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Abstract: RNA interference is a powerful method for the knockdown of pathologically  relevant 

genes. Small interfering RNAs (siRNAs) have been widely demonstrated as effective biomedical 

genetic-therapy applications for many diseases. Unfortunately, siRNA duplexes are not ideal 

drug-like molecules. Problems hindering their effective application fundamentally lie in their 

delivery, stability, and off-target effects. Delivery systems provide solutions to many of the 

challenges facing siRNA therapeutics. Due to some fatal disadvantages of viral vectors, nonviral 

carriers have been studied extensively. Aside from liposomes, nanoparticles and cationic polymer 

carriers have exhibited improved in vivo stability, better biocompatibility, and efficiency for gene 

silencing with less cellular toxicity. They may represent a promising strategy for siRNA-based 

therapies, especially as nanomaterials. The present review also summarizes other methods of 

siRNA delivery and the side effects of the nanoparticles.

Keywords: small interfering RNA, nonviral vector, gene therapy, delivery system,  nanoparticles, 

biocompatibility

Introduction
Since its discovery in 1998 by Fire et al, RNA interference (RNAi) has represented 

a promising new approach towards the inhibition of gene expression in vitro or 

in vivo.1–3 In 2001, Elbashir et al4 using synthetic small interfering RNA (siRNA), 

showed for the first time that RNAi also occurs in mammalian cell lines, making 

successful development of RNAi possible. Rapid progress in our understanding of 

RNAi-based mechanisms has led to the application of this powerful mechanism in the 

study of gene function, as well as therapeutic applications for disease treatment.

RNAi is mediated through approximately 21–23 nt, double-stranded siRNAs that 

trigger sequence-specific cleavage of mRNA molecules, leading to their subsequent 

degradation.5 These siRNAs are generated intracellularly through the cleavage of 

longer double-stranded RNAs,6,7 or are introduced into the cell as chemically synthe-

sized siRNA molecules.4

However, the naked siRNA molecule, with negative charges, is susceptible to 

serum nucleases, renal clearance, and nontargeted biodistribution, making cellular 

target sites more difficult to access. Thus, it has many limitations, such as poor sta-

bility, short half-life, and low efficiency. The major hurdle faced by current RNAi 

therapeutic strategies is the efficiency of the delivery system. Recently, viral deliv-

ery, such as lentivirus and adenovirus delivery, of DNA-based siRNA constructs for 

RNAi-mediated vascular endothelial growth factor (VEGF) downregulation showed 

anti-neovascularization effects in various animal models.8–10 Viral vectors are highly 
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efficient delivery systems for nucleic acids; however, the 

potential for mutagenicity, limited loading capacities, high 

production costs, and most importantly, safety risks caused 

by their inflammatory and immunogenic effects severely limit 

the applicability of viruses. These concerns have led to the 

pursuit of nonviral alternatives. Thus, the direct, systemic, 

nonviral administration of siRNA molecules that allows 

for therapeutic use is most desirable.11 Nonviral vectors are 

capable of delivering nucleic acids, including genes, siRNA, 

or antisense RNA into cells, thus potentially resulting in their 

functional expression. These vectors are considered an attrac-

tive alternative for virus-based delivery systems.12

Multiple nonviral siRNA delivery systems include 

chemical modification of siRNA, liposomes, nanoparticles 

for siRNA delivery, cell-penetrating peptides, and targeted 

delivery. Positively charged cationic liposomes and poly-

mers, such as polyethyleneimine, are currently the two major 

carriers used to complex with negatively charged siRNA 

for systemic delivery.13 Some of these novel vehicles can 

potentially overcome extracellular and intracellular barriers, 

and facilitate the site-specific delivery, cellular uptake, and 

intracellular target interactions of siRNA.14

The current review discusses the progress in the appli-

cation of nonviral systems for synthetic RNAi molecule 

delivery, with focus on the characteristics and advantageous 

properties of siRNA nanoparticle systems.

Chemical modification of siRNA
The half-life of unmodified naked siRNAs in vivo ranges in 

minutes, but this can be significantly improved to hours by 

chemical modifications.15,16 In addition, chemical modifica-

tion of siRNAs may enhance biological stability without 

adverse effects on the gene-silencing activity. Furthermore, 

modified siRNAs with superior potency reduces the dose 

required for gene silencing,10 and specific chemical modifica-

tions can minimize siRNA side effects, such as the induction 

of recipient immune responses and inherent off-targeting 

effects.17,18 Various chemical modifications to the backbone, 

nucleobases, terminals, and sugars of siRNAs have been 

reported so far, which are mainly focused on increasing its 

stability and enhancing its cellular uptake.

The most widely used siRNA modifications are on 

sugar moieties, which commonly include replacement of 

the 2′-fluoro (2′-F), 2′-O-methyl, 2′-halogen, 2′-amine,19 

and locked nucleic acid (LNA),20 all of which have shown 

significant increase in siRNA serum stability. Layzer et al21 

have demonstrated that siRNA modified with 2′-fluoro (2′-F) 

pyrimidines are more functional in cell culture and have 

greatly increased stability and prolonged half-life (24 hours) 

in human plasma, compared with 2′-OH (1 minute) con-

taining siRNAs. Jackson et al22 showed that 2′-O-methyl 

modifications to specific positions within the siRNA seed 

region reduces the number of off-target transcripts and the 

magnitude of their regulation, without significantly affecting 

the silencing of the intended targets.

The simplest approach to increase nuclease stability 

has been to modify the internucleotide phosphate linkage 

 directly.23 Phosphorothioate (P = S) modifications can be 

placed in the RNA duplex easily at any desired position and 

will enhance the stability of siRNA in nuclease environments. 

Overhoff and Sczakiel stated that phosphorothioate (PTO)-

derived oligonucleotides stimulate the physical cellular 

uptake of siRNA in human cells.24 On the other hand, siRNAs 

with boranophosphonate (P = B) backbone modifications 

have much higher nuclease resistance than unmodified ones, 

with less cytotoxicity. In addition, Hall et al25 demonstrated 

that boranophosphate siRNAs are consistently more effec-

tive than siRNAs with the widely used phosphorothioate 

 modification. Furthermore, boranophosphate siRNAs are 

at least 10 times more nuclease resistant than unmodified 

siRNAs. Therefore, the biochemical properties of bora-

nophosphate siRNAs make them promising candidates 

for RNAi-based therapeutic applications. Recently, some 

groups used the same modified siRNA to treat patients with 

age-related macular degeneration (AMD). The process has 

reached Phase II clinical trials, and it was found to have no 

observable side effects.26

To date, much of the focus has been on modifying the 

RNA backbone, and some laboratories have modified the 

siRNA bases that are centrally involved in target  recognition. 

Terrazas and Kool27 explored the effects of methyl and 

propynyl substitution on siRNA duplex stability and cellular 

RNAi activity. The results suggested that smaller 5-methyl 

substitutions do not adversely affect gene-silencing activity; 

 furthermore, this modification contributes positively to 

siRNA stability in human serum.

Terminal nucleotide modifications of the siRNA (also 

called siRNA conjugates) have also been reported as an 

efficient delivery strategy. These include peptide modi-

fication, such as transactivating transcriptional activator 

(TAT) peptide, cholesterol conjugation, folate, and aptamer 

conjugation, which offer opportunities to enhance pharma-

cological characteristics of or introduce special features to 

siRNA.28,29 Soutschek et al30 reported that if both 5′- and 

3′-terminal modifications of the sense strand are well 

modified siRNAs, they could silence the endogenous gene 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1019

Advances in nonviral carriers for siRNA delivery

that encodes apolipoprotein B after intravenous injection 

in mice.

Chemical modification of siRNA can increase the stability 

of the RNA duplex to nucleases, minimize the possibility of 

immunostimulatory responses, and decrease the possibility 

of off-target effects, as well as improve its pharmacody-

namic properties and delivery to target cells.31 Chemical 

modification provides solutions to many of the challenges 

facing siRNA therapeutics, but the remaining challenge 

is to find universal chemical modification strategies, or to 

predict reliably which modifications will be effective for a 

given sequence.32

Liposome-formulated delivery 
system
Liposomes are probably the most extensively used materials 

for the delivery of gene molecules ever since their ability to 

transport the preproinsulin gene to the liver33 was demon-

strated 25 years ago. Hence, their characteristics are outlined 

in detail. Liposomes, vesicles with an aqueous compartment 

enclosed in a phospholipid bilayer, can fuse with cell mem-

branes and enhance drug delivery into cells. Polar drugs can 

be entrapped in their aqueous center. When lipids combine 

with nucleic acids to form amorphous particles, they are 

known as lipoplexes.34 siRNAs can either be entrapped within 

a lipid core35 or attached to the surface of the lipid materials36 

for delivery. The liposome can protect nucleic acids from 

enzymatic degradation and deliver nucleic acids into cells by 

interacting with the negatively charged cell membrane. There 

are two kinds of liposome: neutral and cationic lipid material. 

Neutral liposomes confer low toxicity to mammalians with 

low transfection efficiency due to their surface charge. But 

cationic liposomes can cross the cell membrane and reach 

the target genes with good biocompatibility.37,38

There are two kinds of liposome, neutral and cationic, 

based on their lipid composition. Initially, neutral liposomes 

were used for in vitro and in vivo delivery of nucleic acids 

because of their low toxicity, low immunogenicity, and easy 

production. Halder et al39 examined the therapeutic poten-

tial of focal adhesion kinase (FAK)-siRNA in the neutral 

liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 

(DOPC). The results show that treatment with FAK siRNA-

DOPC results in decreased microvessel density, decreased 

expression of VEGF and matrix metalloproteinase-9, and 

increased apoptosis of tumor-associated endothelial cells 

and tumor cells.

Given that neutral liposomes confer low transfec-

tion efficiency due to their lack of surface charges, this 

 methodology was soon supplanted when cationic liposomes 

were developed in 1989.40 The cationic charge can electro-

statically combine with siRNA to achieve a more robust 

construct to improve cell entry and protect siRNA against 

serum degradation, whereas neutral lipids facilitate fusion 

with the host cell membrane.41 Spagnou et al37 selected 

a number of cationic liposome/lipid-based systems to 

investigate the optimum lipid to nucleic acid ratio, mode 

of delivery, biocompatibility, and dose-response effects. 

The results demonstrate that the systems mediate a maximal 

specific gene silencing and knockdown with significantly 

low toxicity to mammalians. Leal et al42 reported the 

development of cationic liposome (CL)-siRNA complexes 

with novel cubic phase nanostructures that exhibit effi-

cient silencing at low toxicity. This finding underscored 

the importance of understanding the membrane-mediated 

interactions between the CL-siRNA complex nanostruc-

ture and cell components in developing CL-based gene-

silencing vectors.

Some cationic liposomes, such as Lipofectamine™ 
2000, Oligofectamine™, and Lipofectamine (Invitrogen), 

are commercially available.43 Huang44 transfected two 

keratoepithelin (KE)-specific siRNAs into HEK293 cells 

via Lipofectamine to treat certain types of inherited corneal 

stromal dystrophy, and observed that KE expression is reduced 

by approximately 50%–80%. Kim et al45 applied water-soluble 

lipopolymer (WSLP) for delivering siRNA targeting VEGF in 

vitro and in vivo, which significantly increased the efficiency 

of inhibition. WSLP/siRNA complexes can efficiently protect 

siRNAs from enzymatic degradation in serum-conditioned 

media.

Many researchers studied immunoliposomes to develop 

a vehicle that can be systemically administered safely and 

repeatedly, and will deliver the siRNA specifically and 

efficiently to the targeted tissues. Pirollo et al46 engineered 

a nanosized immunoliposome-based delivery complex that, 

when systemically administered, will preferentially target 

and deliver siRNA to tumor cells wherever they occur in the 

body. They enhanced the efficiency of this complex with 

the inclusion of a pH-sensitive histidine–lysine peptide in the 

complex and by delivery of a modified anti-HER-2 siRNA 

molecule. The complex can sensitize human tumor cells to 

chemotherapeutics, silence the target gene, and inhibit tumor 

growth in a cancer model.

Successful lipoplex deliveries of siRNA has been reported 

in several studies, and mechanisms for the release of payload 

from lipoplexes have been suggested. Continued research 

into the mechanism of release may lead to the development 
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of more bioresponsive vectors that can achieve higher levels 

of silencing for a given dose.47

Nanotechnology-based siRNA 
delivery system
The birth of nanotechnology has allowed people to trans-

form nature at the molecular and atomic level, enabling the 

manipulation of single atoms. With the progress of material 

synthesis and the rise of nanotechnology, the synthesis of 

nanomaterials with specific functions has become  possible. 

The development of nanotechnology in the biological 

area has made nanodelivery systems popular. Currently, 

nanospheres can smoothly pass the blood–brain barrier, 

testicle–blood barrier, and placenta.48,49 Thus, nanospheres 

will be suitable transfection carriers for improving the effect 

of gene therapy.

Due to their low toxicity, biodegradability, and bio-

compatibility, many nanomaterials are used as transfection 

 carriers, such as chitosan, cyclodextrin, polyethyleneimine 

(PEI), poly(lactic-co-glycolic acid) (PLGA), dendrimers, 

magnetic nanoparticles, carbon nanotubes, and gold  nanorods. 

Because of its high nuclease resistance and mucoadhesive 

properties, chitosan, natural polymers extracted from crus-

taceans, has become popular siRNA vectors. Howard et al50 

used a chitosan-based siRNA nanoparticle delivery system 

for RNA interference in vitro and in vivo. They observed, 

using fluorescence microscopy, that Cy5-labeled nanopar-

ticles were rapidly uptaken by NIH 3T3 cells within 1 hour 

and are accumulated over a 24-hour period. In vivo, effec-

tive RNAi was achieved in bronchiole epithelial cells of 

transgenic enhanced green fluorescent protein (EGFP) mice 

after nasal administration of chitosan/siRNA  formulations. 

Ghosn et al51 reported the use of imidazole-modified 

 chitosan-siRNA nanoparticles to mediate gene silencing via 

either intravenous or intranasal administration. The results 

showed that intravenous delivery demonstrated significant 

knockdown of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) enzymes in both the lungs and the liver at as low 

as 1 mg/kg siRNA dose. For intranasal delivery, significant 

silencing of GAPDH protein expression was seen in the 

lungs with only 0.5 mg/kg/day siRNA delivered over three 

consecutive days.

As a cationic polymer, PEI with its high-density charge, 

which can protect DNA from degeneration by nuclease, has 

been widely studied in gene delivery. Höbel et al11 established 

the therapeutic efficacy and safety of PEI F25-LMW/siRNA-

mediated knockdown of VEGF in tumor cells. The results 

showed that PEI F25-LMW/siRNA complexes, which can be 

stored frozen as opposed to many other carriers, represent an 

efficient, safe, and promising modality in antitumor therapy. 

Modification of PEI with several functional moieties revealed 

that PEI succinylation resulted in up to a 10-fold reduction of 

polymer toxicity compared with unmodified PEI. Moreover, 

succinylated PEI/siRNA complexes were able to induce 

remarkable knockdown of the target luciferase gene at the 

lowest tested siRNA concentration.52

In the study by Wang,53 TAT-conjugated PEGylated 

magnetic polymeric liposomes (TAT-PEG-MPLs) formed 

with superparamagnetic nanoparticles and TAT were suc-

cessfully prepared and evaluated in vitro and in vivo. The 

results indicated that TAT-PEG-MPLs were spherical 

and nonaggregated in solution, with significantly small 

mean diameters (83.2 nm) and high magnetization. In cell 

penetration tests performed through fluorescein isothio-

cyanate (FITC) labeling, the uptake of TAT-PEG-MPLs 

by MCF-7 cells was greater than that of PEG-MPLs. Most 

importantly, in vivo animal experiment, MRI, histological 

analysis, and atomic absorption spectrophotometry revealed 

that TAT-PEG-MPLs nanoparticles significantly accumu-

lated around the target site, and even inside nerve cells.

PLGA is an amorphous polymer, with molecular weights 

ranging from 5000–300,000. It can be used as medical film 

and carrier material for sustained-release dosage systems, 

with lower toxicity, less irritation, and minimal inflammatory 

responses. Luo et al54 incorporated the siRNA sequence of 

the methyl-CpG binding domain protein 1 (MBD1) plasmid 

into a PLGA-poloxamer carrier to test the therapeutic effect 

of this compound on BxPC-3 human pancreatic cancer cells. 

They found that the PLGA-poloxamer carriers can success-

fully transfect the MBD1 siRNA plasmid into tumor cells 

and that the PLGA-MBD1 nanoparticle compound can inhibit 

cell growth and induce apoptosis.

Katas et al55 incorporated PEI into PLGA particles to pro-

duce spherical, positively charged nanoparticles that are able 

to protect siRNA against nuclease degradation. Cell culture 

studies showed that PLGA-PEI nanoparticles with encapsu-

lated siRNA are more efficient in silencing the targeted gene 

than PEI alone, with certain biocompatibility.

Ladeira et al56 described a novel approach to siRNA delivery 

by single-walled carbon nanotubes. In the study, the siRNA 

delivery system showed nonspecific toxicity and transfection 

efficiency greater than 95%. This approach offers the potential 

for siRNA delivery into different types of cells, including hard-

to-transfect cells such as neuronal cells and cardiomyocytes.
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Gold nanoparticles/nanorods (GNPs/GNRs) have the 

distinct advantage of being easily modified. Hence, with their 

positively charged surfaces, GNPs/GNRs can easily attach to 

negatively charged siRNA. Bonoiu et al57applied GNRs as 

siRNA delivery to explore the dopaminergic brain signaling 

pathway in vitro. Gene silencing in these cells was evident, 

with no observed cytotoxicity. Moreover, these nanoplexes 

can transmigrate across the model of the blood–brain barrier. 

However, reports about GNPs as gene carriers are rare.

Nevertheless, research regarding siRNA delivery was 

inspired by the molecular machinery within the phi29 

bacteriophage DNA packaging motor, which contains six 

copies of packaging RNA (pRNA) molecules that form a 

hexameric ring, which is the crucial part of the motor.58 

Utilizing the novel properties of this pRNA, we constructed 

pRNA dimers and trimers with potential to serve as parts 

in nanotechnology. pRNA-derived nanoparticles have 

small sizes (20–40 nm), making them particularly suited 

for in vivo systemic delivery; the optimal size range for 

cell uptake is 10–100 nm.59 Tarapore et al60 explored the 

potential of pRNA as a vehicle in carrying siRNA to target 

metallothionein-IIa (MT-IIA) messenger RNA (mRNA) 

specifically. They found that pRNA chimeras targeting MT-

IIA are localized within the GW/P-bodies, and are more 

potent than siRNA alone in silencing MT-IIA expression. 

Therefore, the pRNA system, which can assemble into 

multivalent nanoparticles, has great potential as a highly 

potent therapeutic agent.

Targeted siRNA delivery system
Targeted RNAi therapy is a relatively new approach that 

can be used to silence genes reversibly in vivo by selective 

 targeting. Targeting the diseased cell, organ, or tissue will 

increase the silencing potency of a given dose of siRNA. 

 Specific cell targeting will also prevent side effects by avoid-

ing nondiseased cells.13 Aptamers, antibodies, small peptides, 

and other ligands that bind to the signature molecules with 

high specificity and affinity have been studied extensively for 

their ability to guide siRNA to the target tissues and cells.47

Dickerson et al61 designed nanoparticles functionalized 

with peptides that specially target the erythropoietin- producing 

hepatocellular (Eph) A2 receptor to deliver siRNAs targeting 

epidermal growth factor receptor (EGFR). The results showed 

that the nanoparticles decreased EGFR expression levels 

and significantly increased the sensitivity of this cell line to 

docetaxel. Agrawal et al62 designed dendrimer-conjugated 

magnetofluorescent nanoworms called  “dendriworms” 

as a modular platform for siRNA delivery in vivo. Their study 

showed that dendriworms carrying siRNA against EGFR 

reduced EGFR protein levels in human glioblastoma cells 

by 70%–80%; anti-EGFR dendriworms led to specific and 

significant suppression of EGFR expression.

The folate receptor is also an important target for antican-

cer drug delivery. Many anticancer drugs, such as prodrug-

enzymes, toxic proteins, liposome drugs, and nucleic acid 

molecules, including siRNA, can be combined with folic acid 

to achieve target specificity. For example, liposome-wrapped 

siRNA nanoparticles can be modified with folic acid to inhibit 

the growth of a targeted tumor.63

Aptamers are oligonucleic acid or peptide molecules 

that are normally selected from a large random sequence 

pool to bind to a specific target molecule. Chimeric RNA 

molecules that contain an RNA aptamer directly linked to 

the passenger strand of siRNA can be transcribed in vitro 

and readily purified in large quantities. Therefore, aptamers 

can enhance the ability of siRNAs to target different cells. 

To date, only a couple of aptamers have been harnessed for 

targeted siRNA delivery to specific cell populations. Some 

studies have shown enhancement of target gene silencing 

activity and specificity using aptamer–siRNA chimeras. 

Furthermore, anti-tumor activity is further enhanced by 

appending a polyethylene glycol moiety, which increases 

the circulating half-life of the chimeras.64

Other delivery systems
Lee et al65 developed pluronic/polyethylenimine shell cross-

linked nanocapsules with embedded magnetite nanocrystals 

(PPMCs) for magnetically triggered delivery of siRNA. 

PPMC/siRNA–PEG complexes were efficiently taken up 

by cancer cells upon exposure to a magnet, thereby enhanc-

ing intracellular uptake and the silencing effect of siRNA. 

The study suggests that these novel nanomaterials could be 

potentially utilized as magnetically triggered delivery of 

various nucleic acid-based therapeutic agents.

Recently, ultrasound-mediated gene delivery with nano- 

and microbubbles was developed as a novel nonviral vector 

system. This system can directly deliver plasmid DNA and 

siRNA into the cytosol without endocytosis. Therefore, these 

genes are able to escape lysosomal degradation, resulting in 

enhanced gene expression efficiency.66,67 Zhou et al68 trans-

fected plasmid DNA of pigment epithelial derived factor 

(PEDF) into human retinal pigment epithelial (hRPE) cells 

and choroidal neovascularization (CNV) animal models by 

ultrasound-mediated microbubbles. The results showed that 
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microbubbles with ultrasound irradiation could significantly 

enhance PEDF delivery compared with microbubbles or 

ultrasound alone, and that the CNV of rats was inhibited 

effectively.

Limitations and other side-effects  
of siRNA delivery
siRNA is easily degraded by enzymes in blood, tissues, 

and cells. Several types of chemically modified siRNA 

have been produced and investigated to improve  stability; 

however, target site accumulation after administration is 

still extremely low, even when stability is improved.69 

Moreover, the cost and safety of these formulations must 

also be considered,70 and many groups have found that large 

numbers of 2′-O-Me modifications (in either strand) decrease 

siRNA activity.71–73

Even though an increasing number of cationic lipo-

somes are used as nonviral-based gene vectors, studies have 

demonstrated that these liposomes still cause significant 

toxicity,74,75 such as cell contraction, mitotic inhibition, 

formation of aggregates in blood, and the tendency to induce 

inflammatory response. Some researchers have been trying 

to design new liposomal structures to reduce their cytotoxic-

ity, and found that modifying the cationic liposome structure 

can be an effective strategy for controlling its toxicity.76 

Hundreds of lipids share the common structure of a posi-

tively charged hydrophilic head and hydrophobic tail that 

are connected via a linker structure. Most of the linkages 

between the hydrophilic and hydrophobic moieties are ether, 

ester, carbamate, or amide bonds that can affect the rate of 

biodegradation.77 Moreover, their transfection efficiency 

needs further improvement for in vivo application.

Aside from studies of its efficacy, some researchers inves-

tigated the biosafety and toxicity issues of chitosan. A recent 

study by Chellat et al78 found that high chitosan/DNA nano-

particle concentrations do not induce macrophage secretion 

of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 

IL-6, and IL-10, which showed that nanoparticles have no 

evident inflammatory activity. The toxicity of chitosan can 

be reduced by modification with the nontoxic and biocom-

patible acrylic imidazole, and additional modifications of 

the nanoparticle components helpfully reduce toxicity and 

increase transfection efficiency.79 Dabold et al80 reported 

that the in vitro toxicity of liposome–chitosan nanoparticle 

complexes (LCS-NP) in the conjunctival epithelial cell 

(CEC) line was very low. LCS-NPs were identified inside 

CECs after 15 minutes and inside primary cultures of CECs 

after 30 minutes.

Watari et al81 revealed the micro/nanosizing effect of 

materials on living organisms. Various sizes of particles, 

from 500 nm to 150 µm, were used to co-culture with human 

neutrophils, which play a central role in the initial stage of 

inflammation against foreign bodies, as probe cells. Particles 

were also inserted into the subcutaneous connective tissue in 

the abdominal region of Wistar rats. The results showed that: 1) 

the toxicity level, shown as an absolute intensity of superoxide 

production, as well as the expression of cytokines IL-1β and 

TNF-α by micro/nanoparticles is very low; 2) the reaction is 

nonspecific and any particle below cell size are regarded by cells 

as a foreign object, including neutrophils and macrophages; and 

3) for the materials as implants, there is no strong rejection and 

it is, therefore, generally  acceptable to any person.

However, other researchers reported different results. 

Nanoscale gene vectors, after being transfected into the body 

as exogenous materials, are taken up by the reticuloendothelial 

mononuclear phagocytic system, which is mainly concentrated 

in the spleen, liver, lungs, bone marrow, and lymph nodes. The 

nanoparticles could be retained in the tissues for over 30 days; 

therefore, if not effectively removed, accumulation of the nano-

sized vectors could lead to certain organ damage.82–84

Low immunogenicity is one of the unique characteristics 

of nonviral gene vectors. However, studies have shown that 

the DNA–cationic liposome complex (lipoplex) systemic 

drugs can activate the innate immune system.85 Sakurai et al86 

found that the administration of lipoplex produces a greater 

amount of inflammatory cytokines, such as IL-6, IL-12, and 

TNF-α, than adenovirus vector administration. On the other 

hand, chitosan/DNA nanoparticles and single-walled carbon 

nanotubes are not available for immune stimulation.87–89

Clinical trials
From the first in vivo evidence of RNAi-based therapeutic 

efficacy in an animal disease model in 2003,90 the pace of its 

drug development has been rapid. Most of the clinical trials 

approved by the FDA are nontargeted, designed for intravitreal 

injection or inhalation to cure age-related macular degeneration 

(AMD), a leading cause of blindness, or respiratory syncytial 

virus (RSV), the leading cause of pediatric hospitalizations in 

the United States today. These trials with naked siRNA have 

shown certain results without untoward toxicity.14,91

Multiple nanoparticle formulations of siRNA for oncol-

ogy are currently under clinical development.92 The first 

targeted-delivery siRNA therapeutic agent approved by the 

US Food and Drug Administration (FDA) is CALAA-01, 

a PEGylated, transferrin-targeted nanoparticle that can 

combine siRNA molecule with the transferrin receptor on 
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the tumor cell surface. This is currently being investigated 

clinically in patients with solid cancers in the United States.93 

The results demonstrate that the siRNA nanoparticles are able 

to provide transient inhibition of tumor growth.

Atu027 is a liposomal formulation of siRNA against 

protein kinase N3, developed by Silence Therapeutics AG, 

and is currently being investigated in Phase I clinical trials 

in Germany.94  Atu027 comprises neutral fusogenic and PEG-

modified lipid components with improved pharmacokinetic 

properties, cellular uptake, and efficient siRNA release from 

endosomes after endocytosis.95

ALN-VSP, a nontargeted liposomal formulation of two 

siRNAs targeting kinesin spindle protein and VEGF, is in 

clinical development in the United States for the treatment of 

liver cancers. Due to interests in the potent, promising, and 

novel siRNAs and the need to protect them from degradation 

within the circulation, interest and research into nanoparticle 

formulations of nucleic acids is likely to grow continually.92

Perspective of nonviral vector
siRNA technology, which is attracting much interest in the 

research community, holds great promise as a therapeutic 

intervention for targeted gene silencing in cancers and other 

diseases. Several siRNA-based therapeutic agents are already 

in clinical trials. Further development of siRNA therapy 

depends on the development of safe and effective carriers 

for systemic administration. As described in the present 

study, cationic nanoparticles have emerged as one of the 

most attractive carriers because of their ability to form 

complexes with negatively charged siRNA and their high 

transfection  efficiency. As a whole, the transfection efficiency 

reported thus far for nonviral approaches is still below that 

of the highly efficient viral vectors. Further improvements 

to increase the efficiency and reduce the toxicity of nonviral 

vectors are needed before their clinical significance can be 

maximized. Therefore, to achieve more efficient, long- lasting, 

and nontoxic gene delivery vectors, optimized delivery sys-

tems still have many challenges to overcome.
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