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Abstract: The complex process of sexual differentiation is known to be influenced by biological and
environmental determinants. The present review has the aim of summarizing the most relevant
studies on the biological basis of sexual development, and in particular, it focuses on the impact
of sex hormones and genetic background on the development of sexual differentiation and gender
identity. The authors conducted a search of published studies on Medline (from January 1948 to
December 2019). The evidence suggests that the sexual dimorphic brain could be the anatomical
substrate of psychosexual development, on which gonadal hormones may have a shaping role
during prenatal and pubertal periods. Additionally, according to several heritability studies,
genetic components may have a role, but a promising candidate gene has not been identified.
Even though growing evidence underlines the primary role of biological factors on psychosexual
development, further studies are necessary to better explain their complex interactions.
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1. Introduction

The process of sexual differentiation refers to the development of differences between males and
females, which are widely observed in nature and also concern humans [1–4]. One of the most sexually
dimorphic human traits is gender identity [5], defined as the inner sense of self as a female, a male or
as an alternative gender, different from the male and female ones [6]. In cisgender individuals, gender
identity develops in line with the assigned gender at birth and is stable throughout life [7]. On the
other hand, transgender individuals may persistently or transiently identify with a different gender
different from the one assigned at birth. According to the Diagnostic and Statistical Manual of Mental
Disorders 5th version (DSM 5) [6], we refer to Gender Dysphoria when the incongruence between
the experienced/expressed gender and the assigned one leads to clinically significant psychological
distress and impairment in the main areas of functioning [6]. In some cases, this distress may lead to
the desire for a social and/or somatic transition through a gender affirming hormonal treatment and
surgery [6,8–10].

Considering this complex frame and also its clinical implications, large attention has been
dedicated to understand the origins of the sexual differentiation process. There is a great debate in
literature on the factors related to nature or nurture involved in the sexual differentiation of the brain.
However, it is well established that biology plays a major role. In fact, in the last few years research
has focused mainly on neuroanatomy and sexual dimorphism of the brain, exploring the influence
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and shaping role of several genes and sex hormones [4]. In particular, the sexual dimorphic brain
is considered the anatomical substrate of psychosexual development, on which genes and gonadal
hormones may have a shaping effect [11]. Growing evidence shows that prenatal and pubertal sex
hormones permanently affect human behaviour and heritability studies have demonstrated a role of
genetic components.

Indeed, cismen and ciswomen present anatomical differences in the total brain volume, as well as
in several sex-dimorphic structures. In particular, the total brain volume is bigger in cismen, and in
transgender men similar volumes to the assigned gender at birth were found [12–15]. However, the
total intracranial volume in transwomen resulted to be in between male and female controls [12].
Furthermore, sex differences have been observed in cortical thickness that is higher in ciswomen
compared to cismen in several regions [16,17]. Studies conducted on transgender individuals reported
signs of feminisation in cortical thickness of transwomen, while no sign of masculinisation was found
in transmen [18,19].

Another sexual dimorphic area seems to be represented by the amygdala and the hippocampus.
Indeed, the amygdala is larger in cismen and with a higher density of androgen than oestrogen receptors,
whereas portions of the hippocampus are larger in women, with a higher density of oestrogen than
androgen receptors (AR) [20,21].

These differences raise the question whether cross-gender identifications reflect the brain anatomy
and/or function. For this reason, a growing literature is focusing, with both post-mortem and in vivo
neuroimaging studies, on structural and functional differences between transgender and cisgender
individuals in several areas of the brain, especially in those that show sexual dimorphism.

Regarding grey matter, the main sexually dimorphic areas associated with the development of
gender identity are represented by the central subdivision of the bed nucleus of the stria terminalis
(BNST) and the third interstitial nucleus of the anterior hypothalamus (INAH3). Post-mortem studies
reported that the BNST is smaller and with low somatostatin neurons in ciswomen and transwomen
compared with cismen [22]. Regarding the INAH-3, which is involved in sexual and maternal
behaviours and in the secretion of gonadotropins [23], one study reported this area to be smaller in
transwomen than in cismen and to have less neurons [24]. However, the role of BNST and INAH-3 in
the determination of sexual differentiation remains unclear because of the small size of the samples
and because part of the subjects enrolled had received hormonal treatment previously. Additionally,
the majority of individuals with gender dysphoria report cross gender identity since childhood, while
sex differences in BNST do not appear before puberty [25].

Sex differences in the brain also emerged when focusing on white matter characteristics [13,26–28].
Indeed, white matter microstructure was evaluated via diffusion tensor imaging (DTI) that measures
the functional anisotropy (FA) of white matter. This presents differently in men and women, with men
usually having a greater FA value than women [13,26]. Studies conducted on transgender individuals
described patterns of white matter microstructure to be more in line with the perceived gender (rather
than the biological sex) [13,26–28]. However, to date, these limited data do not allow to provide a
reliable conclusion.

Furthermore, since cognitive abilities are notably sexually specific, research has focused on
neurofunctional differences assessed trough task-based functional imaging studies. In fact, it is well
known that women have better performances in verbal fluency tasks, while men in the visuospatial ones.
Considering that, similar studies conducted on transgender individuals may add information about the
hypothesis of the possible organisational-activational effect of hormones on the brain [29–34]. In a study
by Schoning et al. [30], transwomen differed from cismen in brain activation pattern during a mental
rotation task. Contrastingly, Soleman et al. [31] found no differences between transgender adolescents
and a control group in terms of neuronal activation during verbal fluency tasks. Another study by
Junger et al. [32] reported that transwomen showed different neural activation patterns when listening
to male versus female voices, showing an intermediate position between the two control groups.
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In conclusion, the existence of brain phenotypes in line with the idea of a brain sexual differentiation
seems to be confirmed by the latter reported studies, including both cisgender and transgender
individuals. However, the relationship between gender behavioural differences and brain dimorphic
areas is still not clear, since such differences may be the result not only of anatomical features but also
life experiences [34–37]. Furthermore, the popular explanation that there is a female and a male brain
on the base of gender behavioural differences is not supported by a strong empirical background [11],
as, for example, men and women share more similarities than differences [38–43]. Furthermore, a great
variability in behavioural and psychological aspects is shown between genders [44]. Moreover, the
size of the brain differences is usually small [45–47].

The Shaping Effect of Sex Hormones and Involved Genes on Brain Sex Differentiation

Human sexual development is a dynamic process regulated and influenced by both genetic and
endocrine factors [48,49]. In order to explore the role of gonadal hormone secretion during the prenatal
period in sexual differentiation of the brain, several studies on gender identity and sexual orientation
have been conducted [11,50,51]. In fact, sex hormones might play organizational and activational
effects on the brain and behaviour [51]. Some studies reported sexual and behavioural shifts in female
rodents after the administration of testosterone during a critical period for foetal brain organization [52].
According to this theory, while the differentiation of sexual organs happens in the first two months of
pregnancy, brain sexual differentiation follows in the last trimester of the pregnancy through permanent
organizing effects induced by sex hormones on the developing brain [53,54]. These structures will
be activated by sex hormones during puberty. In line with this hypothesis, some authors explain
the origin of gender dysphoria as the result of the genital and brain differentiation not being in line.
This explanation does not find a complete consent and a more complex interaction should be taken
into account. For example, Raznahan et al. [55] speculated that gonadal hormones may maintain or
increase basic neuroanatomical differences between sexes in puberty and maybe later on.

Indeed, the impact of prenatal hormones on gender identity development is still not clear [56].
The effect of prenatal androgen exposition has been explored with studies conducted on typical
population by using indirect measures, such as finger ratio (i.e., the length of the index finger to the
ring finger length [57]), which is higher in females since intrauterine life [58–64]. Finger ratio might
be considered as a marker of prenatal androgen levels, with a lower 2D:4D levels indicating high
prenatal testosterone and low oestrogen, and a higher 2D:4D low prenatal testosterone and high
oestrogens [65]. However, research on the relationship between finger ratio and gender identity has
produced inconsistent results [66–68]. Another indirect indicator of prenatal hormones exposure is
otoacoustic emission (OAEs)—the weak sound produced by the auditory transduction apparatus of the
inner ear. In fact, OAEs present differently in males and female, being weaker in newborn males than
in newborn females. Furthermore, these differences persist throughout the lifespan [69]. Transwomen
displayed a more female-typical OAE, confirming the hypothesis that they have been exposed to lower
levels of androgens during early development compared to control boys [70]. The role of sex hormone
exposure in utero is underlined by the observation that prenatal exposure to anticonvulsant—which
may interfere with sex hormones metabolism—was associated with the development of gender
dysphoria [71].

Interesting observations come from studies conducted on intersex individuals. This sample
represents a unique model to assess if and how sex hormones may interfere with the establishment
of sex differences with a particular regard to sexual orientation and gender identity [72–89].
Comparing women with congenital adrenal hyperplasia (CAH) to female controls, more cross-gender
typical role behaviour and patterns during childhood [72–76] with a preference for typically male
toys [72,74,77–81] and playmates [81,88] was reported. Additionally, other studies showed a delay
of sexual experiences, lower maternalism and higher prevalence of bi- or homosexual orientation in
women with CAH compared to the general female population [80,82]. Concerning gender identity, a few
cases of gender dysphoria have been described in this population, leading to the decision of a female
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to male gender reassignment [83–87]. Although there is strong evidence (40.9%) of more typical male
behaviours [73], the majority (95%) of 46,XX CAH individuals were raised as females and developed a
female gender identity. However, the reported rate of gender dysphoria and/or male identification in
CAH females is 5% [88], exceeding gender dysphoria in the general population (5% vs. 0.002–0.003% in
CAH vs. female general population, respectively [6]). In these studies, gender identity was correlated
with neither the severity of the CAH condition nor the degree of genital virilization. Subsequently
genital appearance at birth does not represent an adequate predictor for gender identity outcomes in
these subjects [89]. Regarding the role of the androgen receptor pathway in the development of gender
identity, interesting evidence may come from 46, XY individuals with Complete Androgen Insensitivity
Syndrome (CAIS). In fact, in CAIS patients, with complete lacking function of the androgen receptor,
female gender identity is usually reported indicating that masculinization of gender identity depends
of androgen exposure during foetal period [90]. However, two cases of male gender identity in CAIS
individuals have been reported in literature [91–93], questioning the role of androgen receptor in
brain masculinization. Observations from other intersex conditions—such as 5-alpha-reductase-2
deficiency—lead to assume a potential role of pubertal hormones in the development of gender identity.
In fact, a study reported a high rate (56–63%) of gender role change from female to male during
adolescence and adulthood [94]. However, data on the relationship between the development of a
male gender identity and circulating androgens before, during and after gender role change were
lacking in the latter study. In addition, masculinization of the brain may occur in 46,XY individuals
with cloacal exstrophy assigned to the female sex at birth who underwent orchiectomy in infancy [95].
For this reason, even if other factors such as cultural and environmental background may influence
the development of gender identity, evidence from individuals with intersex conditions confirms
the critical role of prenatal androgen exposure in sex differentiation of the brain. However, to date,
interactions between biological and environmental factors remain still largely unknown.

Additional information on the role played by sex hormones in determining sexually dimorphic
brain characteristics may derive from the impact of hormonal treatment in transgender individuals.
Literature on this field remains limited, especially with regards to studies with a longitudinal design.

In transgender individuals, the administration of gender-affirming hormonal treatment may
influence anatomical and functional brain characteristics, considering the high density of oestrogen
and androgen receptors here expressed [96–98]. Indeed, in transwomen oestrogen plus anti-androgen
treatment resulted in reducing brain volume and increasing ventricles dimensions [99] and led to a
general decrease in cortical thickness [100]. On the other hand, testosterone treatment in transmen
determined an increase in total brain and hypothalamus volumes [99], as well as in cortical thickness
and cortical-subcortical volumes, specifically the right thalamus [100]. Aside from those changes
in grey matter, Rametti et al. [27] described in transmen an increase of FA values in two white
matter fascicles a few months after the start of testosterone treatment. The authors hypothesised that
testosterone treatment may induce the latter changes through its anabolic and anticatabolic action.
In transwomen, the suppression of testosterone levels due to antiandrogens may cause a reduction of
grey matter, leading to a decrease in cortical thickness and expansion of ventricles in addition to a
putative direct effect of oestrogens [100]. Although the limited number of longitudinal studies does not
allow to draw firm conclusions, this evidence again highlights the plasticity of the brain in response to
sex hormones even in adulthood.

Sexual differentiation of the brain and development of gender identity seem to also be affected
by genetic factors [2]. Twin studies represent a good model to assess the heritability of a certain
trait and provide an important contribution in the definition of genes’ role in the development of
gender identity. Indeed, if a trait is more concordant in monozygotic twins compared to dizygotic
ones, this provides good evidence that the trait is heritable. In a retrospective study, Bailey et al. [101]
reported a heritability pattern for gender non-conformity during childhood in a large sample of adult
twins. In addition, Burri et al. [102] showed a small heritability for adult gender identity, analysing a
sample of 4426 British female twins by using a non-validated scale. Focusing on a gender dysphoria
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diagnosis, Coolidge et al. [103] identified a strong heritable component (62% of the variance), even if in
this study gender dysphoria symptoms were reported by mothers, possibly interfering with the results.

In the literature, we can also find some cases of more than one transgender within the same
family [104], as well as few twin cases [105–108]. In support of a role for genetic factors in gender
dysphoria development, a review of case studies of twins showed a higher concordance for gender
dysphoria in monozygotic twins than dizygotic ones [109]. However, results from these studies may
be affected by the role of environmental influences [2].

Guided by the role of sex hormones in brain sexual differentiation—as previously reported—several
candidate genes have been studied. In particular, research has focused on polymorphisms in
steroidogenic enzymes or in steroid receptors, which may lead to different biological activity.

One of the candidate genes is represented by the CYP17 gene, which encodes the 17-alpha
hydroxylase enzyme. This enzyme converts 17-hydroxypregnenolone to dehydroepiandrosterone and
17-hydroxyprogesterone to androstenedione. In two studies a significant association between transmen
and a particular CYP17 single nucleotide polymorphism was found [110,111]. This polymorphism
is associated with elevated serum and plasma levels of oestradiol, progesterone and testosterone.
The latter finding is in line with the hypothesis that increased tissue availability of testosterone may
interfere with early brain development, fostering the development of a male gender identity.

Furthermore, research focused on the androgen receptor gene as a potential candidate gene
implicated in the development of gender identity and brain sexual dimorphism. Indeed, the complete
loss of function of this gene leads to a female gender identity. This gene contains a
longer (CAG)nCAA-repeat polymorphism which confers a reduced functioning of the receptor,
limiting biological activity of testosterone. Accordingly, some studies demonstrated an increased
number of trinucleotide CAG repeats in the androgen receptor gene in transwomen [112,113],
while others found contrasting results [114,115].

Studies on polymorphism of the oestrogen receptor beta (ERb) gene also led to conflicting evidence.
Henningson et al. [113] found a significant association between transwomen and a dinucleotide CA
polymorphism in the ERb. Furthermore, the contribution of this polymorphism was apparently
much stronger for subjects carrying relatively few CAG repeats in the androgen receptor [113].
However, this result was not replicated in other studies [112,114]. Fernández et al. [114] found a repeat
number in ERb gene significantly higher in transmen compared to controls. This result highlights the
possibility of a correlation between the size of the polymorphism and receptor functioning, with a
higher number of repeats implying a greater transcription activation. In natal females during prenatal
period this may lead to an increased defeminization of the brain [111].

More recently, Foreman et al. [116] conducted a study on a large sample of transwomen and control
males, evaluating several candidate genes. The authors found a significant association between gender
dysphoria and oestrogen receptor alpha (ERα), SRD5A2 and STS alleles, as well as ERα and SULT2A1
genotypes. These genetic variants could be functional, influencing oestrogen signalling. In fact,
in SULT2A1, the genotype associated with gender dysphoria leads to elevated levels of sex hormone
binding globulin, inducing a decreased effect of circulating hormones during intrauterine period.
In the same way, the SRD5A2 allele evaluated in this study may lead to a reduction of DHT levels, thus
determining a reduction of this potent androgen among transwomen. The authors identified several
allele combinations overrepresented in transwomen, mostly involving AR, which may lead to long
CAG repeats of the AR.

In conclusion, the evidence from these studies support the idea that brain sexual differentiation
and the development of gender identity have a polygenic basis, involving interactions among multiple
genes and polymorphism. However, results are in most cases conflicting and the number of genetic
studies remains limited.
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2. Discussion

The aforementioned studies, although very heterogeneous, provide data supporting the biological
bases of the psychosexual development. In particular, post-mortem and in vivo neuroimaging studies
strongly suggest the existence of a sexual dimorphic brain, i.e., slight differences in brain anatomy
and functioning between the two sexes. It is less clear how such brain structures become the substrate
of sex differences in cognition and behaviour. This matter has been mainly investigated through the
examination of specific populations, such as subjects with gender incongruence and intersex individuals:
gender identity is one of the most sex-specific human trait, and many studies show how brain sexually
dimorphic structures are often in line with gender identity rather than with sex assigned at birth.
Research on this field has reported a possible organizational-activational role of sex hormones: in fact,
studies on people with intersexual conditions highlight the role of prenatal and pubertal sex hormones
in the determination of gender identity and other sex-specific cognitive traits. This evidence is also
supported by the data from studies on hormonal treatment of transgender persons: indeed, a little
but promising group of longitudinal studies also demonstrated the brain plasticity in response to
cross-sex hormonal treatment in adult life. Anyway, to provide reliable conclusions, more data are
needed. In fact, it is important to note that the size of the brain sex differences is really small, and that
life experiences could have a deep impact on brain development. Additionally, little is known about
the specific biological activity of sex hormones on brain structures: in particular, further studies should
examine the role of androgens and oestrogens brain receptors.

Besides sex hormones, genetic factors are supposed to be the main determinants of brain
sexual differentiation: again, the study on allele variations in transsexual individuals allowed to
identify several candidate genes, mostly involving sex hormones receptors or steroidogenic enzymes,
as possible determinants of sexual differentiation. The results were contrasting, but they may suggest
the hypothesis of a polygenic basis of gender identity; in any case, the complex interaction between
these genetic factors is far from understood, and that should be the matter of further studies.

3. Conclusions

Prenatal and pubertal sex hormones seem to permanently affect human behaviour and, in addition,
heritability studies have demonstrated a role of genetic components. However, a convincing candidate
gene has not been identified. Future studies (i.e., genome wide studies) are needed to better clarify the
complex interaction between genes, anatomy and hormonal influences on psychosexual development.
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DSM 5 Diagnostic and Statistical Manual of Mental Disorders 5th edition
AR Androgen Receptor
BNST Bed Nucleus of the Stria Terminalis
INAH3 Interstitial Nucleus Of The Anterior Hypothalamus
DTI Diffusion Tensor Imaging
FA Functional Anisotropy
OAE Otoacoustic Emission
CAH Congenital Adrenal Hyperplasia
CAIS Complete Androgen Insensitivity Syndrome
ER oestrogen receptor
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