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A B S T R A C T

Introduction: SARS-CoV-2 affects part of the innate immune response and ac-
tivates an inflammatory cascade stimulating the release of cytokines and chemokines, particularly within the lung. Indeed, the inflammatory response during COVID-
19 is likely the cause for the development of acute respiratory distress syndrome (ARDS). Patients with mild symptoms also show significant changes on pulmonary
CT-scan suggestive of severe inflammatory involvement.
Hypothesis: The overall hypothesis is that HBO2 is safe and reduces the inflammatory response in COVID-19 pneumonitis by attenuation of the innate immune system,
increase hypoxia tolerance and thereby prevent organ failure and reduce mortality.
Evaluation of the hypothesis: HBO2 is used in clinical practice to treat inflammatory conditions but has not been scientifically evaluated for COVID-19. Experimental
and empirical data suggests that HBO2 may reduce inflammatory response in COVID-19. However, there are concerns regarding pulmonary safety in patients with
pre-existing viral pneumonitis.
Empirical data: Anecdotes from “compassionate use” and two published case reports show promising results.
Consequences of the hypothesis and discussion: Small prospective clinical trials are on the way and we are conducting a randomized clinical trial.

Introduction

SARS-CoV-2 affects part of the innate immune response and acti-
vates an inflammatory cascade stimulating the release of cytokines and
chemokines, particularly within the lung [1,2]. The export of these
factors attracts neutrophils and monocytes to the site of infection, in-
filtrating the organ. Unfortunately, neutrophils are particularly in-
efficient in clearing viral infections, and their presence may be more
detrimental than beneficial due to the release of a battery of caustic
agents directed at killing the pathogen, but they could also damage the
surrounding tissue [3]. The destruction of host cells may release sub-
cellular elements that could trigger secondary inflammatory reactions.
Thus, SARS-CoV-2 infection activates a robust inflammatory response
that if it is not controlled, could result in a “cytokine storm” with
detrimental systemic consequences [4]. Indeed, the inflammatory re-
sponse during COVID-19 is likely the cause for the development of
acute respiratory distress syndrome (ARDS) in patients, which is a
condition of very low arterial oxygen concentration or hypoxia and
bilateral pulmonary opacities [5]. A post-mortem biopsy of pulmonary

tissue from a 72-year-old man that died 3 weeks after the onset of
symptoms was described as “diffuse alveolar damage, with reactive
type II pneumocyte hyperplasia, intra-alveolar fibrinous exudates were
present and loose interstitial fibrosis and chronic inflammatory in-
filtrates” [6]. Even patients that have mild symptoms and survived
COVID-19 displayed significant changes on pulmonary CT-scan, with
diffuse ground-glass opacities, crazy-paving patterns, and consolida-
tion, suggesting a severe inflammatory involvement [7].

So far, specific treatments have been difficult to advance among
more than 160 clinical trials registered since March 2020 [8]. Recently,
a double-blind clinical trial using the drug Remdesivir, which was
originally developed for the treatment of Ebola virus, showed an im-
provement in the resolution of severely ill COVID-19 patients, opening
a ray of hope [9]. However, a cure for the disease is still yet to come.
Several groups are also rapidly working on the development of a pos-
sible vaccine, but this endeavour may be months or years away from
reality.

Hyperbaric Oxygen (HBO2) consists of exposure to 100% oxygen
under increased atmospheric pressure. This procedure allows the
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delivery of oxygen at high partial pressure reaching tissues rapidly at
elevated concentrations. HBO2 has been used for almost a century, in-
itially for decompression sickness (DCS), but it was soon noted that it
had several anti-inflammatory effects [10,11]. HBO2 is shown to be
effective in treatment of radiation injury [12–14] and wound healing
[15]. In all cases, HBO2 has been used with great safety, and with very
few adverse effects.

The hypothesis

The overall hypothesis is that HBO2 is safe and reduces the in-
flammatory response in COVID-19 pneumonitis by attenuation of the
innate immune system, increase hypoxia tolerance and thereby prevent
organ failure and reduce mortality.

We propose that HBO2 could be an early intervention for COVID-19
patients, utilized at the first signs of decline in oxygen blood saturation
levels as well as for critically ill patients, A few treatments with HBO2

has the potential to reduce inflammation, restore normal defence me-
chanisms and thereby reduce the detrimental effects of oxygen re-
quirement in COVID-19 pneumonitis.

Evaluation of the hypothesis

Recent evidence from animal studies suggest that HBO2 ameliorate
inflammation in Decompression Sickness (DCS) induced Acute lung
injury (ALI) through polarization of macrophages from inflammatory
macrophage subtype (M1) to resolving or anti-inflammatory sub type
(M2) [16,17]. Hyperbaric oxygen has been shown to polarize macro-
phages from M1 to M2 associated with IL-10 and thereby reduce in-
flammation [18,19] and 30 min HBO2 ex vivo inhibit monocyte IL-1β
and TNF-α [20]. Interestingly, the switch from M1 to M2 was described
in a human study of ALI/ARDS [21].

HBO2 allows the delivery of oxygen at high partial pressure
reaching tissues rapidly at elevated concentrations, which could reverse
the hypoxic condition and preserve cellular metabolism [22]. Indeed,
HBO2 has been shown to preserve mitochondrial activity [23]. More-
over, HBO2 improved kidney function after infection [24], protected
organs from ischemia/reperfusion injury [25,26], reduced UV skin
damage [27], and avoided kidney damage in diabetic patients [28].
Studies using an experimental animal model of sepsis that is char-
acterized by an overwhelming inflammatory response showed a sig-
nificant improvement in mortality after a single HBO2 treatment (2.4
Atmospheres absolute (ATA), 60 min) very early after the initial insult.
The improved outcome was correlated to a reduction in inflammation
[29]. This observation echoes prior investigations using multiple HBO2

treatments to improve the outcome of rodent sepsis [18]. Additionally,
HBO2 was reported to reduce bacterial infections [24,30,31] and LPS
toxicity [32,33]. HBO2 has been noticed to display several anti-in-
flammatory effects [10,11,29], perhaps due to modulation of oxidative
stress [34], or a direct effect on the innate immune system [35]. HBO2

significantly reduces inflammatory cytokines through several tran-
scriptional factors, including Hypoxia Inducible Factor 1 (HIF-1)
[36,37] and nuclear factor kappa-light-chain-enhancer of activated B
cells

(NFkB) [18–20,38]. Other studies have shown that HBO2 activates
additional transcriptional factors, including Nuclear factor erythroid 2-
related factor 2 (Nrf-2) and Heat shock factor 1 (HSF1), that are in-
volved in the expression of several defense proteins [39]. HBO2 has
been evaluated in clinical trials as safe and may be effective for a
number of acute inflammatory conditions such as pancreatitis [40],
ulcerative colitis flares [41]. There is a wide range of pressures and
times used for HBO2 treatments, with preferences for the use of 1.6 to
2.5 ATA. Anti-inflammatory effects have been observed in conditions of
2 ATA for 60 min in the lung of healthy individuals. Thus, we hy-
pothesize that the “dose” can be estimated as “area under the curve”. If
the “area under the curve” is representing the dose, 2 ATA for 60 min

would be equivalent to 2.4 ATA for 50 min. The chosen protocol for the
study aimed to enable inclusion of centres with practices (and hard-
ware) for a range of pressures.

Oxygen is known to have several toxic effects when used for a
prolonged time. Toxicity is dose dependent and measured in Units of
pulmonary Toxic Dose (UPTD) also called Oxygen Tolerance Unit
(OTU); tables for maximal dose is regulated for divers. One UPTD is
equivalent of breathing 100% oxygen for 1 min at 1 Bar. Surprisingly
UPTD is not recorded in medical practice despite oxygen for medical
use is a regulated drug. It is well accepted that oxygen induce toxic
changes in the lungs and airways but chronic oxygen toxicity in other
organs including immunological effects are less explored [42]. Re-
versible and non-reversible oxygen toxicity in the eyes are well known
side effects of HBO2 that normally occur after 20–40 HBO2 treatments
[43]. It has been suggested that Fi02 below 0.5 (50% O2) is safe but it is
known that many factors including viral infections, mechanical venti-
lation and other drugs can synergistically add to oxygen toxicity[42].
Acute severe toxicity is normally only seen in hyperbaric settings >
200 kPa and include CNS toxicity presenting as blurred vision and in
worst case self-limiting seizures [44], occurring in < 1/10.000 treat-
ments. Paradoxically intermittent HBO2 has also been shown to protect
lungs against oxygen toxicity by upregulation of anti-oxidative factors
[45,46]. Even though concerns of pulmonary toxicity are theoretical for
the proposed treatment duration [47], the extent of COVID-19 pa-
thology is unknown and potential toxic effect of oxygen should be
monitored in a randomized clinical trial.

Empirical data

The potential for the use of HBO2 in the case of COVID-19 was
demonstrated by two case reports from Wuhan, China, which showed
an improvement in the condition of severely ill patients by increasing
blood oxygen saturation levels and reducing lung inflammation [48]. In
a recently published case series Louisiana, USA, 5 patients with “im-
peding intubation” was treated with hyperbaric oxygen, patients
symptoms was immediately relieved and they all recovered after 1–6
treatments without intubation and mechanical ventilation [49]. In ad-
dition, HBO2 has been reported to be safe during the use of mechanical
ventilation [50].

Consequences of the hypothesis and discussion

Currently, half a dozen new clinical trials are underway in several
countries, including case-controlled trials that may generate a rapid
information that could be of utility in dealing with the current pan-
demic. HBO2 is used on “compassionate grounds” just as other anti-
inflammatory drugs such as Chloroquine, cortisone and L-6 inhibitors
but randomized trials are absent and/or have been discouraging. Well
designed and sufficiently powered randomized trails are needed to
confirm safety and efficacy of HBO2 for both current and future viral
respiratory diseases. Hence, we have designed and planned a clinical
trial in accordance with ICH-GCP and “the Helsinki Declaration”:
“Safety and Efficacy of Hyperbaric Oxygen for Improvement of Acute
Respiratory Distress Syndrome in Adult Patients With COVID-19; a
Randomized, Controlled, Open Label, Multicentre Clinical Trial”
(NCT04327505). We have ethical- and competent authority approval,
initiated our first center and have included our first few subjects.
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