDRI copy numbers and MDRI1 expressions in original
and relapse cancer tissues. The results were as expected:
MDRI1 protein levels were noticeably increased in re-
lapse tissues, particularly in the TP53 mutant patients.
Upon selective pressure exerted by chemotherapy, the
number of MDRI copies was remarkably upregulated in
the TP53 mutant group, conceivably caused by the accu-
mulation of chromosome 7. Conversely, MDRI copy
numbers in relapse patients in the TP53 wild-type group
were not altered, and less chemoresistance was associ-
ated with second-round chemotherapy. We attributed
recurrence in the wild-type group to other factors, such
as late stage or large residual lesions. Our findings con-
firmed that TP53 mutation displayed an independent
effect on ovarian cancer recurrence after complete re-
mission due to effective chemotherapy. Thus, the detec-
tion of TP53 mutation is equally as important as clinical
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prognostic indicators (FIGO stage, histotype, grade) for
predicting ovarian cancer recurrence.

Conclusion

The presence of 7P53 mutation in ovarian cancer exacer-
bates genomic instability and promotes the expression of
MDRI, which subsequently activates chemoresistance. For
these patients, particularly those with an earlier stage (stages
IIb and IIc) of cancer, non-serous cancer or a lower grade
(G1. @Q2) of cancer, the administration of high-dose chemo-
therapeutics during the first round of chemotherapy should
be considered to prevent cancer cells from rapidly generation
of chemoresistance leading to short-term recurrence.
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