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Abstract

The metabolic reprogramming of cancer cells creates metabolic vulnerabilities that can be

therapeutically targeted. However, our understanding of metabolic dependencies and the

pathway crosstalk that creates these vulnerabilities in cancer cells remains incomplete.

Here, by integrating gene expression data with genetic loss-of-function and pharmacological

screening data from hundreds of cancer cell lines, we identified metabolic vulnerabilities at

the level of pathways rather than individual genes. This approach revealed that metabolic

pathway dependencies are highly context-specific such that cancer cells are vulnerable to

inhibition of one metabolic pathway only when activity of another metabolic pathway is

altered. Notably, we also found that the no single metabolic pathway was universally essen-

tial, suggesting that cancer cells are not invariably dependent on any metabolic pathway. In

addition, we confirmed that cell culture medium is a major confounding factor for the analysis

of metabolic pathway vulnerabilities. Nevertheless, we found robust associations between

metabolic pathway activity and sensitivity to clinically approved drugs that were independent

of cell culture medium. Lastly, we used parallel integration of pharmacological and genetic

dependency data to confidently identify metabolic pathway vulnerabilities. Taken together,

this study serves as a comprehensive characterization of the landscape of metabolic path-

way vulnerabilities in cancer cell lines.

Author summary

Cancer cells rewire their metabolism, which creates targetable metabolic vulnerabilities.

Previous analyses of metabolic vulnerabilities in cancer cells have been limited to the anal-

ysis of individual genes or metabolites. However, metabolic pathways exhibit significant

cross talk and compensation for one another. We developed a computational method to

answer the question: when a metabolic pathway’s activity is high, which other metabolic

pathways become more essential or less essential? By integrating genetic screen data with

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Joly JH, Chew BTL, Graham NA (2021)

The landscape of metabolic pathway dependencies

in cancer cell lines. PLoS Comput Biol 17(4):

e1008942. https://doi.org/10.1371/journal.

pcbi.1008942

Editor: Jason W. Locasale, Duke University,

UNITED STATES

Received: October 13, 2020

Accepted: April 6, 2021

Published: April 19, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008942

Copyright: © 2021 Joly et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Our code is freely

available for use at: https://github.com/JamesJoly/

MetabolicDependencies.

Funding: This work was supported by: 1) The

American Cancer Society Grant IRG-16-181-57 (N.

https://orcid.org/0000-0003-3780-9412
https://orcid.org/0000-0002-6639-3113
https://orcid.org/0000-0002-6811-1941
https://doi.org/10.1371/journal.pcbi.1008942
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008942&domain=pdf&date_stamp=2021-04-29
https://doi.org/10.1371/journal.pcbi.1008942
https://doi.org/10.1371/journal.pcbi.1008942
https://doi.org/10.1371/journal.pcbi.1008942
http://creativecommons.org/licenses/by/4.0/
https://github.com/JamesJoly/MetabolicDependencies
https://github.com/JamesJoly/MetabolicDependencies


drug response data from FDA approved drugs, we identified cancer cell line dependence

on metabolic pathways as opposed to individual genes. For example, we found that identi-

fying key regulators of metabolic pathways, such as the Pentose Phosphate Pathway, may

serve as a biomarker to identify which patients may benefit from antifolate chemothera-

pies (e.g. methotrexate, 5-fluorouracil). The efforts outlined here serve as the first charac-

terization of the landscape of metabolic pathway vulnerabilities in cancer cell lines. Our

results demonstrate the benefit of analyzing dependencies on metabolic pathways as

opposed to metabolic genes.

Introduction

The reprogramming of cellular metabolism was one of the earliest discovered hallmarks of

cancer [1]. Cancer cells rewire their metabolism to satisfy the bioenergetic, biosynthetic, and

redox demands of tumors. In turn, these metabolic adaptations create cancer-specific vulnera-

bilities that can be therapeutically targeted [2]. Much research has focused on how individual

mutations or DNA copy number alterations reprogram tumor metabolism and create thera-

peutic opportunities [3–7]. For example, leukemias and gliomas with mutations in isocitrate

dehydrogenase (IDH) are sensitive to inhibitors specific to mutant IDH [8,9]. In addition,

some tumors are sensitive to depletion or restriction of amino acids, including cysteine in

tumors with deleted methylthioadenosine phosphorylase (MTAP) [10], serine in tumors with

deleted p53 (TP53) [11], asparagine in leukemias with low expression of asparagine synthetase

(ASNS) [12], asparagine in tumors with inhibition of the electron transport chain [13], and

methionine in RAS-driven tumors [14]. Other efforts have identified metabolic vulnerabilities

related to redox balance including in cancer cells with dysregulated PI3K/AKT signaling [15]

or overexpression of the L-glutamate/L-cystine antiporter SLC7A11 [16,17].

While these studies have proved fruitful for advancing the therapeutic targeting of cancer

metabolism [2], they have traditionally been limited to the study of individual genes. However,

metabolic pathways consist of multiple enzymes which collectively regulate metabolic flux.

Furthermore, metabolic pathways often have similar byproducts (e.g. ATP, NAD(P)H), sug-

gesting that pathways may compensate for one another under different contexts. For example,

NADPH can be produced by three different pathways: the oxidative pentose phosphate path-

way, serine-driven one-carbon metabolism, and malic enzyme [18]. These three pathways can

presumably be up- and down- regulated to respond to changes in activity of the other path-

ways. Since these compensatory mechanisms exist across human metabolism, studying the

effects of individual genes may not reflect cancer cell metabolic vulnerabilities at the pathway

level. As a result, our understanding of cancer cell dependency on metabolic pathways remains

incomplete.

Recent developments in large scale CRISPR-based genetic [19,20] and pharmacologic

screening [21] along with large panels of comprehensively characterized cancer cell lines [22]

have proved powerful tools for identification of genes essential for cancer cell survival [23],

elucidation of drug mechanism-of-action [19,24,25], and discovery of novel candidate drug

targets [26,27]. Furthermore, parallel integration of both pharmacologic and gene loss-of-func-

tion data has been used to identify drug mechanism(s) of action [25,28–30]. While these data-

bases have served as a rich resource to explore individual gene vulnerabilities and drug

sensitivities, there exists a need to probe these datasets on the pathway level.

Here, we aimed to identify cancer cell dependencies on metabolic pathways rather than

individual metabolic genes. To do so, we used gene expression data from the Cancer Cell Line

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway dependencies in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 2 / 23

A.G.) https://www.cancer.org/ 2) The 2020 AACR-

Bayer Innovation and Discovery Grant, Grant

Number 20-80-44-GRAH (N.A.G). https://www.

aacr.org/ 3) The Viterbi School of Engineering at

the University of Southern California (N.A.G.).

https://viterbischool.usc.edu/ The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008942
https://www.cancer.org/
https://www.aacr.org/
https://www.aacr.org/
https://viterbischool.usc.edu/


Encyclopedia (CCLE) to infer metabolic pathway activity and then integrated these pathway

activities with data from genetic and pharmacologic screens across hundreds of cell lines. We

show that this approach provides a comprehensive characterization of the landscape of meta-

bolic pathway dependencies in cancer cell lines. In addition to demonstrating the context-spe-

cific nature of metabolic pathway dependence, we identified both known and novel metabolic

vulnerabilities, discovered robust associations between drug response and metabolic pathway

activity, and independently found metabolic pathway essentialities in both genetic and phar-

macological screens. Collectively, we present an approach to integrate gene expression, gene

dependency, and drug response data to identify cancer cell dependencies on metabolic

pathways.

Results

Genetic pathway dependency enrichment analysis identifies metabolic

pathway dependencies in genetic screens

To identify metabolic pathway dependencies, we analyzed gene expression data and CRISPR--

Cas9 loss-of-function screens from 689 cancer cell lines overlapping between the Cancer Cell

Line Encyclopedia (CCLE) [22,26] and the Cancer Dependency Map [20]. First, we inferred

metabolic pathway activity for each cell line using single-sample gene set enrichment analysis

(ssGSEA) of the RNAseq data from each cell line [31]. To focus on metabolism, we queried 69

metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [32]. We

chose to focus on pathways that are expressed in human metabolism and had more than five

genes in each set. Because metabolism is influenced by culture type [33] and culture medium

[23], we first divided cancer cell lines by culture type (e.g., adherent v. suspension culture) and

media (e.g., RPMI v. DMEM) (Fig 1A). Cell lines without annotations for either of these fea-

tures were removed, leaving 300 adherent cell lines cultured in RPMI, 153 adherent cell lines

cultured in DMEM, 66 suspension cell lines cultured in RPMI, and 2 suspension cell lines cul-

tured in DMEM. Since the number of suspension cell lines was small, we focused our analysis

on adherent cell lines. The resulting ssGSEA normalized enrichment scores (ssNESs) represent

the metabolic pathway activity relative to all other cell lines within the respective cell culture

medium. Next, we correlated the cell line-specific NESs for each metabolic pathway with cell

fitness effects from CRISPR-Cas9 loss-of-function screens (16,643 gene knockouts). Here,

each correlation coefficient represents the association between metabolic pathway activity and

gene essentiality, with positive values representing increased gene dependency in cell lines

with increased metabolic pathway activity. Conversely, a negative correlation indicates

increased gene dependency in cell lines with decreased metabolic pathway activity. Finally, to

measure the essentiality of the entire metabolic pathway, as opposed to individual genes, we

then ranked the resulting 16,643 correlation coefficients and analyzed the rank list using

GSEA again querying the KEGG metabolic pathways. Here, positive NES values represent

increased pathway dependency upon increased pathway activity, whereas negative NES values

represent increased pathway dependency upon decreased pathway activity. Because this

approach integrates the essentiality of all genes across a metabolic pathway into a single metric

of pathway dependency, we termed this approach genetic pathway dependency enrichment

analysis (Genetic PDEA).

To analyze the sensitivity of our Genetic PDEA approach, we analyzed simulated gene

expression and gene dependency data using the pipeline outlined in Fig 1A. Gene expression

data (16,643 genes) was simulated for 300 cell lines using a normal distribution for each cell

line (μ = 0, σ = 0.5) which reflects the shape of CCLE gene expression data (S1 Fig). Then, a

synthetic gene set of 25 genes was perturbed using a normal distribution gradient. In cell line
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1, the 25 genes were replaced with values from a normal distribution with μ = -X, σ = 0.5, and

in cell line 300, the 25 genes were replaced with values from a normal distribution with μ = +X,

σ = 0.5. For cell lines 2–299, the 25 genes were replaced with values from normal distributions

with μ sequentially increasing from -X to X. ssGSEA NESs were then calculated for the syn-

thetic gene set for all 300 cell lines. Next, gene dependency data was simulated for the same

300 cell lines using a similar normal distribution gradient method. For both gene expression

and gene dependency data, values for the perturbation X were varied from 0 to 0.5. Then,

Spearman correlation coefficients between synthetic gene set activity (ssGSEA NESs) and gene
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Fig 1. Integration of gene expression and CRISPR gene dependencies to identify metabolic pathway dependencies. A) Schematic outlining the

approach for Genetic Pathway Dependency Enrichment Analysis (Genetic PDEA). Cancer cell lines from the CCLE were first stratified by culture type

(adherent, suspension) and culture medium (RPMI, DMEM), and then their metabolic pathway activity was inferred using single-sample GSEA

(ssGSEA). The resulting pathway activities were integrated with gene dependency to assess association with metabolic pathway activity. B-C)

Simulated data (see Methods) was used to assess the sensitivity of the Genetic PDEA approach. The heatmaps represent the percentage of significant

results at each gradient added. Values added to the expression gradient resulted in slightly stronger correlation coefficients and Genetic PDEA results

compared to values added to dependency gradient.

https://doi.org/10.1371/journal.pcbi.1008942.g001
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dependency were calculated for all 16,643 genes. Finally, GSEA was run to calculate the simu-

lated Genetic PDEA values as outlined in Fig 1A. Analyzing 50 replicates of this simulation

pipeline, we found that both the correlation coefficients and Genetic PDEA NES results were

more strongly influenced by expression gradients added than dependency gradients added

(Fig 1B and 1C). This suggests that our Genetic PDEA approach to identify metabolic pathway

vulnerabilities in cancer cells is more sensitive to changes in metabolic pathway activity than

changes in gene dependency. However, when the perturbation X was large for the dependency

gradient and small for the expression gradient (or vice versa), significant Genetic PDEA NES

values were still obtained.

Having validated the sensitivity of our Genetic PDEA approach, we next investigated cancer

cell line dependency across all KEGG metabolic pathways. We tested a total of 4,692 metabolic

pathway combinations and identified 190 significant enrichments (FDR < 0.05) between met-

abolic pathway activity and pathway dependency in the adherent RPMI data set and an addi-

tional 190 significant enrichments in the adherent DMEM data set (S1 Table). Leading edge

genes for each significant pathway dependency are listed in S1 Table. We next clustered

Genetic PDEA NES values across all pathway activities (columns) and pathway dependencies

(rows) (Figs 2A and S2A) and found that related pathways clustered together on the x-axis

(pathway activity) but not on the y-axis (pathway dependency). This suggests that pathway

activity but not pathway dependency is similar within a group of related pathways. For exam-

ple, glycan biosynthesis pathways exhibit similar correlations with activity of other glycan

pathways (columns) but differ in their own dependency (rows). We also found that the no sin-

gle metabolic pathway had universally positive or negative NES values, suggesting that cancer

cells are not universally dependent on any metabolic pathway. Interestingly, the strongest met-

abolic dependency of adherent RPMI cancer cell lines was Folate Biosynthesis (hsa00790)

when One-Carbon Pool by Folate (hsa00670) pathway activity was high (Fig 2B). This enrich-

ment was driven by the genes QDPR, ALPI, ALPP, and GCH1. Notably, Folate Biosynthesis is

directly upstream of One-Carbon Pool by Folate. Furthermore, one of the strongest Genetic

PDEA results in both the adherent DMEM and adherent RPMI analyses recapitulated a link

between increased dependency on One-Carbon Pool by Folate in cells with increased TCA

cycle activity [34] (Figs 2C and S2B). Additionally, some metabolic pathways exhibited con-

text-specific dependencies. For example, the dependency on the TCA Cycle (hsa00020) was

increased in adherent RPMI cell lines with decreased Glycolysis-Gluconeogenesis (hsa00010)

activity, whereas dependency on the TCA cycle was increased in adherent RPMI cell lines with

increased Pentose Phosphate Pathway (hsa00030) activity (S3 Fig). This new finding suggests

that the diversion of glucose from glycolysis to the pentose phosphate pathway may confer

increased dependency on the TCA Cycle. We next asked whether there existed a general rela-

tionship between a metabolic pathway’s activity and its own essentiality. Of the 69 metabolic

pathways queried, 36 had a negative NES and 33 had a positive NES for adherent RPMI cell

lines (S4A Fig and S2 Table). A similar distribution was observed in DMEM, although the

pathways with positive and negative NES values were not the same as in RPMI (S4B Fig).

While there was not general agreement between the self-dependencies, one gene set did exhibit

significant Genetic PDEA NES for both Adherent RPMI and Adherent DMEM cells. Specifi-

cally, Riboflavin Metabolism (hsa00740) exhibited significant negative Genetic PDEA NES,

indicating that when Riboflavin Metabolism activity is low, the dependency on Riboflavin

Metabolism genes increases. Taken together, these results suggest that there is no generic rule

regarding a metabolic pathway’s activity and its essentiality. Rather, these results indicate that

metabolic pathway dependency is highly context specific such that metabolic pathway activity

influences metabolic pathway essentiality.

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway dependencies in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 5 / 23

https://doi.org/10.1371/journal.pcbi.1008942


PLOS COMPUTATIONAL BIOLOGY Metabolic pathway dependencies in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 6 / 23

https://doi.org/10.1371/journal.pcbi.1008942


Validation of genetic PDEA results using other CRISPR data sets and

pathway activity metrics

We next wanted to examine whether these findings were reproducible across data sets and

methods. To examine whether these findings were reproducible, we analyzed data from

another large-scale pan-cancer CRISPR-Cas9 gene dependency data set (Sanger Institute) [35]

using the Genetic PDEA pipeline. Since the underlying gene expression profiles were derived

from the CCLE for both Sanger and DepMap Genetic PDEAs, we combined statistical tests

using the harmonic mean p-value (HMP) which combines dependent statistical tests while

controlling the family-wise error rate (FWER) [36]. Applying an HMP threshold of 0.05, we

found that 96% and 90% of significant results in the DepMap Genetic PDEA were recapitu-

lated in the combined DepMap and Sanger Genetic PDEA results for Adherent RPMI and

Adherent DMEM cells, respectively (S5 Fig and S3 Table).

Next, we tested the effect of metrics other than ssGSEA for inference of metabolic pathway

activity. We chose to use normalized weighted average expression (NWAS), which accounts for

overlap between gene sets [37]. To directly compare NWAS with ssGSEA, we re-ran our pipeline

using NWAS to analyze dependency on the Pentose Phosphate Pathway which contains several

enzymes that are shared with other metabolic pathways (e.g., PRKL, PFKM, and PKFP are present

in both Glycolysis-Gluconeogenesis and Pentose Phosphate Pathway gene sets). We found broad

agreement between the metabolic pathway dependencies when using either NWAS or ssGSEA

for both Adherent RPMI and Adherent DMEM cell lines (Spearman r of 0.606 and 0.691, respec-

tively) (S6 Fig). Taken together, these findings demonstrate that our Genetic PDEA results for

metabolic pathway dependencies are reproducible across different data sets and methods.

Media composition influences metabolic pathway dependency

We next investigated whether cancer cell line metabolic pathway dependencies were influ-

enced by media composition. To assess the essentiality of a pathway, we weighted each NES

from Genetic PDEA by its -log10 FDR and then took the mean of all weighted NESs. We found

striking differences between DMEM and RPMI metabolic pathway essentialities that can be

partly explained by media composition (Fig 3), consistent with the finding that the essentiality

of individual metabolic genes is influenced by culture medium [23]. For example, cancer cells

cultured in RPMI exhibited a strongly positive average weighted NES for Folate Biosynthesis

(hsa00790) whereas cancer cells cultured in DMEM did not. Notably, DMEM contains four

times the concentration of folate (4 mg/L) compared to RPMI (1 mg/L), suggesting that cancer

cells grown in DMEM need to synthesize less folate, thereby reducing their dependency on

Folate Biosynthesis. Similarly, cancer cells grown in DMEM were more dependent on Oxida-

tive Phosphorylation (hsa00190) than cancer cells grown in RPMI. One function of oxidative

phosphorylation is to enable aspartate synthesis to accept electrons from the electron transport

chain [38,39]. Since RPMI and DMEM contain 150 μM and 0 μM aspartate, respectively, the

Fig 2. Global analysis of metabolic dependency data reveals context-specific pathway essentialities. A) Metabolic pathway activity was

inferred using ssGSEA for 300 adherent cell lines cultured in RPMI and correlated to gene dependency data from The Cancer Dependency Map

(DepMap). Correlation coefficients were then ranked and Genetic Pathway Dependency Enrichment Analysis (Genetic PDEA) was run using the

KEGG metabolic pathways (see Fig 1). Hierarchical clustering was performed on the Genetic PDEA normalized enrichment scores (NES). Results

for pathways with FDR< 0.25 are plotted. Dots are colored according to their NES and sized according to the -log10 of the false discovery rate

(FDR). Numerical values for each pathway can be found in S1 Table. Results shown in B and C are highlighted with a black outline. B) Cancer cell

dependency on Folate Biosynthesis (hsa00790) was increased when One-Carbon Pool by Folate (hsa00670) pathway activity was high. The scatter

plots of pathway activity NES and gene dependency (-CERES) for leading-edge genes QDPR and ALPI are shown. C) Dependency on One-

Carbon Pool by Folate metabolism (hsa00670) is increased when TCA cycle (hsa00020) activity is increased. The scatter plots of pathway activity

NES and gene dependency (-CERES) for leading-edge genes MTR and MTHFD1 are shown.

https://doi.org/10.1371/journal.pcbi.1008942.g002
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Fig 3. Media composition influences metabolic pathway dependency. For adherent cancer cell lines cultured in RPMI (Fig 2) and DMEM (S2 Fig), the metabolic

pathway dependency NESs from Genetic PDEA analysis were weighted by -log10 FDR. The weighted NESs were then averaged across all 69 KEGG metabolic

pathways. Pathways are ranked by the difference between DMEM and RPMI. The relative media composition between RPMI and DMEM are shown on the right on a
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input to One-Carbon Pool by Folate. The dependency on Folate Biosynthesis was much higher in RPMI than in DMEM because these cells must synthesize more
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a significant difference in pathway essentiality in DMEM and RPMI (p = 3.9x10-4 by paired Mann-Whitney U test). In contrast, pathways that do not contain

differentially abundant cell culture media metabolites did not exhibit significantly different pathway dependencies (p = 0.545 by paired Mann-Whitney U test).

https://doi.org/10.1371/journal.pcbi.1008942.g003

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway dependencies in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 8 / 23

https://doi.org/10.1371/journal.pcbi.1008942.g003
https://doi.org/10.1371/journal.pcbi.1008942


increased dependency on oxidative phosphorylation in DMEM may reflect an increased need

for aspartate synthesis. Interestingly, we did not observe a strong difference in dependency on

Aspartate, Alanine, and Glutamate metabolism (hsa00250) between RPMI and DMEM despite

the difference in aspartate concentrations. We posit that the inclusion of alanine and glutamate

metabolism genes may be a confounding factor for analyzing aspartate dependency.

To test whether media composition globally affected metabolic pathway abundance, we

divided metabolic pathways into two groups: 1) pathways that contain metabolites with differ-

ential abundance in cell culture media (e.g., Glycolysis-Gluconeogenesis (glucose), Folate bio-

synthesis (folate)); and 2) pathways that do not contain metabolites with differential

abundance in cell culture media (e.g., fatty acid metabolism, fructose and mannose metabo-

lism). We then tested whether the metabolic pathway dependency in RPMI and DMEM dif-

fered for both groups of pathways. Notably, we found that pathways that contain differentially

abundant metabolites in cell culture media exhibited significantly different pathway essentiali-

ties in DMEM and RPMI (p = 3.9x10-4). In contrast, pathways that do not contain metabolites

that are differentially abundant in cell culture media did not exhibit significantly different

pathway dependencies in DMEM and RPMI (p = 0.545). Taken together, these results suggest

that media composition influences cancer cell line metabolic pathway dependency and that

future studies of metabolic vulnerabilities should take media composition into consideration.

Metabolic pathway activity is correlated with anti-cancer drug sensitivity

We next sought to integrate metabolic pathway activity with large scale pharmacologic screens.

We therefore used the PRISM drug repurposing database [21], which contains 1,448 compounds

screened against 499 cell lines at 8 different doses. Once again, cell lines were separately pro-

cessed by culture type and culture medium with a focus on adherent cell lines. Compounds mea-

sured in less than 150 cell lines were removed from the analysis, leaving 1,390 compounds. We

then correlated drug response area-under-the-curve (AUC) with metabolic pathway activity

after multiplying the response of drugs classified as positive regulators (e.g., agonists) by -1 for

directional consistency (Fig 4A). Here, the AUC represents the dose dependent effect of a drug

on cell growth, with a lower AUC representing a stronger response to drug [21]. First, we asked

whether there were any drugs with directional agreement across the RPMI and DMEM analyses.

From a possible 101,360 possible drug:metabolic pathway combinations, 66 combinations passed

FDR-corrected significance thresholds (q< 0.05) and were of the same sign in both RPMI and

DMEM (S4 Table). Notably, zero results that passed FDR correction were of different sign.

Many of the common associations in RPMI and DMEM were tyrosine kinase inhibitors (TKIs),

which have been extensively linked to metabolism [40]. Interestingly, we found a strong associa-

tion between decreased Core Glycolysis (hsa_M00001) pathway activity and increased sensitivity

to AZD8931, an inhibitor of EGFR and ERBB2 (HER2) (Fig 4B). We also found a strong associ-

ation between increased α-linoleic acid metabolism (hsa00592) and sensitivity to afatinib,

another EGFR inhibitor (Fig 4C). Of the non-TKI results, we found a link between decreased

phenylalanine metabolism (hsa00360) and increased sensitivity to atorvastatin, an HMGR inhib-

itor (Fig 4D). HMGR is the rate limiting enzyme in the cholesterol biosynthetic pathway [41]

and multiple reports have suggested that elevated levels of phenylalanine inhibit cholesterol bio-

synthesis [42–44]. Increased response to atorvastatin when phenylalanine metabolism activity is

low suggests that decreased phenylalanine metabolism and HMGR inhibitors may be redundant.

Lastly, we found a known link between decreased mucin type O-glycan biosynthesis pathway

(hsa00512) activity and increased sensitivity to the HSP90 inhibitor NMS-E973 [45] (Fig 4E).

Taken together, these results indicate that metabolic pathway activity can be associated with

anti-cancer drug sensitivity independent of cell culture medium.
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Pharmacological pathway dependency enrichment analysis reveals

common metabolic pathway vulnerabilities

Having identified strong associations between metabolic pathway activity and individual

drugs, we next asked whether there were commonalities in the response of cancer cell lines to
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Fig 4. Metabolic pathway activity identifies anti-cancer drug sensitivity independent of cell culture medium. A) Schematic representing

the strategy used to integrate metabolic pathway activity with drug response screens. Cancer cell lines were separately processed by culture

type and culture medium with a focus on adherent cell lines. All correlation p-values were FDR corrected using a Benjamini-Hochberg

correction. B-E) Scatter plots of significant drug:metabolic pathway combinations (FDR< 0.05) in both DMEM and RPMI mediums.

Correlation coefficients and FDR corrected p-values are shown for each correlation. The annotated gene target of each drug is listed below

the drug name. The remaining significant associations are listed in S2 Table.

https://doi.org/10.1371/journal.pcbi.1008942.g004
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families of metabolic pathway inhibitors. Drugs were mapped to metabolic pathways using

their annotated target(s) and grouped according to the KEGG metabolic pathways database.

Drugs were also classified as positive or negative regulators based on their annotated mecha-

nism of action. For example, drugs labeled as “agonists” or “activators” were classified as posi-

tive regulators whereas “blockers” and “antagonists” were classified as negative regulators. To

enable a consistent pathway analysis, correlation coefficients for positive regulators were mul-

tiplied by -1. Pathways with less than 4 drugs were omitted from the analysis, leaving 46 sets of

drugs targeting metabolic pathways. We then analyzed the enrichment of these metabolic

pathway inhibitors in the rank list of drug sensitivity-metabolic pathway activity correlation

coefficients (n = 1,390). We termed this approach Pharmacological Pathway Dependency

Enrichment Analysis (Pharmacological PDEA) (S7A Fig). To test the sensitivity of this

approach, we again performed a simulation study with simulated gene expression data and

simulated drug sensitivity (1,390 drugs). This approach was analogous to the simulation study

of Fig 1B with 1,390 drug sensitivities replacing 16,643 gene dependencies. Like Genetic

PDEA, we found that expression gradients resulted in stronger results than dependency gradi-

ents for both individual drug correlation coefficients and Pharmacological PDEA (S7B and

S7C Fig).

We then clustered the pharmacological PDEA NESs and found that pathways with similar

function clustered together based on pathway activity (columns) more than with their depen-

dency profile across pathways (rows) (Figs 5A and S8A and S5 Table), similar to our results

with Genetic PDEA (Fig 2). For example, the activities of Core Glycolysis (hsa_M00001), Fruc-

tose and Mannose Metabolism (hsa00051), Starch and Sucrose Metabolism (hsa00500), and

Pentose Phosphate Pathway (hsa00030) were clustered together in the adherent RPMI cell

lines. Among the strongest Pharmacological PDEA results, we found that sensitivity to inhibi-

tors of Terpenoid Backbone Biosynthesis (hsa00900) was increased in adherent RPMI cancer

cells with high Alanine, Aspartate, and Glutamate Metabolism (hsa00250) (Fig 5B). We also

found an interesting link between decreased pentose phosphate pathway (PPP) pathway activ-

ity and increased sensitivity to folate biosynthesis inhibitors (Fig 5C). Because folate biosyn-

thesis inhibitors prevent the generation of NADPH via one-carbon metabolism, these

inhibitors may be more damaging to cellular redox balance when PPP expression is low. In

fact, most strong results for inhibitors of folate biosynthesis occur when overall metabolic

pathway activity is low (Figs 5D and S8B). Conversely, inhibitors of Ascorbate and Aldarate

metabolism (hsa00053) are more effective when overall metabolic pathway activity is high (Fig

5E). This may be because ascorbate (also known as Vitamin C) is an effective antioxidant used

to detoxify reactive oxygen species (ROS). ROS are a byproduct of many metabolic reactions

such as oxidative phosphorylation and methionine metabolism, which indirectly produces

ROS by supporting polyamine synthesis [10]. Indeed, the sensitivity to inhibitors of Ascorbate

and Aldarate metabolism is stronger when expression of these ROS producing pathways is

high (Fig 5F) suggesting that ascorbate’s role as an antioxidant is crucial in this context. Taken

together, these results reveal contexts in which pharmacological inhibition of metabolic path-

ways results in decreased cell survival.

Integration of pharmacologic and genetic screens reveals consistent

metabolic vulnerabilities

Next, we sought to integrate results from genetic and pharmacological screen data to identify

consistent metabolic pathway dependencies found independently in both analyses. First, we

integrated individual gene dependency correlations with their corresponding drug sensitivity

correlations by first annotating each drug with its gene target(s). We then summed the gene
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dependency correlation coefficient and the drug sensitivity correlation coefficient for each

drug target and assessed significance by a permutation test with FDR correction (Fig 6A). Out

of 187,818 gene+drug:metabolic pathway combinations, we found 176 results that passed an

FDR-corrected significance threshold of 0.01 (S6 and S7 Tables). Interestingly, all significant

results targeted known cancer driver genes such as EGFR, HER2, PIK3CA, and BRAF (Fig 6B–

6E). These results included a known interaction between HER2 inhibitors and retinol metabo-

lism, whereby increased retinol metabolism enhances sensitivity to HER2 inhibition [46] (Fig

6C). Additionally, some results identified well known molecular interactions, such as BRAF
and PIK3CA driving sugar metabolism [47,48] (Fig 6D and 6E). These results demonstrate

robust associations between metabolic pathway activity, gene dependency, and drug response.

Lastly, we sought to integrate the results from Genetic PDEA and Pharmacological PDEA

to identify metabolic pathway vulnerabilities that were consistent between gene dependency

and drug response data (Fig 6F and S8 Table). By applying p-value and q-value filters to each

analysis, we found three consistent vulnerabilities that were significant in both analyses. First,

we found that when tyrosine metabolism is high, there is an increased vulnerability to inhibi-

tion or knockout of terpenoid backbone biosynthesis genes (Fig 6G). Interestingly, the drugs

driving the enrichment (fluvastatin and pitavastatin) target the protein with the largest gene

dependency within the pathway, HMGCR. We also found a common vulnerability between

inactivation of the folate biosynthesis pathway and decreased aminoacyl tRNA biosynthesis

(Fig 6H). Here, the top hits in Genetic PDEA and Pharmacological PDEA did not converge on

a single protein product.

Nevertheless, these results indicate that inactivation of the folate biosynthesis pathway is

more effective at slowing cancer cell growth when aminoacyl-tRNA biosynthesis pathway

activity is low. Lastly, we found a strong association between inhibitors and gene knockouts of

terpenoid backbone biosynthesis when pathway activity for biosynthesis of heparan sulfate is

low (Fig 6I). Once again, the targets of the statins driving the Pharmacological PDEA enrich-

ment did not align with the top gene dependencies (DHDDS, HMGCS1). Taken together,

these results demonstrate common metabolic pathway vulnerabilities by integrating gene

dependency, drug response, and gene expression data.

Discussion

Traditionally, the analysis of gene essentiality in cancer cells has been limited to identification

of individual genes required by cancer cells. Here, using metabolic pathways as an example, we

have demonstrated an approach for identifying cancer cell dependencies at the level of path-

ways rather than individual genes. Illustrating the utility of our approach, we recapitulated

known interactions between metabolic pathway activity, drug response, and gene dependency.

These results build on a strong foundation of research identifying metabolic vulnerabilities in

cancer cells [2,23]. Importantly, our results demonstrate that metabolic dependencies in can-

cer cells are highly context specific (Fig 2) and are impacted by the nutritional

Fig 5. Pharmacological PDEA reveals consistent metabolic pathway vulnerabilities in Adherent RPMI cell lines. A) Pharmacological PDEA (S4 Fig) was

performed on 1,390 anti-cancer drugs from the PRISM database. Drugs were mapped to metabolic pathways by their annotated target(s) and then the

enrichment of these metabolic pathway inhibitors was analyzed in the rank list of drug sensitivity-metabolic pathway activity correlation coefficients.

Hierarchical clustering was performed on NES values, and results with FDR< 0.25 are plotted. Dots are colored according to the NES and sized according to

the -log10 FDR. Dots with black outline correspond to results shown in panels B-C and F. B-C) Increased Alanine, Aspartate, and Glutamate metabolism

(hsa00250) correlates with increased response to inhibitors of terpenoid backbone biosynthesis. In contrast, decreased Pentose Phosphate Pathway

metabolism correlates with increased response to inhibitors of Folate Biosynthesis (hsa00790). D-E) Inhibitors of Folate Biosynthesis (hsa00790) are more

effective when overall metabolic pathway expression is low, whereas inhibitors of Ascorbate and Aldarate Metabolism (hsa00053) are more effective when

overall metabolic pathway expression is high. F) Representative mountain plots and the drug(s) driving enrichment of metabolic pathway activities that

strongly correlate with response to inhibitors of Ascorbate and Aldarate metabolism are shown.

https://doi.org/10.1371/journal.pcbi.1008942.g005
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microenvironment (Fig 3). By investigating metabolic dependencies at the pathway level using

genetic and pharmacological PDEA, we uncovered novel metabolic crosstalk, identified robust

associations between drug response and metabolic pathway activity, and have discovered inter-

actions between metabolic pathway activity and essentiality.

A recurring theme from our analyses is the importance of the pathways Folate Biosynthesis

(hsa00790) and One-Carbon Pool by Folate (hsa00670). Folate metabolism supports two key

metabolic phenotypes commonly found in cancer cells by producing one-carbon units for

nucleotide synthesis and maintaining redox balance through production of NADPH [49]. In

fact, two of the most widely used chemotherapeutics, methotrexate and 5-fluorouracil, target

folate biosynthesis. In our analysis, we found that inhibitors of folate biosynthesis are highly

effective when activity of other metabolic pathways is low (Fig 5D). This may be because the

drugs classified as folate biosynthesis inhibitors are anti-metabolites that cannot be metabo-

lized by enzymes like thymidylate synthase or dihydrofolate reductase. When adjacent meta-

bolic pathway expression is low, compensatory mechanisms cannot offset decreased folate

biosynthesis, causing a crisis in both nucleotide synthesis and redox homeostasis. Our results

suggest that identifying biomarkers of activity for key pathways that control the sensitivity of

antifolate pathways like the PPP (Fig 5C) would enable advances in patient selection for antifo-

late chemotherapy.

The approach outlined here also sets the stage for the use of metabolic pathways to guide

patient selection to therapy. Patient selection for targeted therapeutics such as EGFR inhibitors

is often based on mutations and copy number alterations (CNAs), but even for these targeted

therapeutics there exists a need to identify additional features that inform patient selection.

Here, we identified metabolic pathways that strongly correlate with both CRISPR knockout

and pharmacological inhibition of the oncogenes EGFR, HER2, BRAF, and PIK3CA (Fig 6).

This supports that metabolic pathways may be effective biomarkers even when mutations and

CNAs in these oncogenes are not present (e.g., α-linoleic acid metabolism for sensitivity to

EGFR inhibitors). Additionally, within patient populations with mutations or CNAs in these

oncogenes, metabolic pathway activity could serve as a biomarker that predicts response to

therapy. Furthermore, our results support that the statins targeting HMG-CoA reductase

(HMGCR) might be effective cancer therapeutics in tumors with high tyrosine metabolism

and/or low heparan sulfate glycosaminoglycan biosynthesis. Taken together, our results dem-

onstrate that there may be patient benefit in analyzing tumor metabolism to inform patient

selection for targeted therapies.

Our analysis identified media composition as a major confounding factor when analyzing

cancer cell metabolic pathway dependencies (Fig 3). This finding is consistent with recent

studies and demonstrates the effect to which metabolism and metabolic vulnerabilities are

shaped by the tumor microenvironment [23,50]. As such, our results highlight the importance

of formulating cell culture mediums that better recapitulate the tumor microenvironment

[51]. Furthermore, the data used in this study comes from adherent cell lines cultured on tissue

culture plastic. This removes environmental stresses such as concentration gradients and phys-

ical stimuli that cells experience in real tumors. Recent efforts have demonstrated that

Fig 6. Integration of pharmacological and genetic screens reveals consistent metabolic pathway vulnerabilities in adherent RPMI cell lines. A)

Schematic outlining approach to identify drug targets and genetic dependencies that are commonly increased or decreased with metabolic pathway

activity. Significance was assessed by permutation testing combined with Benjamini-Hochberg FDR correction. 176 significant associations of 187,818

gene+drug:metabolic pathway combinations passed the FDR threshold of 0.01 (S7 and S8 Tables). B-E) Scatter plots of four drug response and

CRISPR gene dependencies associated with metabolic pathway activity. The gene target of each drug is listed below the drug name. F) Schematic

outlining a filtering approach used to identify common pathway-level vulnerabilities in Genetic PDEA and Pharmacologic PDEA. G-I) Mountain

plots and leading edge drugs and genes from the three common pathway vulnerabilities are shown.

https://doi.org/10.1371/journal.pcbi.1008942.g006
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CRISPR-Cas9 screens can be performed in 3D organoids [50]. As this technology becomes

more widely used, computational approaches such as ours can be applied to identify differ-

ences in metabolic pathway dependencies between 2D and 3D culture. Similarly, culture con-

ditions that better reflect the physiological conditions of tumors will enhance the therapeutic

relevance of our approach.

While our study identified robust associations between drug response and metabolic path-

way expression, these analyses (Figs 5 and 6) rely on the annotated targets of these drugs. Off-

target toxicity is a major concern when using small molecule inhibitors. In fact, some recent

studies have found that off-target toxicity drives the anti-tumor effect of these compounds

[25]. As such, we cannot exclude the possibility that off-target effects of these compounds

could cause the associations identified here. Furthermore, some compounds in this study are

quite promiscuous with multiple annotated protein targets. This promiscuity confounds the

Pharmacologic PDEA analysis (Fig 5) since some drugs were mapped to multiple metabolic

pathways. As such, the utility of the Pharmacologic PDEA approach lies in the aggregation of

multiple drugs to arrive at a conclusion, rather than treating each individual drug as signifi-

cant. In addition, by integrating the Pharmacologic PDEA and Genetic PDEA results (Fig 6),

we strengthened our confidence in the association between metabolic pathway activity and

pathway dependency.

Another potential weakness of our study is that we rely on the inference of metabolic path-

way activity from gene expression data. Gene expression, however, does not always accurately

reflect cellular metabolism. First, proteomic studies have shown that protein expression does

not always correlate with gene expression [52]. Second, metabolic enzyme activity can be regu-

lated by post-translational modifications [53,54]. By using gene expression data, we have not

accounted for these factors, and as such our analysis may not reflect pathway activity at the

metabolic flux level. We expect that expanding recent efforts to characterize metabolite abun-

dance [33] and metabolite flux [55] in panels of cancer cell lines will improve our ability to

identify metabolic pathway vulnerabilities by providing better measures of metabolic pathway

activity.

Taken together, this study serves as a comprehensive characterization of the landscape of

metabolic pathway vulnerabilities. Furthermore, our approach serves as a framework for inte-

grating gene expression, gene dependency, and drug response data to uncover metabolic

dependencies at the level of pathways rather than individual genes. We anticipate this

approach could be extended to other biologically relevant pathways beyond metabolism. Fur-

thermore, the utility of our approach will increase as CRISPR-Cas9 and pharmacologic screen-

ing expand to include more cancer cell lines, better measure of cellular metabolism, and

physiologically relevant models like 3D organoids.

Methods

Data sources

Cancer cell line gene expression data was downloaded from the Cancer Cell Line Encyclopedia

(CCLE) version 19Q4. Gene dependency data was downloaded from the Cancer Dependency

Map (DepMap), Achilles gene effect version 19Q4 was used for the main figures in this study

and the Sanger CRISPR (CERES) gene effect data [35] was used for the comparisons in S5 Fig.

Drug response data was downloaded from the PRISM Repurposing database, version 19Q4

with secondary screen with dose response curve parameters was used. Metabolic pathway

annotations were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG).

We removed pathways that either 1) are not expressed in human metabolism or 2) contain less

than five genes in the CCLE gene expression data set.
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Simulation studies

Gene expression data was simulated for 300 cell lines using a normal distribution for each cell

line (μ = 0, σ = 0.5). Then, a synthetic gene set of 25 genes was perturbed using a normal distri-

bution gradient, where cell line 1 received a value randomly selected from a normal distribu-

tion with μ = -X, σ = 0.5 and cell line 300 received a value randomly selected from a normal

distribution of μ = +X, σ = 0.5, with cell lines 2–299 receiving values randomly selected from

normal distributions with sequentially increasing values μ from -X to X. Single-sample Gene

Set Enrichment Analysis (ssGSEA) was calculated for the synthetic gene set for all 300 cell

lines. Next, gene dependency data was simulated for the same 300 cell lines using the same

normal distribution gradient method. For both gene expression and gene dependency data,

values for X were varied from 0 to 0.5. Next, Spearman correlation coefficients between syn-

thetic gene set activity (NES) and gene dependency were calculated for all 16,643 genes.

Finally, Gene Set Enrichment Analysis was run to calculate the simulated Genetic Pathway

Dependency Enrichment Analysis values. For the Pharmacological PDEA simulation study in

S7 Fig, a similar approach was used with 200 cell lines and 1,390 drugs to simulate the data

used in the Pharmacological PDEA study. For both simulation studies, the pipeline was run

for 50 replicates.

Calculation of metabolic pathway expression

1,019 cancer cell lines from the CCLE were separated by their culture type (adherent or sus-

pension) and then culture medium (RPMI or DMEM), respectively. Cell lines with missing

information for either culture type or medium were omitted. Gene expression values were unit

normalized across all cell lines of the same culture and medium type (e.g. Adherent RPMI).

Single-sample Gene Set Enrichment Analysis (ssGSEA) across all metabolic pathways in the

KEGG database was run on the normalized gene expression values, giving normalized enrich-

ment scores (NES) representing relative metabolic pathway activity for 69 metabolic pathways

for each cell line. Normalized Weighted Average Expression (NWAS) was calculated as in

[37]. Briefly, individual cell line gene expression values for each gene within a gene set are

weighted by the corresponding number of pathways with which they overlap. Then, normal-

ized weighted values are summed to achieve a pathway activity score.

Genetic pathway dependency enrichment analysis

For each metabolic pathway, the NES was correlated with the -CERES score for all 16,643

genes. Due to the bimodal nature of NESs, Spearman correlations were used. The resulting

correlation coefficients were ranked and GSEA querying KEGG metabolic pathways was run

to calculate Genetic Pathway Dependency Enrichment Analysis (Genetic PDEA). Positive

NES represent increased essentiality upon increased metabolic pathway activity, whereas nega-

tive NES represent increased essentiality upon decreased metabolic pathway activity.

Drug response correlations

For each metabolic pathway, the NES was correlated with the -AUC (area under the curve) for

1,448 anti-cancer drugs in the PRISM repurposing database. Here, the AUC represents the

dose dependent effect of a drug on cell growth, calculated by fitting a four-parameter logistic

curve to viability values for each compound and cell line, with a lower AUC representing a

stronger response to drug [21]. Drugs with less than 150 cell lines were removed, leaving 1,390

drugs. Spearman correlation p-values were calculated and a Benjamini-Hochberg false discov-

ery rate correction was applied for each metabolic pathway.
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Pharmacological pathway dependency enrichment analysis

Drugs were mapped to their metabolic pathway using the annotated target(s) and genes from

KEGG metabolic pathways. Since the PRISM database contains both activators and inhibitors,

we annotated all activators by mechanism of action and multiplied their correlation coeffi-

cients by -1. Therefore, a pathway activator would be counted similarly to a pathway inhibitor.

Pathways with 4 or more drugs were kept. Then, GSEA was run on the rank lists of 1,390 cor-

relation coefficients.

Integration of individual drug response and gene dependency

Drug-gene dependency pairs were mapped using the target annotations for each drug. Corre-

lation coefficients for each drug and gene dependency were summed for each metabolic path-

way, generating 187,818 drug+gene:pathway combinations. An empirical permutation test

was run sampling 1,000 combinations of each drug+gene correlation coefficient. P-values

were calculated by dividing the number of permutations that out-performed the real summed

correlation coefficients by the number of same-signed permutations. P-values were then

adjusted using a Benjamini-Hochberg correction.

Integration of genetic PDEA and pharmacological PDEA

Results from Genetic PDEA and Pharmacological PDEA were filtered for same signed NES

and p-values of less than 0.05 and FDR values of less than 0.25 (per the original GSEA algo-

rithm). Three pathway-drug-gene dependencies were identified out of a possible 3,220

combinations.

Supporting information

S1 Fig. A normal distribution with mean of 0 and standard deviation of 0.5 reflects gene

expression profiles. Gene expression data was taken from the Cancer Cell Line Encyclopedia

(CCLE) and scaled and centered within culture type (adherent or suspension) and culture

medium (DMEM or RPMI). Four cell lines were chosen at random and their gene expression

profiles (red) were compared to a normal distribution with a mean of 0 and a standard devia-

tion of 0.5 (green).

(EPS)

S2 Fig. Genetic PDEA in Adherent DMEM cell lines reveals context-specific pathway

essentialities. Metabolic pathway activity was inferred using single-sample GSEA (ssGSEA)

for 153 adherent cell lines cultured in DMEM and correlated to gene dependency data from

The Cancer Dependency Map (DepMap). Correlation coefficients were then ranked and

GSEA was run querying the KEGG metabolic pathways (see Fig 1). A) Hierarchical clustering

was performed on the Genetic PDEA normalized enrichment scores (NES). Results for path-

ways with FDR< 0.25 are plotted. Dots are colored according to their NES and sized accord-

ing to the -log10 of the false discovery rate (FDR). Numerical values for each pathway can be

found in S1 Table. B) Increased TCA cycle activity is associated with increased dependency on

One-Carbon Pool by Folate metabolism.

(EPS)

S3 Fig. Metabolic dependence on TCA cycle metabolism is context dependent. In adherent

RPMI cancer cells, when Glycolysis-Gluconeogenesis (hsa00010) pathway activity was low, the

dependence on the TCA Cycle (hsa00020) was increased (top). When Pentose Phosphate Path-

way activity (hsa00030) was high, the dependence on the TCA Cycle was increased (bottom).
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The scatter plots of pathway activity NES and gene dependency (-CERES) for leading-edge

genes ACO2 and SDHD with Glycolysis-Gluconeogenesis and Pentose Phosphate Pathway,

respectively, are shown.

(EPS)

S4 Fig. Pathway activity does not correlate with pathway dependency. Metabolic pathway

expression was correlated with gene dependency data and GSEA was run on the resulting cor-

relation coefficients (see Fig 1). Then, results were filtered for results that had the same path-

way expression and pathway dependency tested (e.g. Glycolysis dependency GSEA was

queried against all correlations with Glycolysis expression). A) The resulting normalized

enrichment scores (NES) are presented as a density plot for both Adherent RPMI and Adher-

ent DMEM analyses. The distribution of NES is centered around 0. B) The NES for each self-

dependency is plotted for Adherent RPMI and Adherent DMEM. Values for each self-depen-

dency can be found in S2 Table.

(EPS)

S5 Fig. Comparison of Genetic PDEA for gene dependency data sets between the Broad

and Sanger Institutes. To examine the reproducibility of Genetic PDEA, we compared data

from pan-cancer CRISPR-Cas9 gene dependency data set (Sanger Institute) through the

Genetic PDEA pipeline. We combined statistical tests using the harmonic mean p-value

(HMP). When applying an HMP threshold of 0.05 and a false discovery rate threshold of 0.05,

we see 96% and 90% agreement between the Genetic PDEA results from the DepMap and the

Broad Institute.

(EPS)

S6 Fig. Normalized weighted average expression (NWAS) gives similar results to ssGSEA

for Genetic PDEA. To directly compare NWAS with ssGSEA, we re-ran our pipeline using

NWAS to analyze dependency on the Pentose Phosphate Pathway. We chose the Pentose

Phosphate Pathway for this comparison because several enzymes are shared between pathways

(e.g., PRKL, PFKM, and PKFP are present in both Glycolysis-Gluconeogenesis and Pentose

Phosphate Pathway gene sets). We found broad agreement between the metabolic pathway

dependencies when using either NWAS or ssGSEA for both Adherent RPMI and Adherent

DMEM cell lines (Spearman r of 0.606 and 0.691, respectively).

(EPS)

S7 Fig. Pharmacological Pathway Dependency Enrichment Analysis Simulation Study. A)

Schematic representing the strategy used to integrate metabolic pathway activity with drug

response screens. Like Genetic PDEA (Fig 1), the drug response (area-under-the-curve, AUC)

for individual cancer cell lines was correlated to metabolic pathway activity as measured by

ssGSEA. Drugs classified as activators (e.g., agonists) were multiplied by -1 for directional con-

sistency. Cancer cell lines were separately processed by culture type and culture medium with

a focus on adherent cell lines. All correlation p-values were FDR corrected using a Benjamini-

Hochberg correction. Here, individual drug-pathway correlations are shown. Drugs were also

mapped to metabolic pathways using their annotated gene targets and then Pharmacological

PDEA was run on the resulting drug sets. Those results are presented in Fig 5B and 5C) Simu-

lated data (see Methods) was used to assess the sensitivity of the Pharmacological PDEA

approach. Values added to the expression gradient resulted in slightly stronger correlation

coefficients and Pharmacological PDEA results compared to values added to dependency gra-

dient.

(EPS)
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S8 Fig. Pharmacological PDEA Reveals Metabolic Pathway Vulnerabilities in Adherent

DMEM cell lines. A) Pharmacological PDEA (see S4 Fig) was performed on 1,390 anti-cancer

drugs from the PRISM database for 97 adherent cell lines grown in DMEM. Drugs were

mapped to metabolic pathways by their annotated target(s). Hierarchical clustering was per-

formed on NES and results with FDR< 0.25 are plotted. Dots are colored according to the

NES and sized according to the -log10 FDR. B) Inhibitors of Folate Biosynthesis (hsa00790) are

more effective when overall metabolic pathway expression is low in Adherent DMEM cell

lines.

(EPS)

S1 Table. Genetic Pathway Dependency Enrichment Analysis (Genetic PDEA) Results for

Adherent DMEM and Adherent RPMI cell lines.

(XLSX)

S2 Table. Genetic Pathway Self-Dependency for Adherent RPMI and Adherent DMEM

cell lines.

(XLSX)

S3 Table. Comparison of Genetic PDEA for gene dependency data sets between the Broad

and Sanger Institutes.

(XLSX)

S4 Table. Individual Drug Response-Metabolic Pathway Expression correlations for

Adherent RPMI and Adherent DMEM cell lines.

(XLSX)

S5 Table. Pharmacological Pathway Dependency Enrichment Analysis (Pharmacological

PDEA) Results for Adherent DMEM and Adherent RPMI cell lines.

(XLSX)

S6 Table. Individual Gene Dependency and Drug Response—Metabolic Pathway Expres-

sion associations for Adherent RPMI cell lines.

(XLSX)

S7 Table. Individual Gene Dependency and Drug Response—Metabolic Pathway Expres-

sion associations for Adherent DMEM cell lines.

(XLSX)

S8 Table. Merged Genetic PDEA and Pharmacological PDEA results for Adherent RPMI

and DMEM cell lines.

(XLSX)
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35. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer thera-

peutic targets using CRISPR–Cas9 screens. Nature. 2019; 568: 511–516. https://doi.org/10.1038/

s41586-019-1103-9 PMID: 30971826

36. Wilson DJ. The harmonic mean p-value for combining dependent tests. Proc Natl Acad Sci U S A.

2019; 116: 1195–1200. https://doi.org/10.1073/pnas.1814092116 PMID: 30610179

37. Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolu-

tion. Nat Commun. 2019; 10: 1–12. https://doi.org/10.1038/s41467-018-07882-8 PMID: 30602773

PLOS COMPUTATIONAL BIOLOGY Metabolic pathway dependencies in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008942 April 19, 2021 22 / 23

https://doi.org/10.1038/nature13236
https://doi.org/10.1038/nature13236
http://www.ncbi.nlm.nih.gov/pubmed/24805240
https://doi.org/10.1038/ng.3984
http://www.ncbi.nlm.nih.gov/pubmed/29083409
https://doi.org/10.1016/j.cell.2017.06.010
http://www.ncbi.nlm.nih.gov/pubmed/28753430
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1038/s43018-019-0018-6
http://www.ncbi.nlm.nih.gov/pubmed/32613204
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-1186-3
http://www.ncbi.nlm.nih.gov/pubmed/31068700
https://doi.org/10.1186/s12915-019-0654-4
http://www.ncbi.nlm.nih.gov/pubmed/31039782
https://doi.org/10.15252/msb.20199405
http://www.ncbi.nlm.nih.gov/pubmed/32627965
https://doi.org/10.1126/scitranslmed.aaw8412
http://www.ncbi.nlm.nih.gov/pubmed/31511426
https://doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
https://doi.org/10.1038/nature11005
https://doi.org/10.1038/nature11005
http://www.ncbi.nlm.nih.gov/pubmed/22460902
https://doi.org/10.1038/nchembio.2050
http://www.ncbi.nlm.nih.gov/pubmed/27018887
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
http://www.ncbi.nlm.nih.gov/pubmed/29195078
https://doi.org/10.1016/j.cell.2017.01.013
https://doi.org/10.1016/j.cell.2017.01.013
http://www.ncbi.nlm.nih.gov/pubmed/28162770
https://doi.org/10.1038/nature08460
https://doi.org/10.1038/nature08460
http://www.ncbi.nlm.nih.gov/pubmed/19847166
https://doi.org/10.1093/nar/gkt1076
https://doi.org/10.1093/nar/gkt1076
http://www.ncbi.nlm.nih.gov/pubmed/24214961
https://doi.org/10.1038/s41591-019-0404-8
http://www.ncbi.nlm.nih.gov/pubmed/31068703
https://doi.org/10.1126/sciadv.aat0456
http://www.ncbi.nlm.nih.gov/pubmed/30613765
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1038/s41586-019-1103-9
http://www.ncbi.nlm.nih.gov/pubmed/30971826
https://doi.org/10.1073/pnas.1814092116
http://www.ncbi.nlm.nih.gov/pubmed/30610179
https://doi.org/10.1038/s41467-018-07882-8
http://www.ncbi.nlm.nih.gov/pubmed/30602773
https://doi.org/10.1371/journal.pcbi.1008942


38. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An Essential Role of the

Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell.

2015; 162: 540–551. https://doi.org/10.1016/j.cell.2015.07.016 PMID: 26232224

39. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting Aspartate Bio-

synthesis Is an Essential Function of Respiration in Proliferating Cells. Cell. 2015; 162: 552–563.

https://doi.org/10.1016/j.cell.2015.07.017 PMID: 26232225
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