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Recent Advances in Ocular Imaging

Introduction
Since the first demonstration of fundus photogra-
phy, technological advancements have allowed 
for increasingly high-resolution and high-contrast 
imaging of the anterior and posterior eye. 
Development of scanning laser ophthalmoscopy 
(SLO) in 1980 allowed for en face retinal imaging 
with significantly reduced light exposure com-
pared with conventional indirect ophthalmos-
copy, with recent advancements focused on 
providing an ultra-wide field of view (FOV).1–3 
The introduction of optical coherence tomogra-
phy (OCT) in 1991 enabled depth-resolved volu-
metric imaging, further facilitating ophthalmic 
disease diagnosis by providing access to subsur-
face features.4 Adaptive optics (AO) was first 
introduced for fundoscopy in 1997 and has since 
been applied to both OCT and SLO to achieve 
cellular-resolution ophthalmic imaging by cor-
recting aberrations of the eye.5 Recent advances 
have focused on supplementing structural con-
trast with functional modalities, such as OCT-
based quantification of the metabolic and 
biomechanical properties of ocular tissue and 
multimodality systems such as OCT-SLO, surgi-
cal microscope–integrated OCT, and multimodal 
photoacoustic microscopy (PAM). Here, we pro-
vide an overview of these ophthalmic imaging sys-
tems and their clinical and basic science 
applications (see Table 1).

OCT-derived contrast mechanisms
OCT is the clinical standard for diagnosing and 
monitoring ophthalmic diseases and enables sub-
surface visualization of tissue scattering. A combi-
nation of system modifications and post-processing 
algorithms can be applied to achieve a variety of 
complementary imaging modes that probe addi-
tional contrast mechanisms. Examples of these 
multimodal OCT techniques include optical 
coherence tomographic angiography (OCTA), 
polarization-sensitive OCT (PS-OCT), optical 
coherence elastography (OCE), phase-decorrela-
tion OCT (PhD-OCT), photothermal OCT 
(PT-OCT), and pump-probe OCT (PP-OCT).

Optical coherence tomographic angiography
Changes to retinal vascular density and perfusion 
accompany many ophthalmic diseases, including 
glaucoma, age-related macular degeneration 
(AMD), and diabetic retinopathy (DR).6 
Fluorescein angiography (FA) and indocyanine 
green angiography (ICGA) have traditionally been 
used to detect vascular leakage, neovascularization, 
and occlusions.7 However, these techniques require 
injection of exogenous contrast and lack depth 
selectivity for specific retinal layers.8 Several differ-
ent OCT acquisition and post-processing methods, 
collectively termed OCTA, have emerged as non-
invasive alternatives for volumetric imaging of 
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retinal vascular perfusion. Doppler OCT uses 
phase differences between repeated OCT acquisi-
tions to estimate Doppler frequency shift and the 
relative velocity of flowing scatterers within per-
fused vessels.9 However, phase-based angiography 
techniques are highly susceptible to bulk motion, 
which reduces sensitivity to blood flow. Power-
Doppler methods, including optical micro-angiog-
raphy (OMAG),10,11 phase variance,12 and Doppler 
variance angiography,13 trade off flow velocity reso-
lution for reduced sensitivity to bulk motion. These 
methods have demonstrated benefits for high reso-
lution in vivo imaging of retinal and choroidal per-
fusion. Intensity-based angiography methods, such 
as split-spectrum amplitude-decorrelation angiog-
raphy (SSADA)14 and speckle decorrelation,15 use 
intensity changes between repeated OCT cross 
sections as surrogate measures of blood flow and 
have been translated for clinical imaging  
of changes in optic disk perfusion in glaucoma and 
choroidal neovascularization in AMD patients.16–19 
Angiography methods that take advantage of both 
the amplitude and phase of the OCT signal fur-
ther enhance robustness against phase instability 
and include complex differential variance 
(CDV)20,21 and eigenvalue decomposition.22 
SSADA and OMAG have been integrated into 
commercially available systems (Optovue AngioVue 
and Zeiss AngioPlex, respectively), enabling high-
quality clinical imaging and quantification of retinal 
perfusion.23,24

Handheld OCTA. Despite commercialization of 
OCTA, the majority of these systems require 
patients be imaged upright, thus precluding imag-
ing in supine or bedridden patients. To address these 
limitations, several handheld OCT probes have 
been developed for point-of-care imaging,25,26 
including in pediatric patients.27 Commercially 
available handheld OCT devices, such as the iVue 
(Optovue, Inc, Fremont, CA, USA) and Envisu 
C2300 (Leica Microsystems, GmbH, Wetzlar, 
DE), have relatively slow imaging speeds that limit 
sampling density and OCTA sensitivity. Research 
prototypes optimized for OCTA imaging28–30 
increase speeds by an order of magnitude com-
pared with current-generation commercial systems 
by using 100–400 kHz swept sources. Clinical 
imaging of retinopathy of prematurity (ROP) 
patients using these systems has provided in vivo 
images of the foveal avascular zone and retinal capil-
lary complex in neonates (Figure 1(a)–(d)).31,32

Visible-light OCTA. Ophthalmic OCT has conven-
tionally been performed using near-infrared 
wavelengths because of the availability of light 
sources and benefits in reduced scattering and 
increased penetration depths. Commercial avail-
ability of broadband supercontinuum light 
sources has enabled OCT imaging at visible 
wavelengths, which provides access to more 
endogenous and exogenous molecular contrast 
mechanisms.33–38 When combined with OCTA 

Table 1. Summary of multimodal ophthalmic imaging technologies.

Technology Application In vivo ophthalmic 
human 
demonstration

Commercially 
available 
clinical system

Clinical or 
research 
focus

OCT angiography Vascular imaging Yes Yes Clinical

Polarization-sensitive OCT Tissue depolarization 
and birefringence

Yes No Research

Optical coherence 
elastography
Phase-decorrelation OCT

Tissue biomechanics Yes No Research

Photothermal OCT
Pump-probe OCT

Molecular contrast No No Research

OCT + Scanning laser 
ophthalmoscopy

Motion-tracking Yes Yes Clinical

Surgical visualization Surgical imaging Yes Yes Clinical

Photoacoustic imaging Vascular imaging No No Research

OCT, optical coherence tomography.
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maps of retinal vascular perfusion, visible-light 
OCT can provide complementary contrast for 
quantifying blood oxygenation as a surrogate for 
quantifying metabolic changes associated with 
DR and AMD (Figure 1(e)–(g)).36,38–45 In vivo 
visible-light OCT retinal imaging has been dem-
onstrated, and development of robust clinical sys-
tems is ongoing.36,46–48

Clinical utility and challenges. Ongoing clinical 
OCTA research focuses on imaging in AMD, DR, 
and diabetic macular edema (DME) and vascular 
response to therapy or surgery.49–52 Wide-field 
OCTA systems have also been developed and are 
capable of imaging a 100° FOV, which benefits 
imaging of the peripheral retina.53,54 Despite sig-
nificant advantages over FA and ICGA, the clini-
cal utility of OCTA is limited by several key 
factors. Engineering advancements in OCTA 
algorithms require physician education for proper 
interpretation of angiograms.55 OCTA algorithms 
also require repeated imaging and dense sampling 
over small FOVs, making them susceptible to bulk 
motion during long acquisitions. Handheld OCTA 
imaging is further complicated by combined 

patient and photographer motion, both of which 
degrade vascular contrast and resolution, distort 
anatomic features, and preclude robust quantita-
tive measurements.31,56 Additional image artifacts, 
such as shadowing from large retinal vessels, axi-
ally smeared vessel cross sections as a result of 
scattering, and out-of-focus OCTA projections, 
can significantly impact vessel segmentation 
algorithms and quantitative analysis of retinal 
vascularity.57–60 Motion-compensation methods, 
such as novel scanning or eye-tracking technolo-
gies, are actively being studied to overcome these 
limitations.61–64 Furthermore, vessel enhance-
ment techniques, such as the complex continu-
ous wavelet transform and multiple en face 
registration and averaging, can be applied to 
improve the accuracy of vessel segmentation.65–68 
Despite these methods, various commercial sys-
tems employ different post-processing and seg-
mentation algorithms, making interpretation by 
clinicians challenging.7 While visible-light OCT 
provides complementary endogenous functional 
contrast, clinical translation of the technology is 
challenging because visible wavelengths are dis-
tracting and make fixation extremely difficult.48 In 

Figure 1. (a)–(d) Handheld OCTA of ROP at the (a) optic nerve head, (b) peripapillary region, (c) perifoveal region, and  
(d) margin of the fovea. Visible-light OCT in a rodent model showing (e) OCTA projection with delineation of arteries (red) and  
veins (green), and circumpapillary (f) retinal structure and (g) Doppler blood flow cross section.
Source: Reprinted with permission from Viehland and colleagues31 and Pi and colleagues.43

OCT, optical coherence tomography; OCTA, optical coherence tomographic angiography; ROP, retinopathy of prematurity.
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addition, visible-light OCT images routinely 
require dense averaging to overcome low image 
quality that results from higher laser noise and sig-
nificantly lower maximum permission exposure 
compared with near-infrared sources.69

Polarization-sensitive OCT
PS-OCT measures changes in polarization states 
between incident and back-reflected light, which 
can provide additional tissue-specific contrast.70 
The amplitude and relative phase delay between 
orthogonal polarization states can be used to 
compute parameters such as tissue birefringence 
and degree of polarization uniformity.71–77 These 
methods enable quantitative in vivo imaging of 
changes in tissue properties resulting from disease 
progression and treatment.78,79

Anterior segment. PS-OCT is particularly well 
suited for corneal imaging because the collagen 
stroma exhibits strong birefringence.80 Previous 
works have shown that corneal birefringence is 
related to fibril orientation in the lamellae, and 
quantitative metrics, such as phase retardation 
and slow axis orientation, have been used to dis-
tinguish healthy from diseased corneas.81,82 Kera-
toconus, which is characterized by thinning and 
distortion of the central cornea, exhibits increases 
in phase retardation near the rim of corneal thin-
ning and changes in slow axis orientation result-
ing from rearrangement of stromal collagen.83 
PS-OCT can also enhance visualization of the 
trabecular meshwork, ciliary body, and iris, which 
can be used to study the progression of diseases 
such as glaucoma.84–86 Excess buildup of aqueous 
humor because of glaucoma can require surgical 
intervention, commonly trabeculectomy, which 
allows for aqueous flow into the subconjunctival 
space. Post-operative PS-OCT has characterized 
intra-bleb fibrosis and associated complications 
to benefit clinical management after trabeculec-
tomy.87,88 Improvements in OCT speed and reso-
lution have benefited PS-OCT by enabling 
quantitative measurement of corneal layer thick-
nesses and enhanced visualization of Bowman’s 
membrane and the sub-basal nerve plexus.89–92

Posterior segment. PS-OCT in the posterior seg-
ment has traditionally measured retinal nerve fiber 
layer (RNFL) birefringence and thickness.81,93–95 
Similar to the cornea, bundles of parallel cylindri-
cal axons in the RNFL exhibit high birefringence, 
and decreases in RNFL birefringence can potentially 
be used as a surrogate measure for ganglion cell 

and axonal atrophy in glaucoma.96 Similar changes 
in phase retardation and birefringence resulting 
from RNFL thinning have been observed in dia-
betic eyes (Figure 2).97,98 PS-OCT characteriza-
tion of the macula has shown that the retinal 
pigment epithelium (RPE) is highly depolarizing, 
scrambling the polarization of backscattered light 
from the RPE and choroid.99,100 Studies have 
quantified the degree of polarization uniformity 
(DOPU) from PS-OCT images and used it to aid 
RPE segmentation and thickness mapping, which 
can benefit quantitative monitoring of drusen and 
geographic atrophy in AMD.71,101–105 PS-OCT has 
also been used to detect and segment subretinal 
fibrosis, which is common in neovascular AMD 
and difficult to differentiate from other hyperre-
flective tissues.106,107

Clinical utility and challenges. The majority of PS-
OCT research has focused on quantifying changes 
in tissue properties resulting from ophthalmic dis-
eases. Polarization-sensitive OCTA has also been 
demonstrated for ophthalmic imaging using Jones 
matrix-based CDV.21 The use of polarization-
based angiography has advantages over conven-
tional OCTA by improving vessel contrast and 
increasing image signal; four OCTA images (two 
incident and two detected polarization states) can 
be generated and averaged for increased SNR.108 
Despite the utility of PS-OCT in differentiating 
birefringent and depolarizing tissues in the eye, 
there are no commercially available PS-OCT sys-
tems routinely used in clinical ophthalmology. 
Challenges in clinical translation include increased 
cost and system complexity over conventional 
OCT systems. Many PS-OCT systems use free-
space optics, which are sensitive to misalign-
ment,109 whereas fiber-based PS-OCT systems are 
more robust but are limited by birefringence and 
polarization mode dispersion of fiber-optic com-
ponents.110 One limitation of using depolarization 
maps for RPE segmentation is distinguishing it 
from the choroidal stroma. However, by combin-
ing PS-OCT with OCTA, the vessel-rich choroidal 
stroma can be separated from the vessel-free RPE 
and can be used to evaluate damage in the RPE 
layer due to serous RPE detachments.111,112

OCT elastography
OCE uses OCT imaging to detect micron-scale 
displacements caused by an external mechanical 
stimulus to extract biomechanical properties of 
tissue.113,114 PhD-OCT is an alternate method for 
measuring tissue biomechanics that uses the 
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decorrelation of scattered light from Brownian 
motion as a surrogate measure of tissue viscos-
ity.115–117 Initial OCE demonstrations used OCT 
speckle tracking of axial displacements from a 
static loading force to quantify tissue strain and 
derived Young’s modulus from the linear stress–
strain relationship.118,119 OCE can also be used to 
measure Young’s and shear moduli by combining 
dynamic loading forces, such as steady-state har-
monic loading and transient excitation sources, 
with advanced wave propagation models.120 
These dynamic OCE methods have been used to 
non-invasively measure biomechanical properties 
of the human cornea in vivo, showing the poten-
tial for clinical translation and utility.121

Cornea. Corneal elasticity can be a useful direct 
measure for diagnosing keratoconus and corneal 
ectasia and monitoring corneal collagen cross-
linking (CXL) treatment.122–125 The corneal elas-
tic modulus changes with increased intraocular 
pressure (IOP) and can be used as an indirect 
measure for diagnosing glaucoma.126 OCE has 
shown increased corneal stiffness in in vivo rabbit 
eyes after CXL treatments with an air puff as the 
external mechanical stimulus (Figure 3(a) and 
(b)).127–129 OCE studies using air-coupled ultra-
sound excitation, which is non-contact and more 
applicable for clinical translation, have success-
fully shown quantitative 4-dimensional (4D) 
visualization of corneal stiffness.130–133 More 

Figure 2. Comparison of (a), (d), (g) RNFL thickness, (b), (e), (h) phase retardation, and (c), (f), (i) birefringence 
between healthy, diabetic, and glaucoma subjects. Reduced retardance is seen in both diabetic and glaucoma 
subjects compared with healthy subjects. In addition, there is significantly reduced birefringence in diabetic 
patients.
Source: Reprinted with permission from Desissaire and colleagues.98

RNFL, retinal nerve fiber layer.

http://journals.sagepub.com/home/oed


Therapeutic Advances in Ophthalmology 13

6 journals.sagepub.com/home/oed

recent OCE demonstrations have used acoustic 
radiation force (ARF) loading with an ultrasound 
transducer, which has a faster response time as 
compared with air puff loading.134 Additional 
OCE stimuli include passive mechanical pertur-
bations caused by the heartbeat135 or using a 
pulsed laser to induce mechanical waves,136 but 
these methods have yet to be demonstrated  
in vivo. PhD-OCT has successfully identified 
changes in corneal biomechanics after CXL  
in vivo without the need for external stimuli.117

Lens. OCE can offer a quantitative, non-invasive 
method for early detection and monitoring of 
changes in lens biomechanics associated with cat-
aracts and aging.137 ARF-OCE has shown higher 
Young’s modulus in cataract lenses compared 
with healthy lenses in ex vivo rabbit eyes and sig-
nificant increases in lens stiffness with aging  
in vivo.138 OCE imaging has also been combined 
with Brillouin microscopy, which measures mate-
rial stiffness using differences in Brillouin light 
scattering, to show a correlation between Young’s 
and Brillouin moduli and provide a more com-
plete mapping of lens stiffness in ex vivo porcine 
eyes.139 Finally, OCE has also been used to 

Figure 3. OCE imaging of the (a), (b), cornea and (c), (d) retina. (a) 
Structural OCT and (b) OCE elastogram cross sections of in vivo rabbit 
cornea pre-, post-, and 1 week after CXL treatment (top to bottom, 
respectively). (c) Structural OCT and (d) OCE elastogram cross sections of 
ex vivo porcine retina showing differences in retinal layer stiffness.
Source. Reprinted with permission from Zhou and colleagues127 and Qu and 
colleagues.142

CXL, corneal collagen crosslinking; OCE, optical coherence elastography;  
OCT, optical coherence tomography.

investigate changes in lens elasticity as a function 
of IOP.140

Retina. Cellular changes in AMD can alter the 
elasticity of retinal tissue, making OCE a poten-
tial technology for early disease diagnosis.141 
ARF-OCE studies have shown distinct elasticity 
differences in retinal layers in in vivo rabbit and  
ex vivo porcine models (Figure 3(c) and (d)).142,143 
Decreased retinal stiffness observed in in vivo 
rabbit AMD eyes was hypothesized to result from 
lymphocyte infiltration, but initial results did not 
show statistical significance.143 OCE studies have 
also shown that increased optic nerve head 
Young’s modulus and posterior scleral stiffness 
are correlated with increasing IOP, which sug-
gests that OCE can also be used to monitor pro-
gression of glaucoma.144,145

Clinical utility and challenges. Both OCE and 
PhD-OCT technologies are in the early stages of 
clinical translation, and current research is 
focused on improving imaging speed and phase 
stability.146 Repeated images are used to compute 
differential phase in OCE, but this increases total 
imaging time and is susceptible to motion arti-
facts. Recent advances in swept-source OCT 
technology may overcome these limitations by 
enabling OCE imaging at megahertz rates.147 
Currently, there are no commercial OCE systems 
available for clinical use. The broad clinical adop-
tion of OCT in ophthalmology may benefit clini-
cal translation of multimodal OCE technologies 
pending successful identification of optimal 
mechanical stimulus mechanisms and clinical 
applications.

Molecular contrast methods
OCT sensitivity to changes in optical pathlength 
can be increased by leveraging phase informa-
tion and used to probe additional mechanisms of 
contrast. As an example, light absorption by 
endogenous or exogenous contrast agents 
induces local temperature gradients and index of 
refraction changes. PT-OCT uses these index 
changes as a complementary contrast mechanism 
for detecting functional cellular and subcellular 
changes that could enable earlier disease detec-
tion.148 PT-OCT has been demonstrated using 
exogenous gold nanoparticles and endogenous 
melanin in the RPE and choroid (Figure 4(a) and 
(b)) in in vivo and ex vivo animal models.148–151 
Most recently, PT-OCT using indocyanine 
green (ICG) was demonstrated as a method for 
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distinguishing the inner limiting membrane, 
which is of interest for macular surgery applica-
tions.152 PP-OCT is another technique for add-
ing molecular contrast to OCT imaging. 
PP-OCT excites ground-state electrons using a 
modulated excitation (pump) and detects the 
transient absorption at a lower energy wave-
length (probe) to identify specific molecular 
compounds such as methylene blue, hemo-
globin, or melanin.153,154 PP-OCT imaging in  
ex vivo porcine iris has demonstrated sensitivity 
to melanin, which may be a useful diagnostic tool 
for ocular melanoma (Figure 4(c) and (d)).155

Clinical utility and challenges. PT-OCT and PP-
OCT are promising multimodal techniques that 
supplement OCT contrast, but neither have been 
demonstrated in in vivo human applications nor 
have commercialized clinical systems. Tissue 
heating and high excitation power levels are two 
safety concerns that need to be addressed. Acqui-
sition speed is an additional limiting factor 
because of the need to critically sample the mod-
ulation frequency of the pulsed light source and 
slow heating response of absorbers.152

OCT-SLO
The inherent orthogonal priority acquisition 
orientations between OCT and SLO provide 
complementary depth-resolved and en face 
information that makes combined OCT-SLO 
an ideal multimodality technology. These sys-
tems can leverage fundus features for motion-
tracking and volumetric imaging of anatomic 
structures and pathologies.

Tracking SLO
SLO has been used extensively for aiming and 
motion compensation of ophthalmic OCT.156–159 
Tracking SLO has been particularly critical for 
OCTA, which requires dense sampling over small 
FOVs and is, therefore, difficult to target ROIs 
and highly susceptible to saccadic and bulk 
motion artifacts.62 Many current generation com-
bined OCT-SLO systems use shared optics and 
scanners to relay light into the eye to reduce over-
all system complexity and provide pixel-level co-
registration between corresponding OCT and 
SLO images.160–163 SLO motion-tracking preci-
sion is related to both spatial and temporal reso-
lution, and development of line-scanning SLO 
(LSLO) has overcome frame-rate limitations of 
conventional point-scanning SLO systems at the 
expense of full confocality, allowing imaging of 
fast dynamics up to several hundred frames per 
second.163–166

Handheld OCT-SLO
Multimodal OCT-SLO systems have tradition-
ally been integrated with slit lamps that required 
patients to sit upright during imaging. The devel-
opment of compact OCT-SLO handheld probes 
has benefited ophthalmic disease diagnostics in 
pediatric and bedridden patients.27,167 When 
combined with a white-light supercontinuum 
light source, additional spectroscopic information 
can be extracted, including color SLO images 
that can be used to detect early signs of fundus 
discoloration in AMD.168 Novel extended source 
LSLO illumination and detection schemes, such 
as those using spectral encoding, have replaced 

Figure 4. Molecular contrast imaging. In vivo PT-OCT comparing (a) pigmented to (b) albino mouse retina with 
computed melanin concentration (green) overlaid on OCT cross sections. PP-OCT image of ex vivo porcine iris 
showing the (c) relative concentration of melanin and (d) corresponding OCT cross section.
Source: Reprinted with permission from Lapierre-Landry and colleagues150 and Jacob and colleagues.155

OCT, optical coherence tomography; PP-OCT, pump-probe OCT; PT-OCT, photothermal OCT.

http://journals.sagepub.com/home/oed


Therapeutic Advances in Ophthalmology 13

8 journals.sagepub.com/home/oed

complex free-space relays from source to detector 
with fiber optics, and handheld prototypes using 
these technologies have recently been used for 
motion-corrected in vivo ophthalmic OCT and 
OCTA.30,169,170

Adaptive optics
Lateral resolution in ophthalmic imaging is fun-
damentally limited by wavefront aberrations of 
the eye. AO overcomes this limitation by actively 
compensating for these aberrations using a 
deformable mirror, enabling cellular-resolution 
in vivo imaging.5,171 Combined AO-SLO and 
AO-OCT systems are capable of imaging indi-
vidual photoreceptors with up to two to three 
times higher transverse resolution than conven-
tional SLO and OCT.172–175 When combined 
with hardware- and software-based retinal-track-
ing technologies,176 AO systems can be used to 
quantify retinal photoreceptor distributions 
across large FOVs and study cellular changes 
associated with retinal disease progression 
(Figure 5(a)–(f)).103,177–207 In addition to struc-
tural imaging, AO systems have also demon-
strated benefits for functional imaging, including 
visualizing perfusion in the retinal microvascula-
ture and phase dynamics from photoreceptor 
photostimulation.208–210

Fluorescence SLO
The combination of SLO and fluorescence con-
trast is uniquely suited for high-specificity func-
tional imaging in clinical ophthalmology and 
basic science. Traditional clinical applications 
have included fundus autofluorescence to detect 
endogenous fluorophores and exogenous fluores-
cein or ICG to visualize retinal vascular perfusion 
and leakage.211 In animal models, combined 
OCT and fluorescence SLO systems enabled lon-
gitudinal imaging of retinal structure and charac-
terization of function and cell populations in 
transgenic models expressing fluorescent proteins 
in serum albumin, microglia, and photorecep-
tors.212,213 Animal models also provide an oppor-
tunity to study the effects of retinal injury, 
including laser-induced choroidal neovasculariza-
tion, retinal vascular occlusion, laser lesioning, 
and image-guided intraocular drug-delivery.214–217 
One major limitation of fluorescence SLO is its 
limited depth-sectioning and volumetric imaging 
capability. Oblique SLO (oSLO) addresses this 
limitation by using obliquely oriented excitation 
and detection paths to acquire fluorescence cross 

sections and volumes (Figure 5(g)–(l)).218 
Fluorescence SLO can also be combined with AO 
to improve depth-sectioning and lateral resolu-
tion to enhance visualization of individual photo-
receptors, ganglion cells, and RPE cells in animal 
models.219–224

Clinical utility and challenges
Combined OCT-SLO technology has been inte-
grated into commercial systems, including the 
Heidelberg Spectralis, Optos Silverstone, and 
Zeiss PLEX Elite, for active motion-tracking and 
high-resolution en face and cross-sectional imag-
ing of the fundus. While several AO systems, such 
as the Imagine Eyes rtx1 and Physical Sciences 
compact AO retinal imager (CAORI), are com-
mercially available, broad adoption of the tech-
nology is limited because of system complexity, 
the need for long imaging and post-processing 
times, and lack of standardized processing and 
analysis algorithms.225 Sensorless AO systems 
have been demonstrated in research prototypes 
and eliminate the need for physical wavefront 
sensors, which significantly reduces system com-
plexity.226–230 These technologies have been 
recently integrated into handheld probes for AO 
imaging in supine and pediatric patients, which 
may further motivate broad clinical adop-
tion.231,232 Fluorescence angiography and fun-
dus autofluorescence are well established in 
clinical ophthalmology. More recently, autoflu-
orescence lifetimes have been used as a surro-
gate for retinal metabolism that provides 
additional contrast for identifying ophthalmic 
and systemic diseases.233–235

Multimodal surgical visualization
Integration of OCT with ophthalmic surgical 
microscopy can provide additional high-resolu-
tion depth-resolved volumetric visualization of 
tissue microstructures that benefits surgical deci-
sion-making.236 Initial demonstrations of intraop-
erative OCT (iOCT) were performed with 
handheld probes during surgery,237–239 and the 
technology has since advanced to microscope-
integrated systems that allow for OCT imaging 
concurrent with ophthalmic surgery.240,241 Recent 
iOCT research has focused on improving speed 
and ergonomics, such as automated instrument-
tracking and enhanced visualization. The combi-
nation of high-speed swept-source OCT systems 
with real-time volumetric rendering methods has 
allowed for 4D visualization of surgical dynamics 
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Figure 5. In vivo human (a)–(c) AO-OCT and (d)–(f) AO-SLO showing photoreceptors at (a), (d) the fovea, (b), (e) 5° TR, and (c), (f) 10° 
TR. Scale bar = 50 µm. (g)–(i) oSLO fluorescence projections and (j)–(l) corresponding OCTA projections showing murine retinal 
perfusion. Scale bar = 200 µm.
Source: Reprinted with permission from Wells-Gray and colleagues201 and Zhang and colleagues.218

AO-OCT, adaptive optics OCT; AO-SLO, adaptive optics SLO; OCTA, optical coherence tomographic angiography; oSLO, oblique scanning laser 
ophthalmoscopy; TR, temporal retina.

(Figure 6(b)).242–244 OCTA imaging has also been 
explored as a method for integrating vascular 
contrast to further enhance intraoperative 
visualization.245,246

Clinical utility and challenges
Multiple iOCT systems are commercially availa-
ble, including the Haag-Streit Surgical iOCT, 
Zeiss RESCAN 700, and Leica EnFocus.247 
Clinical studies have shown that iOCT can benefit 
surgical decision-making for donor graft position-
ing during corneal transplant (Figure 6(a)) and 
during membrane peeling and retinal detachment 
repair procedures.248,249 One major challenge in 
iOCT imaging has been shadowing from optically 
opaque surgical instruments. However, semi-
transparent, OCT-compatible surgical instru-
ments have been explored to overcome these 
limitations.250 While preliminary studies have 
shown the benefits of iOCT for providing real-
time surgical feedback, additional improvements 
in the technology are being developed, and studies 
demonstrating clinical utility are ongoing.

Photoacoustic imaging
Photoacoustic imaging detects acoustic waves 
generated by thermoelastic expansion from the 
absorption of pulsed laser illumination and recon-
structs a volume of absorbers.251,252 In ophthal-
mology, PAM primarily visualizes blood 
absorption and has advantages over FA and 
ICGA by not requiring exogenous contrast and 
OCTA by being sensitive to vascular leakage. 
PAM also has higher depth penetration compared 
with OCT and can achieve imaging depths 
exceeding 10 mm.253 PAM demonstrations in 
animal models include visualization of deep reti-
nal and choroidal vasculature, subretinal injec-
tions, and neovascularization.254 Multimodal 
PAM and OCT imaging provides complementary 
structural and vascular contrast and has been 
used to visualize neovascularization in animal 
models of DR and wet-AMD.255–259 Combined 
PAM and OCT has also shown advantages for 
visualizing vascular and structural changes associ-
ated with retinal vein occlusion (Figure 7) and 
choroidal vascular occlusion over FA.260,261 
Finally, PAM and OCT can be used to quantify 
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Figure 6. iOCT visualization during (a) anterior and (b) posterior segment surgery. (a) iOCT showing graft placement during corneal 
transplant showing a persistent fluid interface (arrowhead). (b) 4D iOCT imaging of forces peeling epiretinal membrane.
Source: Reprinted with permission from Carrasco-Zevallos and colleagues243 and Ehlers and colleagues.249

4D, 4-dimensional; iOCT, intraoperative optical coherence tomography.

Figure 7. In vivo PAM showing neovascularization in rabbit retina. (a) 
Color fundus, (b) FA, (c) cross-sectional OCT, (d) PAM maximum amplitude 
projection, and (e) PAM 3D reconstruction of neovascularization (arrows).
Source: Reprinted with permission from Nguyen and colleagues.260

FA, fluorescein angiography; OCT, optical coherence tomography; PAM, photoacoustic 
microscopy; 3D, 3-dimensional.

retinal oxygen metabolism rates by combining 
blood flow measurements from Doppler OCT 
with hemoglobin oxygen saturation measured 
using multiwavelength PAM that may benefit 
early diagnosis of glaucoma, DR, and AMD.39,262

Clinical utility and challenges
Although there are commercial PAM systems 
such as the Vevo LAZR-X for cardiac and neuro-
imaging, PAM imaging systems for ophthalmic 
applications are not currently available.263 Barriers 
to clinical translation of PAM include system 
complexity, slow imaging speeds, and the need 
for a contact-PAM transducer. Multimodal PAM 
and OCT requires dedicated laser sources for 
PAM excitation and OCT imaging, a transducer 
for PAM detection, and an OCT engine. Methods 
to share a laser source between PAM and OCT to 
reduce system complexity have been proposed. 
However, hemoglobin absorption is low in the 
near-infrared, which limits PAM sensitivity at 
OCT wavelengths.264

Conclusion
Multimodal ophthalmic imaging spans multiple 
optical and acoustic technologies. Many of these 
methods, such as OCTA, PS-OCT, OCE, PhD-
OCT, PT-OCT, and PP-OCT, aim to add addi-
tional contrast to conventional OCT images. The 
complementary en face and cross-sectional infor-
mation from combined SLO and OCT systems 
has benefited motion-tracking and aiming in clin-
ical ophthalmology, and the addition of AO and 
fluorescence methods has further improved reso-
lution and imaging specificity. Integration of 
OCT with surgical microscopy has benefited real-
time surgical feedback and surgical decision-mak-
ing. Finally, multimodal photoacoustic imaging 
systems enable quantitative imaging of blood per-
fusion and in vivo hemodynamics. Overall, multi-
modal ophthalmic imaging developments have 
led to improvements in clinical imaging and novel 
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basic science research with new possibilities for 
clinical translation and improvements in disease 
diagnosis and therapeutic monitoring.
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