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a b s t r a c t

Objective: The aim of the present study was to evaluate the effect of PRP on the repair of spinal cord
injury in rat model.
Material and methods: Rats were randomly divided into three groups with six rats in each group. Then,
spinal cord injury was performed under general anesthesia using “weight dropping” method. Control
group included rats receiving normal saline, group two received PRP 1 week after injury; group three
received PRP 24 h after injury. The motor function was assessed weekly using the Basso, Beattie, and
Bresnahan (BBB) locomotor rating scale. Anterograde tracing was performed for evaluation of axon
regeneration.
Result: Motor recovery was significantly better in the rats treated with PRP 24 h after injury than the
control group. In the rats treated with PRP 1 week after injury and rats treated with PRP 24 h after injury,
the average numbers of BDA-labeled axons were statistically different from the control group.
Conclusion: Our experimental study demonstrated positive effects of platelet rich plasma on nerve
regeneration after spinal cord injury.
© 2017 Turkish Association of Orthopaedics and Traumatology. Publishing services by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Spinal cord injury (SCI) often causes permanent neurological
deficits, mostly because injured neurons lack regenerative ability,
and a series of pathological events following SCI results in a second
wave of cell death and spreading tissue loss. Accordingly, axonal
regeneration and neuro-protection to restore functional recovery
after SCI become crucial. The majority of previous studies focused
upon growth and neurotrophic factors for recovery of SCI.1,2

Blood platelets contain many different growth and neurotrophic
factors that are released when activated, including platelet-derived
growth factor (PDGF), transforming growth factor-b (TGF-b),
insulin-like growth factor-1 (IGF-1), fibroblast growth factor (FGF),
deghnia).
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vascular endothelial growth factor (VEGF), brain-derived neuro-
trophic factor (BDNF), nerve growth factor (NGF) and
neurotrophin-3 (NT3).3e5 There is a great interest in utilizing
platelet rich plasma (PRP) in oral and maxillofacial bone grafting
procedures, non-healing wounds, ulcers, fistula, skin rejuvenation,
and peripheral nerve regeneration.6e12 However, there is no liter-
ature on the effect of PRP on the regeneration of central nerve
fibers, particularly in SCI. The enhancing effect of PRP is based on
the premises that a large number of platelets in PRP release sig-
nificant quantities of growth factors that aid the healing process.
These growth factors act locally to recruit undifferentiated cells to
the site of injury, trigger mitosis in these cells, and stimulate
angiogenesis.13

The aim of this study was to show that PRP can enhance nerve
regeneration and functional recovery when locally applied in rat
SCI model. Possible effects were evaluated using behavioral and
histological methods.
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Materials and methods

Animals

Male Wistar rats weighing 210e230 g were obtained from the
Animal Facilities of the School of Medicine, Mashhad University of
Medical Sciences (MUMS). All animal treated in accordance with
the National Institutes of Health Guidance for the Care and Use of
Laboratory Animals, and their use was approved by the Animal
Ethics Committee of Mashhad University of Medical Sciences
(910856). These rats underwent spinal cord contusion (see below)
and were treated with antibiotics (cefazolin 50 mg/kg). Moreover,
they were kept one per cage and underwent urinary bladder
massage at least twice a day until the recovery of spontaneous
micturition.

Spinal cord surgery

The rats were randomly divided into three groups, six rats
each.14 Then, the SCI was induced under general anesthesia using
the drop weight method. In group one, the rats received normal
saline (control group); in group two, they received PRP aweek after
the injury; and in Group three, they received PRP 24 h after the
injury. The rats were anesthetized (70 mg/kg ketamine and 10 mg/
kg xylazine), laminectomized at T10, and contused by dropping a
10 g metal rod from the height of 50 mm onto the exposed spinal
cord.15 Afterward, the dorsal musculature and skin was sutured.
Locomotor function was observed and recorded using the Basso,
Beattie, and Bresnahan (BBB) locomotor rating scale16 to ensure
that complete loss of locomotion in both hindlimbs occurred. An-
imals that showed a movement in hindlimbs, were excluded from
the study.

PRP preparation

One day before the operation, 10 ml of the peripheral blood was
collected from two inbred rats in a tube containing 1 ml clinical
grade citrate phosphate dextrose buffer. The donor rats were
anesthetized, and their blood was collected by cardiac puncture
under anesthesia. The animals were then killed by an intra-
peritoneal injection of an overdose of ketamine and xylazine. PRP
was then prepared by the first centrifugation at 2000 g for 2 min
and second centrifugation at 4000 g for 8 min.7

PRP injection

Five ml PRP were stereotaxically injected into 1.5 mm depth of
the caudal border of the lesion using Hamilton syringes fitted with
30G needles at a rate of 0.5 ml/min. Control spinally contused rats
received the injection of normal saline in the same manner. After
each injection, the 30 gauge needle was maintained in the spinal
cord for an additional 5 min to reduce the possibility of leakage of
the injected fluid from the site.

Behavioral analysis

Animals were assessed weekly for locomotor function by two
blinded observers, using BBB hindlimb locomotor rating scale and
the follow-up was continued for 5 weeks. All the results were
assessed by two observers who were blind to the treatment. Lo-
comotor activities were evaluated by placing animals for 4 min in
an open field. Hindlimb locomotor recovery in animals was scored
on a scale of 0 (no hindlimb movement) to 21 (normal mobility).
Anterograde tracing

Following the conclusion of behavioral experiments, three rats
from each group were anaesthetized and an incision was made
through the skin covering the skull. One hole was made at 2 mm
lateral and 1.6 mm caudal to the bregma. Then, 1 ml anterograde
tracer biotinylated dextran amine (BDA, Life Technologies, Cat No.
D-1956) was slowly injected at the depth of 1.5 mm. Two weeks
after the BDA injection, the animals were deeply anaesthetized
and transcardially perfused with 100 ml of heparinized phosphate
buffered saline (PBS), followed by 100 ml of 4% paraformaldehyde
in phosphate buffer (pH 7.4). The vertebral column was dissected
from each animal and post-fixed for 24 h. A 1 cm segment was cut
from the spinal cord, with the lesion at the mid-point of this
segment, and embedded in paraffin. The embedded spinal cords
were transversely sectioned (5 mm thickness with 200 mm inter-
val) using a microtome. The sections were washed in PBS con-
taining 0.1% Triton X-100, incubated for 1 h with avidin and
biotinylated horseradish peroxidase (HRP) (NeuroTrace TM BDA-
10,000 Neuronal Tracer Kit, Cat No. N-7167), washed in PBS, and
then reacted with 3,30-diaminobenzidine (DAB) in 50 mM Tris
buffer, pH 7.6, and 0.024% hydrogen peroxide. Following the DAB
staining, which led to black deposit formation, ten sequential
cross-sections, 5 mm apart, were randomly prepared. The cross-
section blocks were used to determine the extent of cortico-
spinal tract (CST) labeling in the lesion. The extent of the BDA
labeled fibers of the thoracic spinal cord at the thoracic vertebrae
(T10) in four sections from each animal were quantified (surface
area 0.28 mm2) in a blind manner using Scion Image software
(version 3.3, Germany).17
Statistical analysis

All the datawere represented asmean ± SEM. Statistical analysis
was performed using one-way ANOVA and two-way ANOVA. A
Turkey test was used for post-hoc analysis for all the comparisons.
The Statistical Package for Social Sciences (SPSS), version 16 (Chi-
cago, Inc., USA) was used for all statistical comparisons.
Results

Recovery of hindlimb function

The locomotor function was assessed weekly using the BBB lo-
comotor rating scale. As shown in Fig. 1, at week 5, the average
score of recovery of hindlimb function in the rats treated with PRP
24 h after SCI significantly increased in comparison with control
rats (p < 0.05). However, there was no significant difference in
recovery of hindlimb function between rats treated with PRP 24 h
after injury and rats treated with PRP 1 week after injury. The
average score of recovery of hindlimb function in the rats treated
with PRP 1 week after injury showed no significant difference in
comparisonwith control rats. In the 5th week after SCI, the average
score in the control group was 9.67 ± 0.42, while in the rats treated
with PRP 1 week or 24 h after SCI were 10.67 ± 0.49 and
11.67 ± 0.42, respectively. At week 5 post spinal injury, most rats
treated with PRP 24 h after injury showed plantar stepping with
frequent to consistent weight bearing and occasional forelimb-
hindlimb coordination (p < 0.05). On the contrary, control rats
and those treated with PRP 1 week after injury showed plantar
stepping with occasional weight bearing and no forelimb-hindlimb
coordination.
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Fig. 1. Effect of platelet rich plasma (PRP) on locomotor functions following spinal cord injury (SCI). BBB scores of the rats treated with PRP 24 h after injury were significantly higher
than control animals, at 5th week. There was no significant difference between BBB scores of the rats treated with PRP 24 h after injury and those treated with PRP 1 week after SCI.
Data are presented as mean ± SEM (n ¼ 6). *p < 0.05, as compared with control group.
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Quantification of CST axons

For verifying axon regeneration, we analyzed the spinal cords
for the presence of descending fibers below in the lesion site, using
stereotactic anterograde tracing of BDA administered to the motor
cortexes. Representative images showing BDA labeled axons in the
middle of the spinal lesion (T10) were illustrated in Fig. 2. The
lowest count was found in the control group with the average of
115 ± 12 BDA-labeled axons (Fig. 2). In the rats treated with PRP 1
week after injury and rats treated with PRP 24 h after injury, the
average numbers of BDA-labeled axons were 330 ± 28 and
343 ± 26, respectively, which were statistically different from the
control group (p < 0.001). Therewas no significant difference in the
average numbers of BDA-labeled axons between rats treated with
PRP 1 week after injury and those treated with PRP 24 h after SCI.
Fig. 2. Effect of platelet rich plasma (PRP) on axonal regeneration at 5 weeks after spinal cord
(T10) showing biotinylated dextran amine-labeled corticospinal tract (CST) fibers visualized
treated with PRP 1 week after SCI (B) and rats treated with PRP 24 h after SCI (C). Arrows
Quantitative data showing the numbers of BDA-labeled axons per section (n ¼ 12/group).
Discussion

In this study, we found that the PRP injection promoted the axon
regeneration in the rat model of spinal cord contusion. Moreover, in
the 5th week of the post-spinal injury, the PRP administration
resulted in significant functional recovery in the rats which
received PRP 24 h post-lesion. This study is the first to report that
PRP is able to improve the central nerve recovery after SCI.

The results of this study are consistent with the previous studies
focusing on the effects of PRP on peripheral nerves injuries. Farrag
et al reported that PRP promotes the peripheral nerve regeneration
after the facial nerve transaction in rats.18 Furthermore, Cho
et al applied PRP and mesenchymal stem cells (MSCs) in an animal
model of facial nerve axotomy and concluded that PRP and MSCs
enhanced the peripheral nerve regeneration of the acute nerve
injury (SCI). AeC: Representative photomicrographs of the thoracic transverse sections
by diaminobenzidine (DAB) staining technique (brown spots) in the control (A), rats

indicate biotinylated dextran amine (BDA) labeled CST fibers (magnification �400). D:
Data were shown as mean ± SEM. ***P < 0.001, as compared with control group.
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injury.19 In another study, Kucuk et al applied PRP in a sciatic nerve
cut model and demonstrated the positive effects of PRP on the
nerve regeneration. They concluded that the functional healing and
histological parameters in the PRP group were significantly better
than those in the control group.4 Similar investigations on pe-
ripheral nerve injuries have demonstrated the positive effects of
PRP on the nerve regeneration and functional recovery.5,20 Take-
uchi et al applied a rat organ co-culture system (brain-spinal cord
coculture) to evaluate the ability of PRP to promote the axonal
growth in spinal cord tissues and identify the growth factors in PRP
that contribute to the regulation of the axon growth. They
concluded that PRP enhanced the axonal growth in the spinal cord
tissues throughmechanisms associated with IGF-1 and VEGF, while
TGF-b1 in PRP exerted negative effects on the axonal growth.21 On
the contrary, Piskin et al showed that sciatic nerve regeneration
was not improved after microsurgical reconstruction of a nerve gap
by platelet gel.22 In another study, Welch et al revealed that com-
bined administration of PDGF and IGF-I did not improve peripheral
nerve regeneration in a transection and anastomosis model.23

A higher density of axons appeared in the lesion site of PRP-
treated rats, as compared with the control animals. In the rats
treated with PRP 24 h post-lesion, the BBB score at the 5th week
was significantly higher than control rats. However, no significant
functional recovery was observed in the group treated with PRP 1
week after the SCI. This finding suggested that rescuing neurons at
the first hours after SCI is crucial for the functional restoration.
Therefore, PRP therapy should be performed before secondary
injury is initiated. This finding was supported by a previous study,
reporting that the hindlimb functional recovery failed when
growth factors were infused into damaged spinal cords in the sub-
acute phase.24 However, the number of regenerating axons might
not correlate with the functional restoration of the axon, because
the regeneration of the axons might occur outside the correct
pathway, resulting in the innervations of both agonist and antag-
onist muscles.4,25e27

A normal blood clot contains 95% red blood cells, 5% platelets,
less than 1% white blood cells, and many fibrin strands. A PRP clot
contains 4% red blood cells, 95% platelets, and 1% white blood cells.
Alpha granules of platelets contain seven essential growth factors
known to be actively secreted by platelets to initiate wound heal-
ing. These growth factors include the 3 isomers of the platelet-
derived growth factor (PDGF-aa, PDGF-bb, and PDGF-ab), 2 of the
numerous transforming growth factors-b (TGF-b1 and TGF-b2), a
vascular endothelial growth factor, and an epithelial growth fac-
tor.3,4 These factors are associated with repair processes after the
CNS injury and act as a catalyst for enhancing the repair process of
regenerating nerve fibers. In addition, platelets contain low con-
centrations of neurotrophic factors such as BDNF, NGF, and NT3,
which are produced following the nerve injury by activated
Schwann cells. PRP acts directly as a catalyst for accelerating the
nerve regeneration and indirectly by activating Schwann cells to
produce neurotrophic factors.4,5,28

In conclusion, our study showed that a single dose of PRP
applied on the lesion site 24 h after SCI increases recovery of motor
function by increasing the number of axons. The low number of
subjects can be considered as main weakness of our study. How-
ever, we used the fewest number of animals necessary to produce
significance for the sake of promoting the rights of animals. Based
on the results of the present work, the authors concluded that PRP
enhanced axonal regeneration and improved functional motor re-
covery when applied 24 h post-injury, which could indicate that
PRP may have neurotrophic and neuroprotective effects in the rat
SCI model. Further studies are recommended to support the pre-
sent results and to explore the mechanisms of beneficial effects of
PRP in the SCI.
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