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The epithelial-to-mesenchymal transition (EMT), an embryonic program relaunched during
wound healing and in pathological conditions such as fibrosis and cancer, continues to gain
the attention of the research community, as testified by the exponential trend of publications
since its discovery in the seventies. From the first description as a mesenchymal
transformation, the concept of EMT has been substantially refined as an in-depth
comprehension of its functional role has recently emerged thanks to the implementation
of novel mouse models as well as the use of sophisticated mathematical modeling and
bioinformatic analysis. Nevertheless, attempts to targeting EMT in fibrotic diseases are at
their infancy and continue to pose several challenges. The aim of this mini review is to
recapitulate the most recent concepts in the EMT field and to summarize the different
strategies which have been exploited to target EMT in fibrotic disorders.

Keywords: EMT, EMP, partial EMT, plasticity, fibrosis, epithelial-to-mesenchymal transition

EMT IN 2021: NOVEL REFINEMENTS OF AN OLD CONCEPT

Since its first description in the embryogenesis work by Elizabeth Hay in the 1970s (Hay, 1968;
Hay, 1995), the concept of epithelial-to-mesenchymal transition (EMT) has expanded from the
field of development and has been investigated in the fields of wound healing, fibrosis, and cancer
(Nieto et al., 2016). With an average of 5,000 primary papers published per year in the 2016–2019
period (Yang et al., 2020; Hamidi et al., 2021), the topic of EMT continues to gain the interest of the
scientific community and to provide novel insights into this phenomenon both in physiology and
in disease.

EMT is traditionally defined as a cellular and molecular process through which cells lose their
epithelial identity, defined by apical–basal polarity and stable intercellular junctions, and acquire a
mesenchymal phenotype including cytoskeletal and morphological rearrangements, acquisition of
fibroblast-like gene expression profile, migratory capacity, and ability to produce the extracellular
matrix (ECM) (Kalluri, 2009; Kalluri and Weinberg, 2009; Zeisberg and Neilson, 2009). However,
recent studies as well as the fervent town hall discussions during the 2017 and 2019 meetings of The
EMT International Association (TEMTIA) have clearly highlighted the need to revise and expand the
traditional definition of EMT in order to embrace newly discovered features such as the partial
activation of the program and the existence of a continuous spectrum of hybrid EMT phenotype
rather than a binary E–Mmodel and have therefore introduced and encouraged the use of the term
“epithelial-to-mesenchymal plasticity” (EMP) (Yang et al., 2020).

The appreciation that EMT exists as a hybrid phenotype in a continuum of epithelial and
mesenchymal traits has emerged from the construction of mathematical algorithms modeling the
existence of multiple intermediate steps with various degrees of E or M states (Lu et al., 2013; Jolly
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et al., 2016; Tripathi et al., 2021), as well as from the
pseudotemporal reconstruction of the EMT trajectory by single
cell transcriptomics (Carstens et al., 2021; Deshmukh et al., 2021).
The acquisition of this knowledge represents a great example of
how crosstalk between different fields, such as mathematics and
bioinformatics, can help in providing further understanding of
the biology of EMT. In addition to the pure definition and the
various criteria utilized to define this process, the functional role
of EMT as defined by the type II and III classifications (Kalluri
and Weinberg, 2009; Zeisberg and Neilson, 2009) requires to be
updated in light of the most recent findings. In fact, the fibroblast-
generating capacity of type II EMT during fibrosis has been
rebutted (Ovadya and Krizhanovsky, 2015; Huang and Susztak,
2016; Lovisa et al., 2016), and the dispensability of type III EMT
for metastasis has been questioned (Maheswaran and Haber,
2015; Brabletz et al., 2018).

This review aims to present the overview of recent concepts in
EMT as well as novel insights as emerged from single cell
transcriptomics, and to provide a summary of the strategies
attempted to target EMT in the context of fibrotic diseases. So
far, multiple approaches have been proposed to target EMT: from
targeting the upstream inducing signaling pathways [which has
been extensively reviewed in other recent reviews (Di Gregorio
et al., 2020; Jonckheere et al., 2021)] to targeting EMT-
transcription factors (TFs), promoting MET, and targeting
EMT-induced vulnerabilities, the last being the strategy
potentially leading to the most promising outcomes.

EMT CLASSIFICATION: TYPE II AND TYPE
III REVISITED

In these past years, the twomajor EMT paradigms permeating the
fibrosis and cancer fields, which are, respectively, the capacity to
generate fibroblasts (type II EMT) and the indispensability in the
metastatic cascade (type III EMT), have been interrogated and
partially revised. Historically, the outstanding question in the
fibrosis field has been the origin of the myofibroblasts responsible
for the scarring of the tissue. Candidate cellular origins include
the activation of tissue-resident fibroblasts, the differentiation
from bone marrow precursors, and the trans-differentiation of
epithelial, mesothelial, and endothelial cells, macrophages,
pericytes, and adipocytes into myofibroblasts (Plikus et al., 2021).

In light of this major question, EMT and the cognate process
of endothelial-to-mesenchymal transition (EndMT) were initially
identified as the mechanisms generating these fibrosis-associated
myofibroblasts (Okada et al., 1997; Kim et al., 2006; Zeisberg M.
et al., 2007; Zeisberg E. M. et al., 2007; Zeisberg et al., 2008; Flier
et al., 2010). However, novel genetically engineered knock-out
mouse models coupled with lineage tracing strategies clearly
demonstrated that, at least in the context of kidney fibrosis,
EMT does not directly generate myofibroblasts nor confers
migratory capacity and that EMT cells still reside within the
epithelial basement membrane in a partial EMT (pEMT) state
(LeBleu et al., 2013; Grande et al., 2015; Lovisa et al., 2015). This
pEMT represents a damage response of the injured renal
epithelium, which substantially impairs epithelial functionality

and regenerative capacity. In fact, pEMT triggers an arrest of
the tubular epithelial cell cycle at the G2/M phase, therefore
impeding the regenerative potential, and induces loss of the
expression and functionality of membrane transporters
critical for the absorptive capacity of the kidney (Lovisa
et al., 2015). Moreover, the activation of the mesenchymal
program leads to the acquisition of a pro-inflammatory
secretome profile which in turn fuels immune infiltration
and further promotes fibrosis (Grande et al., 2015; Lovisa
et al., 2015). Similarly, the contribution of EndMT to the
myofibroblast pool was determined as minor while having a
significant impact on vascular integrity (LeBleu et al., 2013;
Lovisa et al., 2020).

Mesothelial cells, which line pleural, peritoneal, and
pericardial cavities, represent an example of physiologic
pEMT as, in the basal condition, they phenotypically display
epithelial features although concomitantly expressing
mesenchymal markers such as vimentin, a remnant of their
mesoderm-derived embryonic origin (Mutsaers et al., 2015). In
the pathological condition, these cells undergo an EMT
analogous process termed “mesothelial-to-mesenchymal
transition” (MMT), which was found to be responsible for
causing peritoneal fibrosis (Yáñez-Mó et al., 2003; Yang
et al., 2003; Del Peso et al., 2008). The functional
consequences of MMT as well as other types of
mesenchymal trans-differentiation such as the one
undergone by macrophages [termed “macrophage-to-
myofibroblast transition” (Meng et al., 2016; Wang et al.,
2017; Tang et al., 2020)] appear to still be unquestionably
linked to the full transition and generation of fibrosis-
associated myofibroblasts, with a consequent more direct
impact on the generation of fibrosis (Koopmans and
Rinkevich, 2018).

The functional role of EMT in cancer has been similarly
questioned. In fact, the metastasis dogma by which the
metastasizing cells are those efficiently activating EMT to
intravasate and extravasate and subsequently reverting to the
epithelial state at distant sites through the process of
mesenchymal-to-epithelial transition (MET) has been
disproved at least in the context of breast (Fischer et al.,
2015; Lourenco et al., 2020) and pancreatic cancers (Zheng
et al., 2015; Chen et al., 2018; Carstens et al., 2021) and, since
then, has been the subject of intense debate (Brabletz et al.,
2018; Williams et al., 2019). The activation of EMT in cancer
cells not only is connected with the metastatic potential but in
these past years also has been clearly demonstrated to confer
diverse advantageous properties such as resistance to
chemotherapy, immune evading capacity, and rewiring of the
cell metabolism (Kang et al., 2019; Lu and Kang, 2019; Bakir
et al., 2020; Jia et al., 2021). All these concepts represent novel
advancements in our knowledge on EMT which must be
included in an updated classification (Figure 1). Moreover,
these aspects highlight how dynamic and complex the EMT is
and how the generation of new in vivo models coupled with
technology advancement can provide a deeper understanding of
this phenomenon which sometimes may lead to unexpected
findings with respect to the original concepts.
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UNDERSTANDING EMT BY SINGLE CELL
TRANSCRIPTOMICS

Our comprehension of the dynamics of EMT has significantly
advanced thanks to the introduction of technologies such as
single cell RNA-sequencing (scRNA-seq). A first study
employing scRNA-seq and pseudospatial trajectory
reconstruction of epithelial cells undergoing spontaneous or
TGFβ-induced EMT revealed that the EMT is a transcriptional
continuum of epithelial–mesenchymal states (McFaline-Figueroa
et al., 2019). Interfering with signaling pathways by inhibiting
transcription factors (TFs) or receptors impeded the progression
along the EMT and caused cells to accumulate at defined points in
the EMT continuum, thus revealing the existence of regulatory
checkpoints (McFaline-Figueroa et al., 2019). This observation
indicated that disabling key signaling pathways could enrich a
particular gene expression profile, therefore giving the impression
of a stable E/M intermediate phenotype.

By coupling scRNA-seq and mathematical modeling to a time
course experiment of TGFβ-induced EMT in the MCF10A breast
cell line, a recent study mapped the molecular changes and
signaling cascades occurring during EMT progression
(Deshmukh et al., 2021). Fundamental findings are the fact
that many EMT regulatory pathways (Notch, Shh, Wnt, PI3K/
Akt) were found to be activated simultaneously, possibly
indicating that a crosstalk among multiple signaling pathways
may occur in a temporal manner and that the rate of progression
through EMT was not the same for all the cells, indicating a

temporal heterogeneity in the activation of EMT. Even after
8 days of TGFβ treatment, half of the analyzed cells were in
the hybrid E/M state, and the pseudotime analysis revealed the
presence of twenty distinct EMT clusters (Deshmukh et al., 2021).

One recurrent issue in analyzing EMT at the transcriptional
level has been the impossibility to distinguish the mesenchymal
signature of the epithelium from the one in the stromal
compartment, due to the promiscuous expression of the
markers analyzed. Recently, a computational framework to
decouple the true EMT signature of epithelial cells from the
stromal mesenchymal signature in bulk RNA-seq data has been
developed to characterize EMT across different types of tumors
(Tyler and Tirosh, 2021). This method revealed that the
expression of the classical EMT-transcription factors (except
SNAI2) is very high in cancer-associated fibroblasts and
therefore should not be used as a marker of partial EMT in
bulk analysis. Certainly, a similar bioinformatic approach would
be desirable for the bulk RNA-seq dataset of fibrotic disorders to
analyze pEMT without the confounder of the fibrotic stroma.

A common concept emerging from different studies
employing scRNA-seq is represented by the fact that the
pEMT profile is highly context-specific (Cook and
Vanderhyden, 2020; Tyler and Tirosh, 2021). This concept
was, for example, highlighted by a multiplexed scRNA-seq of
EMT time course induction in four different cell lines, using three
distinct inducers (TGFβ1, TNF, EGF) and also including the
analysis of EMT reversion by removal of the inducing signal
(Cook and Vanderhyden, 2020). Pseudotemporal trajectories

FIGURE 1 | Type II and type III EMT. Schematic representation of the functional role of EMT in fibrosis (type II EMT) and cancer (type III EMT). For each class of EMT,
both the original concept and the most recent findings are depicted. EMT: epithelial-to-mesenchymal transition; MET: mesenchymal-to-epithelial transition; pEMT:
partial EMT.
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confirmed that EMT is not just a linear progression but rather a
multistep process characterized by a series of discrete
transcriptional events. Surprisingly, the activity of TFs was
also remarkably context specific, and TFs that have been
implicated in EMT but are not the traditional core EMT-TFs
were found differentially regulated in a context-specific manner
(Cook and Vanderhyden, 2020). A combined bioinformatic and
mathematical analysis on the same time-series scRNA-seq
allowed to construct a context-specific EMT gene regulatory
circuit (GRC) from transcriptomics data to identify activity
dynamics of EMT-TFs (Ramirez et al., 2020). Although most
of these scRNA-seq studies were conducted using tumor cell lines
and, therefore, it cannot be assumed that the same findings apply
to non-transformed epithelial cells activating pEMT as part of
their injury-induced damage response, these studies provided
novel insights into the dynamics of EMT which are worth to be
taken into consideration when studying EMT in the context of
fibrosis.

DIRECT TARGETING OF EMT-TFS:
GENETIC DELETION AND SMALL
MOLECULE INHIBITORS
The most compelling evidence that inhibition of EMT-driving
TFs is an effective strategy for reducing fibrosis has been
generated by using genetically engineered knock-out mouse
models. In fact, renal epithelial cells’ conditional deletion of
the Twist1 or Snail1 genes, encoding, respectively, Twist1 and
Snail EMT-TFs, using two distinct epithelial-driven Cre/lox
models (γGT-Cre and Cdh16-Cre), proved to be effective in
inhibiting the process of EMT and led to substantial reduction of
kidney fibrosis (Grande et al., 2015; Lovisa et al., 2015). Epithelial-
specific inducible activation of Snail was necessary and sufficient
to induce fibrosis which could be reversed by deactivating or
silencing Snail (Grande et al., 2015). Genetic deletion of these
EMT-TFs efficiently reduced ECM deposition, myofibroblast
accumulation, and immune infiltration and led to a
significantly improved tubular epithelial functionality and
regenerative capacity, therefore demonstrating that EMT
inhibition leads to both epithelial recovery and suspension of
the paracrine effect on mesenchymal and immune cells (Grande
et al., 2015; Lovisa et al., 2015). A similar paracrine effect exerted
on fibroblasts by epithelial cells undergoing EMT has been
reported in lung fibrosis (Hill et al., 2019; Yao et al., 2019).
Mice with conditional deletion of Snail in hepatocytes using the
albumin-Cre model also display reduced ECM and immune
infiltration during hepatic fibrosis, with no direct effects on
hepatic stellate cell activation (Rowe et al., 2011).

Similarly, conditional deletion of Twist1 or Snail in endothelial
cells (using Cdh5- and Tie1-Cre models) was recently shown to
inhibit the cognate process of EndMT and protect from kidney
fibrosis by limiting vascular leakage and the downstream
hypoxia-driven metabolic rearrangements (Balzer and Susztak,
2020; Lovisa et al., 2020). Tie2-driven conditional deletion of
Twist1 in the endothelium was also shown to be associated with
reduction of lung fibrosis (Mammoto et al., 2013; Mammoto

et al., 2016; Mammoto et al., 2018), while Tie2-driven deletion of
Snail led to embryonic lethal vascular defects (Wu et al., 2014).

Based on this evidence, a pharmacological approach directly
targeting EMT-TFs would theoretically represent an efficient
strategy to inhibit EMT. Although, being transcription factors,
Twist and Snail are usually considered undruggable and their
pharmacological targeting remains challenging, there are reports
of compounds derived from natural products that can target
Twist, Snail, and Zeb1 (Pei et al., 2017; Avila-Carrasco et al., 2019;
Feng et al., 2020). It is to be noted, however, that most of these
studies attempt to target cancer-related EMT and these inhibitors
are not fully specific for these TFs.

Alternative strategies include targeting protein effectors
responsible for the post-translational control of TF stability.
One example is a recent study reporting a small molecule
which, by disrupting Snail–CBP/p300 interaction, promotes
Snail proteasomal degradation and therefore reverses Snail-
induced EMT and its associated tumor invasion and
metastasis (Li et al., 2020). In the context of fibrosis, a recent
study identified triptolide, a small molecule inhibitor targeting
MEX3C, the E3 ligase responsible for PTEN polyubiquitination,
as an EMT inhibitor (Li et al., 2019). High glucose–induced
polyubiquitination of PTEN triggers phosphatase activity and
favors the dephosphorylation of Twist and Snail, which in turn
stabilizes these two TFs and induces EMT. The authors showed
that triptolide treatment in vitro was able to reduce the glucose-
induced protein expression of both Twist and Snail and
successfully inhibited EMT and kidney fibrosis in both
spontaneous and experimentally induced in vivo models (Li
et al., 2019).

Recent advances in the use of nanoparticles and microvesicles
such as exosomes have proven the efficacy and therapeutic
application of siRNA delivery, and therefore, this could
potentially be exploited as a strategy to target EMT, although
the lack of cell specificity could represent a serious concern with
this type of approach. In fact, aspects to be taken into
consideration are the mutual interdependency of the EMT-TFs
and their EMT-independent functions (Stemmler et al., 2019).
Although in general these TFs are not expressed in adult tissues,
there is evidence supporting their necessity in the adult process
like Slug required in the process of cutaneous wound re-
epithelialization (Hudson et al., 2009) and Twist2 expressed by
a multipotent cell population generating cardiomyocytes in the
adult heart (Min et al., 2018). Therefore, the extent to which these
EMT-TFs are required for adult tissue homeostasis, cell identity,
and fate determination is not completely known, and this might
pose an obstacle for anti-EMT therapeutic strategies not targeted
to a specific cell type.

REVERSING EMT: THE
MESENCHYMAL-TO-EPITHELIAL
TRANSITION
The mesenchymal-to-epithelial transition (MET) is a process
employed during embryonic development to generate epithelia
(Pei et al., 2019). Induction of MET has been associated with
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amelioration of fibrosis. In fact, reversion of TGFβ-induced EMT
in tubular epithelial cells (Zeisberg et al., 2003) and induction of
MET in fibroblasts in the injured kidney (Zeisberg et al., 2005)
were shown to result in reduction of fibrosis and promotion of
kidney regeneration. Induction of MET by treatment with BMP-7
was shown to improve in vivo fibrosis in renal, cardiac, and
intestinal models (Zeisberg et al., 2003; Zeisberg et al., 2007; Flier
et al., 2010), and treatment with a BMP agonist was indeed able to
revert established fibrosis (Sugimoto et al., 2012). These
observations are completely in line with the requirement of
MET for the reprogramming of fibroblasts into pluripotent
stem cells (Li et al., 2010) and the role of BMPs in driving the
initiation of such MET-mediated reprogramming (Samavarchi-
Tehrani et al., 2010).

Induction of MET in cardiac fibroblasts by stimulation of the
p53 pathway induced the regeneration of functional vessels,
through a process called “mesenchymal-to-endothelial
transition” (MEndT) (Miyake and Kalluri, 2014; Ubil et al.,
2014). MEndT contributes to neovascularization in the injured
heart, and its induction improved cardiac function (Ubil et al.,
2014; Dong et al., 2020). Treatment with the small molecule
RITA, which inhibits ubiquitin-mediated p53 degradation and
enhances p53 signaling, increased MEndT, reduced cardiac
fibrosis, and improved cardiac function, therefore
mechanistically proving that p53-mediated activation of
MEndT in cardiac fibroblasts is able to limit cardiac injury
(Ubil et al., 2014).

Novel insights into mechanisms of MET are inferred from
single cell transcriptomics (Cook and Vanderhyden, 2020). EMT
and MET were investigated by scRNA-seq in four different cell
lines by induction with TGFβ, TNF, or EGF for 7 days, followed
by 3 days of withdrawal time which was sufficient to almost
completely revert cells transcriptionally to the epithelial state.
Analysis of the time-dependent shifts in the gene expression
profile showed that while it is true that stimulus withdrawal led to
MET reversibility, it is also clear that the trajectory of changes in
the reversion expression profile did not match that of the EMT
induction (Cook and Vanderhyden, 2020). Further
bioinformatics and mathematical modeling confirmed that
EMT and MET trajectories have two distinct paths which do
not overlap (Ramirez et al., 2020). This certainly indicates that
EMT and MET are not perfectly symmetric processes and MET
should not be oversimplified as the equal and opposite process
of EMT.

It was reported that alternates of EMT–MET are necessary to
induce pluripotency in somatic cell reprogramming, so that EMT
is necessary to favor the subsequent MET (Liu et al., 2013; Li et al.,
2017). This implies two considerations: 1) targeting EMT might
then not be strategic in the attempt to favor MET-mediated
regeneration over injury and fibrosis and 2) if some degree of
EMT favors the subsequent MET in pluripotent reprogramming,
one could argue that this predisposition could potentially occur
also in the context of injury. A recent study on mechanisms of
cardiac repair shows that dedifferentiation and activation of an
EMT-like program in adult cardiomyocytes, induced by the
ectopic reactivation of ERBB2 and mediated by YAP, are
indeed necessary for migration and subsequent

redifferentiation of cardiomyocytes at the injured site
(Aharonov et al., 2020; González-Iglesias and Nieto, 2020). A
similar requirement for YAP-induced EMT in hepatocytes was
reported promoting liver regeneration (Oh et al., 2018).
Therefore, why injury-induced EMT fails to successfully prime
cells for reprogramming and regeneration in some contexts, such
as the kidney, is clearly an open question that requires deeper
investigation.

TARGETING EMT-DEPENDENT
METABOLIC VULNERABILITIES

The comprehension of the functional role of EMT beyond the
mere generation of fibroblasts is potentially opening the
opportunity to target EMT from a different perspective
consisting in the identification of the EMT-induced cellular
vulnerabilities mediated by druggable targets.

Disruption of the tissue metabolic homeostasis represents a
hallmark of fibrosis, and targeting this metabolic dysregulation
has started to emerge as a potential strategy for fibrosis treatment
(Zhao et al., 2020). Defective fatty acid oxidation (FAO) was
shown to induce renal fibrosis, and FAO inhibition provokes
features of dedifferentiation, namely, the expression of
mesenchymal markers, in the renal epithelium (Kang et al.,
2015). FAO decrease and the consequent lipid accumulation
were shown to induce an EMT expression profile in renal
epithelial cells in vitro (Xu et al., 2014). FAO improvement by
overexpression of the transcription factor PPARGC1A, which
regulates the expression of all FAO rate-limiting enzymes, or by
pharmacological treatment with fenofibrate was capable of
protecting renal epithelial cells from TGFβ-induced
dedifferentiation toward a mesenchymal profile (Kang et al.,
2015). Conversely, in vivo inhibition of EMT during fibrosis
was able to restore FAO and metabolic homeostasis, in
association with improved epithelial health and functionality
(Lovisa et al., 2015).

Reversion of the TGFβ-induced PPARγ inhibition by
curcumin treatment was shown to inhibit EMT and ameliorate
TNBS-induced intestinal fibrosis (Xu et al., 2017). Treatment
with a PPARγ antagonist reverted the EMT inhibitory effect of
curcumin, therefore further highlighting the existence of the
FAO-EMT axis and the anti-fibrotic effects of the PPARγ
agonists.

The interdependency of FAO metabolism and mesenchymal
transition was also highlighted in the context of EndMT.
Suppression of FAO by endothelial conditional deletion of the
FAO enzyme CPT2 spontaneously induced amplification of the
embryonic EndMT which resulted in the thickening of the
cardiac valves and provoked EndMT with consequent
abnormal vascular permeability in the kidney, spleen, and lung
(Lovisa and Kalluri, 2018; Xiong et al., 2018). Inhibition of
EndMT was proven to ameliorate fibrosis and restore the
metabolic functionality of the kidney (Lovisa et al., 2020). In
fact, the vascular leakage caused by the process of EndMT leads to
a cascade of events characterized by a hypoxia-induced epithelial
upregulation of the c-Myc transcription factor, which in turn is
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responsible for a glycolytic switch of the renal metabolism which
normally heavily depends on FAO (Lovisa et al., 2020). The
increase in glycolysis was proved to be detrimental as the
treatment with the glycolysis inhibitor 3-bromopyruvate
ameliorated tissue fibrosis (Lovisa et al., 2020; Yu et al., 2021).
Moreover, genetic or pharmacological targeting of c-Myc by
treatment with the JQ1 inhibitor reduced fibrosis, preserved
the epithelial parenchyma, and restored the metabolic
homeostasis (Lovisa et al., 2020). Whether inhibition of
glycolysis is able to reduce EMT was not investigated;
however, it is possible as EMT cells switch their metabolism
from oxidative phosphorylation to glycolysis and scRNA-seq
confirmed the downregulation of genes of the mitochondrial
oxidative phosphorylation (Deshmukh et al., 2021).

Additionally, high glucose itself was shown to induce EMT in
renal tubular epithelial cells (Li et al., 2020). Inhibition of sodium-
glucose cotransporter 2 (SGLT2) suppressed glucose-induced
EMT and decreased renal fibrogenesis (Li et al., 2020). SGLT2
suppression in tubular epithelial cells was also able to suppress
EndMT of the peritubular capillaries (Li et al., 2020), further
highlighting the existence of an epithelial–endothelial crosstalk
during tissue injury (Balzer and Susztak, 2020).

To unravel the interdependency between metabolism and
EMP, the first step would be to perform a comprehensive
analysis of the metabolome of EMT during fibrosis, including
the analysis of single cell metabolism along the continuum of the
EMT spectrum. Considering that targeting EMT through
metabolic inhibitors has gained great attention in the cancer
field (Ramesh et al., 2020), it would be logical to argue that this
approach might be translated as well in fibrotic diseases, with
repurposed metabolic inhibitors potentially becoming a valuable
strategy to target fibrosis.

CONCLUDING REMARKS

Fibrosis is the final outcome of a cascade of events participating
in an uncontrolled wound healing response which causes an
exaggerated accumulation of ECM, eventually leading to tissue
scarring and organ failure (Zeisberg and Kalluri, 2013; Distler
et al., 2019; Henderson et al., 2020). Fibrosis can affect any
organ, and it is estimated to be responsible for up to 45% of the
deaths worldwide, therefore representing a major global
healthcare burden which cannot be further ignored
(Henderson et al., 2020). The gigantic effort to understand
mechanisms of fibrosis pathogenesis using experimental models
and cutting-edge techniques such as single cell sequencing has
not yet been translated into effective clinical trials. The gap
between the promising results obtained with in vivo
experimental models and the failure faced when they are
clinically translated is enormous and demands immediate
action.

In the context of identifying cellular drivers of fibrosis, EMT
was thought to be the major mechanism causing the
accumulation of myofibroblasts (Kalluri and Weinberg, 2009).
Although this might be true in vitro, where treatment with
inflammatory cytokines forces epithelial cells to transition to
an almost full mesenchymal phenotype, it appears that this is
not the case in vivo. Instead, in vivo EMT cells reside in a hybrid
partial EMT state which functionally participates in causing a
detrimental damage response of the injured tissue. Although
being in principle highly valuable (Table 1), targeting EMT
has emerged as a challenging task. Multiple factors contribute
to this difficulty in developing effective anti-EMT strategies,
including the dynamic transition through the hybrid state, the
theoretical infinity of the E/M intermediates, its orchestration

TABLE 1 | Summary of the different strategies to target EMT in fibrosis.

Targeting strategy Molecular targets Approach References

EMT-inducing
pathways

TGFβ, Hedgehog, Hippo, Wnt,
and Notch signaling pathways

Genetic deletion, antagonists, small molecule
inhibitors, miRNAs, natural compounds

Avila-Carrasco et al. (2019); Di Gregorio et al. (2020);
Jonckheere et al. (2021)

EMT-transcription
factors

Twist, Snail Genetic deletion in epithelial and endothelial
cells

Rowe et al. (2011); Mammoto et al. (2013); Wu et al. (2014);
Grande et al. (2015); Lovisa et al. (2015); Mammoto et al.
(2016); Mammoto et al. (2018); Lovisa et al. (2020)

Snail–CBP/p300 interaction Small molecule inhibitor Li et al. (2020) (cancer)
MEX3C-mediated, PTEN-
induced Twist and Snail
phosphorylation

Small molecule inhibitor Li et al. (2019)

Twist, Snail, Slug, Zeb1 Natural compounds Pei et al. (2017); Avila-Carrasco et al. (2019); Feng et al.
(2020)

MET BMP-7 Agonist Zeisberg et al. (2003); Zeisberg et al. (2005); Zeisberg et al.
(2007); Flier et al. (2010); Sugimoto et al. (2012)

Ubiquitinated p53 Small molecule inhibitor Ubil et al. (2014)

EMT-related metabolic
vulnerabilities

FAO PPARGC1A,
PPARα, PPARɣ

Genetic induction, agonist, natural compound Kang et al. (2015); Xu et al. (2017)

Glycolysis c-Myc Genetic deletion in epithelial cells,
transcriptional repression

Lovisa et al. (2020)

HK2 Inhibitor Lovisa et al. (2020); Yu et al. (2021)
SGLT2 Inhibitor Li et al. (2020)

EMT: epithelial-to-mesenchymal transition; MET: mesenchymal-to-epithelial transition; FAO: fatty acid oxidation.
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mainly at the transcriptional level, and the co-existence of
multiple and partially overlapping EMT-inducing pathways.

EMT has been recently looked at as an attractive target in
oncology (Marcucci et al., 2016). This interest is not quite reflected in
the fibrosis field, but certainly cross-communication between these
two areas of investigation could improve and optimize the effort
toward targeting EMT.The interest of the cancer scientific community
on EMT mainly regards targeting the possible metabolic alteration
accompanying EMT (Ramesh et al., 2020). Focusing the attention on
the EMT-induced vulnerabilities might indeed represent a promising
strategy, which would circumvent all the difficulties associated with
directly targeting the transcriptional drivers of EMT. Moreover, this
strategy would open the possibility for therapeutic repurposing of
metabolic drugs to fibrotic diseases. Persevering in our effort to better
understand the biological basis of EMT will certainly help in
identifying novel routes for therapeutic intervention.
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