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Abstract

Angiogenesis is essential for cancer metastasis, thus the discovery and characterization of

molecules that inhibit this process is important. Thalidomide is a teratogenic drug which is

known to inhibit angiogenesis and effectively inhibit cancer metastasis, yet the specific cellu-

lar targets for its effect are not well known. We discovered that CUL5 (previously identified

as VACM-1), a scaffold protein in E3 ligase complexes, is involved in thalidomide-depen-

dent inhibition of endothelial cell growth. Our results show that in human endothelial cells

(HUVEC), thalidomide-dependent decrease in cell growth was associated with decreased

nuclear localization of CUL5. In HUVEC transfected with anti-VACM-1 siRNA, thalidomide

failed to decrease cell growth. Previously it was established that the antiproliferative effect

of CUL5 is inhibited in rat endothelial cells (RAMEC) transfected with mutated CUL5 which

is constitutively modified by NEDD8, a ubiquitin-like protein. In this study, the antiprolifera-

tive response to thalidomide was compromised in RAMEC expressing mutated CUL5.

These results suggest that CUL5 protein is involved in the thalidomide-dependent regulation

of cellular proliferation in vitro. Consequently, CUL5 may be an important part of the mecha-

nism for thalidomide-dependent inhibition of cellular proliferation, as well as a novel bio-

marker for predicting a response to thalidomide for the treatment of disorders such as

multiple myeloma and HIV infection.

Introduction

Cullin-5 (CUL5), first cloned as Vasopressin-Activated Calcium-Mobilizing (VACM-1) pro-

tein [1,2] is the least conserved member of the cullin family of proteins [3,4] used in the forma-

tion of the active cullin-RING ubiquitin E3 ligase complexes (CRLs) [5,6]. The numerous E3

ligases that have been identified determine the specificity and diversity of the ubiquitin-protea-

some system responsible for the non-lysosomal degradation of proteins. To activate CRLs, cul-

lins are covalently modified at the carboxy-terminus with an ubiquitin-like protein, NEDD8

(Neural precursor cell-expressed developmentally down-regulated) through a process known

as neddylation [7–9].
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CUL5 is distinct from other cullins both in sequence and tissue distribution [3, 10], but like

other cullins it can form E3 ligase complexes involved in ubiquitination and subsequent degra-

dation of specific proteins [6]. The best characterized substrate for the CUL5-specific CRL

activity is the APOBEC3G protein essential in the prevention of HIV infectivity [11–13]. To

induce destruction of APOBEC3G, the CUL5-CRL forms complexes with the adaptor proteins

elongins B/C and with the substrate receptor protein Vif. Whereas elongins B/C are the recog-

nized adaptor proteins for the CUL5-based CRLs, several CUL5-specific substrate recognition

receptor-proteins have been identified and include viral proteins Vif and E4orf6, HSP90,

Dab1, ASB2 and XRAB40 [14–18]. Unfortunately, the mechanism by which substrate recogni-

tion proteins recruit specific targets for CUL5-dependent CRL activity, in vivo, have not yet

been explored.

Human CUL5 localizes at chromosome 11 to the region at 11q22-23 which is frequently

deleted in breast cancer [2]. A significant decrease in CUL5 expression is observed in the

majority of breast cancers [19,20], while inhibition of CUL5 expression using microRNA-19a

and -19b induced cervical carcinoma cell proliferation and invasion [21]. The inhibition of cell

growth by CUL5 depends on controlling signaling pathways that may be cell type-specific. For

example, overexpression of CUL5 cDNA in a breast cancer-derived cell line, T47D, inhibited

nuclear localization of estrogen receptor ERα and inhibited estrogen-dependent cell growth

[22]. In rat adrenal medullary endothelial cells (RAMEC), overexpression of CUL5 affected the

expression of maspin [23] and in COS-1 cells it induced p53 and decreased aquaporin 1

(AQP1) expression, proteins implicated in the control of cancer [24,25]. In all cell types tested,

overexpression of CUL5 cDNA significantly reduced concentrations of phosphorylated

MAPK (mitogen activated kinase) but did not affect total MAPK concentrations [22–25].

More recently, an activated Src protein has been identified as a new target for CUL5 dependent

degradation [26] while silencing CUL5 reduced cellular sensitivity to HSP90 inhibitors [27].

CUL5 is expressed in many tissues, but it is highest in the heart and skeletal muscle [10], tis-

sues where highest expression of NEDD8 has also been shown [7]. Our immunocytochemistry

data shows that in most tissues examined, expression of CUL5 protein localizes specifically to

vascular structures and to the renal collecting tubule cells [23, 25]. The endothelium-specific

role for cullins is supported by a report that targeted disruption of the CUL7 gene leads to

abnormal vascular morphogenesis [28], and CUL5 expression is required for the degradation

of HIF and ERBB2 proteins implicated in the induction of pro-angiogenic signaling pathways

[14]. Interestingly, in a rat model of experimentally-induced angiogenesis in vivo we observed

that CUL5 expression was very high in non-proliferating blood vessels and was largely absent

in blood vessels during exercise-induced angiogenesis [23]. Unfortunately, few studies have

addressed the pathophysiological significance of tissue-specific expression of CUL5 in vivo
[29].

In our search for compounds that regulate expression of CUL5, we have focused on thalido-

mide, a drug that inhibits cellular growth and angiogenesis [30]. Thalidomide, a derivative of

glutamic acid, is a drug first used in the late 1950s to ease morning sickness, but was banned

after it was discovered to be a teratogen [30, 31]. The cellular mechanism of thalidomide-

induced cell death encompasses a broad range of signaling pathways that may be different in

various species and cell types [32–36]. For example, thalidomide inhibits angiogenesis but may

induce vessel maturation rather than inhibiting sprouting capillaries [30,37]. Thalidomide and

its derivatives, lenalidomide and palidomide, have been used effectively in treatments of sev-

eral types of cancer, HIV/AIDS, Crohn’s disease, congestive heart disease, and many others [7,

32–39]. More recently, CRBN (cereblon), a candidate gene for mild mental retardation pro-

tein, has been identified as a novel target for thalidomide teratogenicity [40]. Binding of thalid-

omide to CRBN was shown to inhibit CUL4A-dependent E3 ligase activity, and thalidomide
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promoted CRBN-dependent degradation of specific transcription factors that play a critical

role in B cell malignancies including myeloma [41,42]. It has also been reported that that

majority of myeloma cell lines from patients resistant to thalidomide and other immunomod-

ulatory drugs have very low levels of CRBN [43,44]. Whether other cullins can be a target for

thalidomide-specific activity has not been explored.

In the studies reported here, we show that in normal endothelial cells (HUVEC and

RAMEC), the antiproliferative effect of thalidomide was dependent on presence ofCUL5 and

was associated with decreased nuclear localization of CUL5 protein. The antiproliferative

response to thalidomide was also compromised in RAMEC transfected with mutated CUL5

cDNA shown previously to be constitutively neddylated and to reverse the antiproliferative

effect of wild-type CUL5 cDNA overexpression [23–24]. Our immunocytochemistry results

also showed that in HUVEC treated with thalidomide, nuclear NEDD8 signal was attenuated,

whereas its cytosolic signal was increased. Together, these results confirm the regulatory role

of CUL5 in the angiogenic pathway and identify it as a novel target in thalidomide-directed

therapy. Importantly, the expression of CUL5 could be used as a biomarker for predicting a

specific response to thalidomide and possibly other anti-angiogenic drugs used clinically.

Materials and methods

Materials

HUVEC (several lots) were purchased from Invitrogen Co. (Grand Island, NY), and RAMEC

were a gift from Dr. Lelkes [45]. Thalidomide (±) (T144], ECGS (endothelial cell growth sup-

plement), PMA and anti-NEDD8 specific monoclonal antibody were purchased from Sigma-

Aldrich (St. Louis, MO). The polyclonal anti-NEDD8 Ab was purchased from Abcam (Cam-

bridge, MA). AlamarBlue1 reagent was purchased from Biosource (Invitrogen Co., Grand

Island, NY). The siRNA Starter Kit (Silencer1) was purchased from Ambion1 (cat #

AM16708A). All tissue culture media and reagents were purchased from Invitrogen (Grand

Island, NY). S730ACUL5 (previously called S730AVACM-1) cDNA used to transfect RAMEC

was sublconed into the pBK-CMV vector (Stratagene Co., La Jolla, CA) as described previously

[23,24].

Tissue culture

HUVEC cells were grown in F-12K liquid media supplemented with 20% FBS, ECGS (30 μg/

ml), 1% Pen/Strep, and heparin (0.5mg/ml), or medium 200 supplemented with as suggested

by the supplier (Invitrogen Co., Grand Island, NY). RAMEC cells were grown in DMEM-low

glucose media supplemented with 2% FBS and 8% horse serum. Cells were plated at a density

of 4-6x105 cells per 100 mm plate and maintained at 37˚C under water-saturated 5% CO2

atmosphere as previously described [24]. Thalidomide and PMA (10 nM) (both from Sigma-

Aldrich) were diluted in DMSO and control cells were treated with equal amounts of DMSO.

Cell growth assay

Cell growth was monitored using either DAPI staining (Vector Labs) or the alamarBlue1

(Invitrogen Co.) assay as described in the manufacturer’s instructions. For the 96-well plate

growth assay, HUVEC were plated at a range of 1x103 to 5x103 cells/mL. After treatments, ala-

marBlue1 reagent was added at 10% the total well volume. Fluorescence readings at 560 and

590 nm were taken at time intervals of 2, 4, 8, 12, 18, 24, and 48 hours post treatment.
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Wound healing growth assay

Cells were plated on 6-well tissue culture plates at 5x104 cells/mL. After cells reached con-

fluency, the cell layer was scratched using a 200 μl pipette tip. Cell cultures were photographed

at time 0 and at specified time points after the appropriate treatments. Image-pro express1
was used to measure wound distance in the cell monolayer. To correct for uneven wound

between groups, all growth data are expressed as a percent (%) change from time 0.

Immunocytochemistry

Affinity purified rabbit polyclonal antibody directed against the C-terminus (Ab-B) of CUL5

protein [1] was used to stain cells by indirect immunofluorescence. Cells grown on coverslips

were fixed in 3% paraformaldehyde (in 1xPBS, pH 7.4) for 20 minutes, washed in PBS, per-

meabilized with 0.5% Tween-20 solution for 20 minutes, washed with PBS/2% BSA, and incu-

bated for two hours with a 1:20 dilution of Ab-B. The specificity of our antibodies has been

assessed previously using Ab-B preabsorbed with 10 μM peptide B identical in sequence to the

carboxyl terminus sequence of CUL5. Anti-NEDD8 antibody (Sigma) was diluted 1:200. All

antibodies were diluted in PBS containing 0.1% BSA (PBS/BSA). The primary antibodies were

detected by incubating cells in the presence of 1:40 dilution of either FITC-conjugated goat

anti-rabbit IgG or Texas Red conjugated anti-rabbit Ab (Vector Laboratories Inc, Burlingame,

CA) in 1X PBS/2% BSA for 1 hr. The slides were washed with 1x PBS with 0.2% BSA, mounted

with Vectashield1 mounting medium (Vector Laboratories Inc, Burlingame, CA) and viewed

by epifluorescence microscopy (Eclipse E600, Nikon) equipped with Spot camera (Diagnostic

Instruments, Sterling Heights, MI). The nuclear staining was achieved by DAPI found in the

Vectashield1 mounting medium.

siRNA transfections

Transfections were performed with anti-VACM-1 siRNAs targeting different regions of the

CUL5 mRNA sequence according to the protocol in the Silencer1 siRNA Starter Kit pur-

chased from Ambion1 (cat # AM16708A) as described previously [46]. Briefly, the pre-

designed Silencer1 siRNA kit contained three specific antisense oligonucleotides: siRNA#1

5’-AGAUUCCUGGCGUAAAAGCtt-3’ (ID 192207), siRNA#2 5’-CCACGUAUCAA GCAU
GAGCtt-3’ (ID 192208), and siRNA#3 5’-UAGCAUCAUUAACAACUGCtt-3’ (ID

192209). For the negative control, cells were transfected with siRNAs that did not target any

gene sequences. The positive control used was an anti-GAPDH siRNA provided in the starter

kit.

Cell growth on Matrigel1

The Matrigel1 (BD Biosciences, Bedford MA) was warmed to room temperature, 100 μl was

placed onto coverslips in a 6-well plate. Matrigel1 support medium was then placed in an

incubator at 37˚C for 10 to 15 minutes in order to polymerize. HUVEC were plated at 4x104

cells/mL and incubated for 30 minutes. After incubation, 1.4 mL of fresh media was added to

each well and incubated overnight. A transfection with anti- CUL5-specific siRNA was per-

formed before cells were plated on Matrigel1 support according to the Ambion1 transfection

protocol and cells were treated with thalidomide at 24 hours after transfection (n = 3).

Western blot analysis

Total cell lysates were prepared as previously described [24]. Briefly, cells were grown to at

least 70% confluency, washed with ice-cold PBS, and resuspended in 200 μl of buffer (50mM
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Tris [pH 7.4], 0.1% Triton X-100, 150 mM NaCl, 1 M EDTA, 50 mM NaF with 1 μg/ml apo-

protein, 100μM Prefabloc SC, and 10 mM PMSF. Protein concentrations were determined

using the Bradford method (BioRad Co., Richmond, CA). Samples were heated at 75˚C for 5

minutes and subjected to SDS polyacrylamide gel electrophoresis (PAGE) using a 4–12% bis-

tris running gel (Invitrogen Inc). The separated proteins were transferred to a nitrocellulose

membrane (Osmotics Co. Trevose, PA) at 20 mV for 2 hours. Nonspecific sites were blocked

using PBS with 5% nonfat dry milk for 45 minutes. The membranes were next incubated for 2

hours in buffer with 1:200 dilution of affinity purified polyclonal antibodies directed against

the N-terminus (Ab-A) of CUL5 (VACM-1) protein [1]. After incubation with the primary

antibody, the membrane was washed for twenty minutes in buffer used to dilute antibody and

exposed to horseradish peroxidase conjugated secondary antibodies diluted 1:2000 (Cell Sig-

naling, Beverly, MA). The membranes were exposed to luminal detection reagents (Cell Sig-

naling, Beverly, MA) for 1 minute or longer, and exposed to the x-ray film (Amhersham). To

ascertain equal protein loading on the gel, blots were stripped and re-probed with a GAPDH

specific antibody (1:5000) developed in mouse and the signal for VACM-1/CUL5 was cor-

rected for GAPDH levels.

Statistical analysis

All immunoblots and Western blots were scanned and the signal was quantitated using the

NIH Imaging Analysis Program (http://rsb.info.nih.gov/ij/index.html). Data are expressed as

means ± one standard error (SE) of the mean. Student’s t-test was used for data analysis. Sig-

nificance was set at p< 0.05.

Results

Expression of CUL5 in HUVEC cells is induced by thalidomide

We examined the possibility that CUL5 may be involved in the antiproliferative and anti-

angiogenic effects of thalidomide in human endothelial cells in vitro. First, the expression of

CUL5 protein in HUVEC was confirmed by Western blot (Fig 1A) as described previously [1].

Next, dose and time dependent effects of thalidomide on HUVEC growth were measured over

50 hours using a colorimetric growth assay. As expected, treatment with thalidomide inhibited

cell growth in a dose dependent manner (Fig 1B and 1C). Western blot analysis suggested that

CUL-5 concentration was also increased at 24 hours post thalidomide treatment (Fig 1D) but

the increase was not significant. We also observed that thalidomide induced changes in cell

morphology and the formation of putative lamellipodia [37] were associated with redistribu-

tion of CUL5 protein from the nucleus to the cytosol and possibly to the cell membrane (Fig

2). These effects of thalidomide were dose-dependent: vesicular trafficking of CUL5 towards

the cell membrane was observed at 20 μg/mL of thalidomide, while at 50 and 100 μg/ml μg/ml

of thalidomide, the cells became elongated with extensive protrusions toward neighboring

cells (Fig 2A and 2B). These results provide the first evidence that in addition to CUL4 CRLs,

thalidomide may also control activation of CUL5-dependent CRLs, at least in endothelial

tissues.

Depletion of CUL5 in HUVEC using siRNAs reduces response to

thalidomide

We next hypothesized that if the antiproliferative effect of thalidomide was dependent on

CUL5, HUVEC treated with anti-CUL5-specific siRNAs would be less responsive to thalido-

mide. We thus repeated the immunostaining and proliferation experiments in HUVEC
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transfected with siRNA designed against CUL5 that we used previously [46]. All three available

siRNAs were used in one experiment, and subsequently, all experiments were performed using

siRNA#1 alone or a combination of siRNAs 1 and 2. Our immunocytochemistry results con-

firmed a decrease in CUL5 signal in the siRNA transfected HUVEC when compared to con-

trols (Fig 3A). Furthermore, in the siRNA transfected cells, thalidomide treatment (50 μg/ml)

did not appear to change the shape of the cell observed in the control HUVEC (Fig 3A). The

decrease in CUL5 signal in siRNA transfected HUVEC was also confirmed by the Western

blot analyses (Fig 3B). The effects of thalidomide on cellular proliferation in control, GAPDH

siRNA and anti-VACM-1/CUL5 siRNA transfected cells were examined next. Both, DAPI

nuclear staining count (Fig 3C and 3D) and alamarBlue1 proliferation assay (Fig 3E) were

used to monitor cell growth. Our results suggest that treatment with anti-CUL5-specific

siRNA for 24 or 48 hours caused an increase in cell growth when compared to the anti-

GAPDH siRNA or the sham transfected group (Fig 3C and 3D). Additionally, in HUVEC

transfected with anti-CUL5 siRNA where an increase in cell proliferation was observed,

Fig 1. Effect of thalidomide on cellular growth and CUL5 protein expression in HUVEC. A. Western blot analysis

of CUL5 protein expression in HUVEC. Increasing concentrations of protein were loaded on the SDS-PAGE and after

transfer to nitrocellulose blots were probed with anti CUL5-specific antibody. B. Dose and time-dependent effects of

thalidomide on growth in HUVEC (n = 3, in triplicate). C. The proliferation data at 48 hours shown in B were re-

plotted as a bar graph (n = 3, �, p< 0.05). D. Western blot analysis of cell lysates from HUVEC treated increasing

concentrations of thalidomide. Upper panel: CUL5 protein expression in thalidomide treated cells. Lower panel: To

ascertain equal protein loading, blots were re-probed for GAPDH.

https://doi.org/10.1371/journal.pone.0196760.g001

Fig 2. CUL5 protein localization in HUVEC treated with increasing doses of thalidomide. A. The control and thalidomide-

treated HUVEC (20 and 50 μg/ml). B. Examples of HUVEC treated with 100 μg/ml thalidomide. Cells were immunostained using

anti- CUL5 specific antibody as described in the Methods. Magnification is 100X.

https://doi.org/10.1371/journal.pone.0196760.g002
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Fig 3. siRNA-mediated depletion of CUL5 in HUVEC prevents thalidomide-dependent decrease in cellular proliferation. A. A

representative immunocytochemistry results showing CUL5 distribution in control and thalidomide (50 μg/ml) treated HUVEC that
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thalidomide treatment did not inhibit cell growth (Fig 3D and 3E). The involvement of CUL5

in thalidomide-dependent control of cellular growth was further confirmed when cells were

grown on a Matrigel1 support for 4–5 days. The knockdown of CUL5 transcripts with siRNA

enhanced formation of “angiogenic branches” (Fig 3F) and reduced the inhibitory effect of

thalidomide on “cord formation” when compared to controls Fig 3G). These results further

underscore the importance of CUL5 in the control of endothelium-specific effects of

thalidomide.

The antiproliferative effect of thalidomide is dependent on the neddylation

status of CUL5

Our previous work suggested that the antiproliferative effect of CUL5 is dependent on its post-

translational modification by NEDD8 [24,45]. Recently, a CUL4A-specific ligase has been

implicated in thalidomide-dependent anticancer effects [40, 41] but the role of the neddylation

in this process has not yet been explored. Thus, we next examined the effect of thalidomide on

NEDD8 expression and its co-localization with CUL5 in HUVEC after 15 and 45 min (Fig 4)

and 24 hrs (Fig 5) of treatment. In control proliferating cells (“edge of the “wound”), both

CUL5 and NEDD8 localized to the nucleus (Fig 4A, top panel). There we no changes in the

cellular localization of either protein after 15 min of treatment (Fig 4A, middle panel), and

nuclear signal intensities of both, CUL5 and NEDD8, were decreased after 45 min of treatment

with thalidomide (Fig 4A, bottom panel). At 24 hrs after treatment, co-immunostaining with

anti-CUL5 and anti-NEDD8 antibodies indicated that thalidomide reduced nuclear VACM-1/

CUL5 and NEDD8 signal intensity significantly and directed their localization to the cytosol

(Fig 5A and 5C). The specificity of the thalidomide effect is further underscored by our obser-

vation that PMA (phorbol myristate acetate, or 12-0-tetradecanoyl-phorbol-13-acetate) (10

nM) a tumor-promoting ester treatment attenuated CUL5 but not NEDD8 signal intensity

(Fig 5A, bottom panel). Subsequent immunostaining experiments demonstrated that anti-

VACM-1/CUL5 siRNA induced decrease in CUL5 signal was not associated with a decrease in

NEDD8 signal (Fig 6A). When NEDD8 signal was quantitated, it was significantly higher in

thalidomide treated cells was when compared to the controls (Fig 6B and 6C), while Western

blot analysis showed a reduced NEDD8-CUL5 signal in HUVEC treated with thalidomide (Fig

6D). Together, these results suggest that thalidomide treatments targets CUL5 modification by

NEDD8.

The expression of a CUL5 dominant negative mutant cDNA prevents

antiproliferative effect of thalidomide in RAMEC

Although rat tissue-derived endothelial cells may be less responsive to thalidomide [33, 35],

inhibition of angiogenesis in rat aortic ring cultures and mouse corneal models has been

reported [35] and thalidomide has been shown to compromise the development of rat skeletal

were sham transfected or transfected with anti-VACM-1 specific siRNA. Magnification is 100X. B. Western blot analysis of cell lysates

from control (Cont), thalidomide (thal) and siRNA-GAPDH and siCUL5 transfected HUVEC probed with anti-VACM-1/CUL5 Ab

A. A sample of lysate from S730AVACM-1/CUL5 transfected RAMEC was used as a positive control (Cont(+ve)). Blots were

subsequently re-probed using anti-actin antibody. C. DAPI nuclear staining of control-siRNA and anti-CUL5 si-RNA transfected

HUVEC treated with thalidomide (50 μg/ml) for 24 hours. Magnification is 10X. D. Cellular count using DAPI-stain signal for the

experiment shown in C (�, p<0.05 for cell growth in thalidomide treated vs control cells. #, p<0.05 when cell counts in control-siRNA

and anti-CUL5 si-RNA transfected cells were compared). E. Effects of thalidomide on siRNA-transfected HUVEC growth using

alamarBlue1 assay. PMA (10−7 M) was used as a control (n = 3, �, p<0.05 when compared to control). F. Control and siRNA-

transfected HUVEC grown on Matrigel1 coated plates. Magnification is 20X. G. A representative experiment showing effects of

thalidomide in control and siRNA-transfected HUVEC grown on Matrigel1 coated plates. Magnification is 10X.

https://doi.org/10.1371/journal.pone.0196760.g003
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muscle [41]. Further, the inhibition of endothelial cell proliferation by thalidomide may

depend on the endothelial cell diversity [38]. In our previous work we have used rat endothe-

lial cells (RAMEC) as a model to study CUL5-dependent signaling [23,45,46]. Specifically, our

work demonstrated that a S730ACUL5 mutant which cannot be phosphorylated by PKA, when

expressed in RAMEC or COS-1 cells, is constitutively modified by NEDD8 and induces cellu-

lar proliferation [23]. Thus, we used this model to examine whether constitutive neddylation

of CUL5 will affect thalidomide-dependent proliferation. First, the antiproliferative effect of

thalidomide in RAMEC was established. As expected, higher doses of thalidomide were

required to suppress cellular growth in control RAMEC when compared to the HUVEC (Fig

7A). To determine if these effects were associated with changes in CUL5 concentrations, we

performed Western blot analysis of lysates collected from control and thalidomide treated

RAMEC. When equal amount of protein was loaded on the gel, cells treated with 50 μg/mL thalid-

omide had higher CUL5 protein levels when compared to controls (Fig 7B and 7C). In addition

to its effects on cell growth, the effect of thalidomide on cell migration was monitored using a

wound assay. The results from these experiments showed that RAMEC treated with at least 50 μg/

ml thalidomide grew slower when compared to the cells treated with the vehicle. Next, we exam-

ined the effect of thalidomide on RAMEC stably transfected with S730ACUL5 [23,46]. Our data

suggest that even at 100 μg/ml, thalidomide no longer inhibited growth (Fig 7F). Interestingly,

Fig 4. Effect of thalidomide on CUL5 and NEDD8 localization in HUVEC. CUL5 and NEDD8 colocalization in control cells treated

with thalidomide (50 μg/mL) for 15 and 45 min, respectively. Immunostaining with anti- CUL5 and anti NEDD8 antibodies and

nuclear DAPI staining was performed as described in the Methods. Images are of merged pictures from CUL5 staining (FITC-green)

and NEDD8 staining (Texas red). Magnification is 40X.

https://doi.org/10.1371/journal.pone.0196760.g004
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cells treated with 50–100 μg/ml grew significantly faster when compared to their controls. Again,

Western blot analysis of cell lysates from RAMEC transfected with S730ACUL5 cDNA showed a

Fig 5. Effect of thalidomide on CUL5 and NEDD8 localization in HUVEC after 24 hrs of treatment. A. Expression of CUL5 and

NEDD8 in Control, Thalidomide (20 μg/ml) and PMA (10 nM) treated HUVEC for 24 hours. Immunostaining with anti-VACM-1/

CUL5 and anti NEDD8 antibodies was performed as described in the Methods. Images are from CUL5 staining (FITC-green) and

NEDD8 staining (Texas red) and merged pictures. Magnification is 40X. B. Control and thalidomide treated cells expressing nuclear

CUL5 and NEDD8 were quantitated (n = 10 and n = 3, respectively; �, p<0.05).

https://doi.org/10.1371/journal.pone.0196760.g005
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Fig 6. Effect of thalidomide on CUL5 and NEDD8 localization in control and si-transfected HUVEC at 24 hours

after treatment. A. CUL5 (green) and NEDD8 (red) localization in control and si-CUL5 transfected HUVEC and

treated with thalidomide (50 μg/mL) for 24 hrs. Magnification is 100X. B. HUVEC treated with thalidomide (50 μg/

mL) immunostained with anti NEDD8 Ab. Magnification is 40X. C. NEDD8 signal in Control and Thalidomide

treated cells shown in B was quantitated (n = 3; error bars are S.E.M., �, p< 0.05). D. Western blot analysis of

neddylated CUL5 (upper band) and free NEDD8 (lower band) in control, thalidomide and PMA-treated HUVEC (24

hours).

https://doi.org/10.1371/journal.pone.0196760.g006
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Fig 7. Thalidomide treatment inhibits growth in RAMEC but not in RAMEC transfected with a dominant negative mutant of CUL5

(S730ACUL5) cDNA. A. A representative growth assay results from CMV vector transfected RAMEC control cells treated with increasing doses

of thalidomide. VEGF (50 nM) was used as a control. B. Western blot analysis of cell lysates from CMV vector transfected RAMEC treated with

increasing doses of thalidomide for 24 hours. To ascertain equal protein loading blots were stripped and re-probed with anti-GAPDH specific

antibody as described in Methods. C. The signal intensities shown in B above, were quantitated. D. A representative wound assay in CUL5 cDNA

transfected cells treated with thalidomide. Arrows indicate space in the wound assay at time 0 and 18 hrs. E. Growth data shown in (D) was

quantitated and expressed as a percent (%) regrowth from time 0. The effects of 0 μg/mL (black bars), 10 μg/ml (gray bars), and 50 μg/ml (white
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small increase in VACM-1/CUL5 protein expression (Fig 7G and 7H). The wound assay results

further confirmed the inability of thalidomide to inhibit growth of RAMEC transfected with the
S730ACUL5 cDNA. A significant increase in the wound growth in response to 50 μg/ml of thalido-

mide was observed 18 hours after treatment (Fig 7I and 7J). Cells were confluent 24 hours after

treatment and therefore the differences in growth using the wound assay could not be quantitated.

The specificity of this effect is supported by the observation that the proliferative effect of VEGF

treatment was not compromised in S730ACUL5 cDNA transfected cells (Fig 7F). To examine if

thalidomide treatment affected concentration and/or localization of CUL5 protein in RAMEC,

the immunocytochemistry experiments were performed in both cell lines. Our results showed

that treatment with 50 μg/ml thalidomide decreased nuclear localization of CUL5 in the control

cells but not in cells transfected with S730ACUL5 cDNA where its localization remained nuclear

(Fig 8A and 8B).

Discussion

CUL5 was previously reported to regulate cellular proliferation and to act as a potential tumor

suppressor [19–21]. Since a growing tumor requires nutrients acquired through an increase in

blood flow and angiogenesis, regulation of vascular growth and permeability may have a direct

impact on cancer [47–51]. The work presented here demonstrates that in human endothelial

cells in vitro, the antiproliferative effect of thalidomide may depend on the presence of CUL5.

Our results also show that thalidomide treatment is associated with abnormalities in cellular

morphology and with redistribution of CUL5 from the nucleus to the cell cytosol (Figs 1 and

2). Whether this translocation of CUL5 may control previously described effects of thalido-

mide on actin polymerization, cytoskeletal rearrangement, lamellipodia formation, stress fiber

formation and inhibition of cell migration [37] remains to be determined. Importantly, we

show for the first time that the antiproliferative effect of thalidomide was significantly reduced

or even reversed in cells transfected with anti-CUL5 siRNA (Fig 3). The involvement of CUL5

in the control of endothelial cell proliferation and its control by thalidomide is further under-

scored by the data demonstrating that anti-CUL5 siRNA transfection induced angiogenic phe-

notype when cells were grown on a Matrigel support (Fig 3E and 3F). Again, under those

conditions, the inhibitory effect of thalidomide on cord-formation was reduced. Thus, in addi-

tion to CUL4A, required for the expression of tbx5a transcription factor essential during heart

and limb development, and CUL2 required for vasculogenesis [51, 52], this work identifies

CUL5 as another cullin that can regulate vasculogenic and angiogenic processes. We have pre-

viously demonstrated that overexpression of CUL5 in COS-1 cells decreases expression of

AQP1 [25], thus acting indirectly to regulate water transport and vascular permeability.

Together with these findings, this data supports a role for CUL5 in controlling vascular endo-

thelial permeability.

The low expression or loss of CUL5 may also explain resistance in cancers not sensitive to

thalidomide. Indeed, previous work has shown that silencing CUL5 expression reduced the

sensitivity of several cancer cell types to three structurally distinct inhibitors of HSP90 [27].

This work might also provide a mechanism of action for thalidomide inhibition of HIV

bars) of thalidomide were examined (�, p<0.05). F. A representative growth assay results from S730ACUL5 cDNA transfected RAMEC cells

treated with increasing doses of thalidomide. VEGF (50 nM) was used as a control. G. Dose dependent effect of thalidomide on CUL5 in
S730ACUL5 cDNA transfected RAMEC as detected with anti CUL5 protein specific antibody. H. Data shown in G were quantitated and

expressed as mean ± standard error. (RAMEC CMV n = 2 and RAMEC−S730AVACM-1 (n = 3, � = p< 0.05). I. A representative light

microscopy experiment using the wound assay in S730ACUL5 cDNA transfected cells. Arrows indicate space in the wound assay. J. Growth data

shown in (I) were quantitated and expressed as a percent regrowth from time 0. The effects of 0 (black bars), 10 μg/ml (gray bars), and 50 μg/ml

(white bars) of thalidomide were examined (� = p< 0.05).

https://doi.org/10.1371/journal.pone.0196760.g007
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replication, since the control of CUL5 activity is essential for APOBEC3G degradation and the

prevention of HIV infectivity [11–13] and CUL5 polymorphism has been associated with

increased CD4+ T cell loss in HIV infected individuals [53]. Finally, thalidomide-induced inhi-

bition of HIV type I replication [54] may also depend on CUL5.

All cullins are covalently modified at a conserved Lys residue at the carboxy-terminus by a

ubiquitin-like protein, NEDD8 [6–9]. A continuous cycle of neddylation and deneddylation

(Dcn1 and COP9/DEN1/CAND1 enzymes, respectively) may be essential for the activation of

cullin-based ubiquitin ligases and is now an important target for anticancer drug development

[55,56]. Further, the inhibition of neddylation by MLN4942, a specific inhibitor of NEDD8-ac-

tivating enzyme (NAE), induces apoptosis, autophagy and decreases tumor angiogenesis in

multiple melanoma [55,56]. Recently, a CUL4A-dependent ligase has been implicated in tha-

lidomide-dependent anticancer effects [40–43] but the role of the neddylation in this process

has not been explored. Since the neddylation process is now a target for developing novel com-

pounds for the treatment of malignancies that include cancers, HIV infectivity and immuno-

suppression [54], identifying novel targets for these drugs is important. Our results suggest

that in endothelial cells the antiproliferative effect of thalidomide may depend on its ability to

control the neddylation status of CUL5 and/or its subsequent nuclear localization. Whether

Fig 8. Effect of thalidomide on expression and cellular localization of CUL5 in control RAMEC and RAMEC transfected with S730ACUL5. A.

Immunocytochemistry of control RAMEC treated with thalidomide and immunostained with anti-CUL5 (VACM-1) Ab. B. S730ACUL5 cDNA

transfected RAMEC treated with thalidomide and immunostained with anti- CUL5 Ab. Cells were mounted in Vectashield1 containing DAPI

(magnification, 100X).

https://doi.org/10.1371/journal.pone.0196760.g008
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induction of NEDD8 by thalidomide targets unknown substrate(s) in the endothelium in the

absence of CUL5 should be considered.

In conclusion, our results suggest that the antiproliferative effect of thalidomide in endothe-

lial cells is dependent on the presence of CUL5 and that thalidomide may regulate neddylation

of CUL5 and its localization to the nucleus. When CUL5 is decreased or constitutively neddy-

lated, however, thalidomide is unable to inhibit cellular proliferation. Because endothelial cells

are an essential barrier in all cancer types and viral infections, CUL5 may be an important new

biomarker for predicting a specific response to thalidomide and possibly other anti-angiogenic

drugs used clinically to treat disorders that include multiple myeloma and HIV infections.
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