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APOE4 is the greatest genetic risk factor for late-onset Alzheimer’s disease (AD),
increasing the risk of developing the disease by 3-fold in the 14% of the population
that are carriers. Despite 25 years of research, the exact mechanisms underlying how
APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the
brain is primarily expressed by astrocytes and microglia, cell types that are now widely
appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging
wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur
during normal aging to ultimately cause neurodegeneration and cognitive dysfunction.
This review article will summarize how APOE4 alters specific pathways in astrocytes and
microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein
without enzymatic activity, may prove challenging to directly target therapeutically in
the classical sense. Therefore, a deeper understanding of the underlying pathways
responsible for APOE4 toxicity is needed so that more tractable pathways and drug
targets can be identified to reduce APOE4-mediated disease risk.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disease of aging, the incidence of which
is expected to increase exponentially as the proportion of the population over the age of 65 increases.
Research in AD drug discovery has historically focused on the Amyloid Hypothesis, based primarily
on findings from early-onset AD, which is caused bymutations in amyloid-β (Aβ) pathway proteins
and which accounts for<2% of all AD cases. While the Amyloid Hypothesis predicts that enhanced
production and diminished clearance of Aβ causes AD, therapeutics aimed at modulating Aβ levels
have largely failed, although they have not yet been tested at presymptomatic stages of disease (Doig
et al., 2017).

After aging, the ε4 allele of the APOE gene is the next greatest risk factor for AD, while the
relatively rare ε2 allele confers AD protection (Corder et al., 1993; Saunders et al., 1993; Strittmatter
et al., 1993). Although 25 years have passed since it was identified, there are still no approved drugs
directly targeting APOE4, due partly to the inherent ‘‘undruggability’’ of lipoproteins. However, the
atherosclerosis field has demonstrated that indirectly modulating the effect of lipoproteins can be a
successful alternative strategy. For example, statins affect lipoprotein composition and disease risk
by targeting a metabolic pathway (cholesterol synthesis); similarly, understanding the downstream
pathways that mediate APOE4 disease risk might identify more tractable therapeutic targets for
treating APOE4-mediated AD.
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APOE in the brain is primarily expressed by astrocytes and
microglia, and APOE4 expression alters the normal function
of both of these glial cell types, potentially contributing to
AD risk. Although the toxicity associated with APOE4 likely
involves the impaired ability of APOE4-expressing glia to
efficiently clear Aβ, it is also apparent that there are Aβ-
independent effects on normal glial physiology. The role of
APOE in mediating Aβ levels has been discussed in depth
elsewhere (Ries and Sastre, 2016), and will only be briefly
touched upon below. This review will instead focus on
more recent findings that specifically describe the role of
APOE in glial biology, in addition to and independent of
Aβ modulation, particularly during aging, and will describe
pathways in each glial cell type that may link APOE to disease
pathogenesis.

Although astrocytes and microglia are the primary
producers of APOE, whether an interaction between these
cells exists in terms of APOE biology has not been carefully
examined. Cross-talk between astrocytes and microglia in
neurodegeneration is well-known (Jha et al., 2018); for example,
astrocytes can secrete complement factor C3 in response to
Aβ, which can then activate microglia via the C3a receptor
(Lian et al., 2016). On the other hand, lipopolysaccharide-
stimulated microglia can induce neurotoxic ‘‘A1’’ reactive
astrocytes, as opposed to neurotrophic ‘‘A2’’ reactive astrocytes
(Liddelow et al., 2017). The same group found that A1-type
astrocytes are present in aging (Clarke et al., 2018) and AD
brain (Liddelow et al., 2017), and that A1 astrocytes not only
lose the neurotrophic capacity of A2 astrocytes, but also actively
produce a neurotoxin to kill neurons and oligodendrocytes.
Importantly, a recent study demonstrated that blocking this
microglial-dependent induction of A1 astrocytes is protective
in mouse models of Parkinson’s disease (Yun et al., 2018).
Whether blockade of such microglia/astrocyte cross-talk can
help ameliorate neurodegeneration in humans and in AD has yet
to be demonstrated. Furthermore, whether APOE is one such
secreted factor that mediates interactions between astrocytes and
microglia has not been reported, nor has a synergistic effect of
APOE from each cell type been clearly defined. Even so, since
both astrocytes and microglia express APOE, this review article
will separately consider specific aspects of each cell type’s normal
physiology that might be impacted by APOE4 expression in
aging and AD.

OVERVIEW OF APOE ISOFORMS

APOE is a lipoprotein that normally facilitates lipid transport
between cells (Mahley, 1988). APOE transcription is activated
by liver X receptor (LXR) and peroxisome proliferator-activated
receptor γ (PPARγ), transcription factors that regulate lipid
homeostasis and inflammation (Laffitte et al., 2001; Akiyama
et al., 2002; Liang et al., 2004; Mandrekar-Colucci et al.,
2012; Moutinho et al., 2019). In the lipid-rich brain, APOE
is predominantly expressed by astrocytes and microglia, and
perhaps in limited circumstances by neurons (Boyles et al., 1985;
Pitas et al., 1987; Uchihara et al., 1995; Nakai et al., 1996; Xu et al.,
1998, 2006).

The human APOE gene exists as three different alleles, ε2, ε3,
and ε4, which are present at ∼7%, 79%, and ∼14%, respectively,
in the entire population (Bertram et al., 2007), and which
exhibit differences in lipid and receptor binding efficiency. The
presence of one ε4 allele increases the risk of AD by threefold,
while carriers with two ε4 alleles are eight times as likely to
develop AD compared to those without any ε4 allele; and ε4 is
associated with an earlier age of disease onset, from about
85 years without any ε4, to 75 years with one and 68 years
with two ε4 alleles (Corder et al., 1993). These statistics make
APOE ε4 the greatest known genetic risk factor for AD, more
than any other gene to date. In contrast to the human gene,
mouse ApoE exists as only one isoform, and the structure of
the mouse APOE protein more closely matches human APOE3
(Raffai et al., 2001); targeted-replacement mice, in which the
endogenous mouse ApoE gene has been replaced with either
of the human APOE isoforms, have therefore been created to
study differences in human APOE isoform function, and will be
referred to throughout this review article (Sullivan et al., 1997;
Knouff et al., 1999).

The three human APOE isoforms differ from one another
in the protein sequence at amino acid positions 112 and 158
(Figure 1; Mahley, 1988; Raffai et al., 2001; Hatters et al.,
2006). These single amino acid differences are enough to change
the lipid and receptor binding ability of APOE (Weisgraber
et al., 1982; Dong and Weisgraber, 1996; Gong et al., 2002).
Specifically, R112 in APOE4 creates a domain interaction
between the N-terminal receptor binding domain and the
C-terminal lipid binding domain, preventing efficient binding
to HDL compared to APOE2 and APOE3, with preferential
binding to VLDL (Dong et al., 1994; Dong and Weisgraber,
1996). While APOE2 is protective against AD, the ε2 allele is also
associated with hyperlipoproteinemia III, which is characterized
by accumulated lipoproteins in the plasma and development of
atherosclerosis (Giau et al., 2015). This is thought to be caused
by impairment in the receptor binding region of APOE2, leading
to delayed lipoprotein clearance and increased triglyceride
and cholesterol levels (Havel and Kane, 1973; Weisgraber
et al., 1982; Mahley and Rall, 2000). In the context of AD,
APOE2 has been relatively understudied, although some research
is ongoing (Wu and Zhao, 2016). It should be noted that
APOE2 in many experimental settings is similar to APOE3 or
performs qualitatively better (such as in amyloid clearance).
For clarity, and because there is much less in the literature to
explain the mechanism of action of APOE2, the present review
will focus on different phenotypes conferred by APOE3 vs.
APOE4.

APOE Isoforms and Amyloid Clearance
Both astrocytes and microglia clear Aβ (Paresce et al., 1996;
Wyss-Coray et al., 2003; Ries and Sastre, 2016) and although
there is some evidence that APOE4 may enhance Aβ production
(Ye et al., 2005), it is widely thought that APOE4 confers AD
risk through deficient Aβ clearance compared to APOE3 and
APOE2 (Koistinaho et al., 2004; Deane et al., 2008; Simonovitch
et al., 2016), although not necessarily via direct binding
(Verghese et al., 2013). APOE isoforms differ not only in
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FIGURE 1 | The structure of APOE isoforms. APOE is a soluble secreted protein, with N-terminal and C-terminal domains linked by a central hinge region. The
N-terminal domain contains the receptor binding domain (indicated in green), and the C-terminal domain contains the lipid binding region (indicated in orange). Each
isoform differs from one another at amino acid position 112 and 158. Cysteine at position 158 (C158) in APOE2 is thought to cause deficient receptor binding, while
arginine at position 112 (R112) in APOE4 changes the conformation of the entire domain such that R61 is exposed and interacts with C255 in the C-terminal domain
(red dotted line). This “domain interaction” is thought to be the biophysical basis for differences in APOE4 function compared to the other isoforms; e.g., preference
for VLDL over HDL. In APOE3 and APOE2, which have C112 instead of R112, the R61 is not exposed and there is no such domain interaction.

lipid binding ability, but also in affinity for specific APOE
receptors (Ruiz et al., 2005; Holtzman et al., 2012). LRP1,
a major receptor for APOE, mediates Aβ clearance in
astrocytes and pericytes (Liu et al., 2017a; Ma et al., 2018),
and astrocytes expressing APOE4 have reduced LRP1 surface
expression, which could explain impaired amyloid clearance
in vivo (Prasad and Rao, 2018). However, astrocytes also
utilize other APOE receptors such as LDLR for Aβ clearance,
but in an APOE-independent manner (Basak et al., 2012);
furthermore, Aβ is cleared by transcytosis across the blood
brain barrier, glymphatic and interstitial fluid bulk flow, and
by extracellular degrading enzymes, highlighting the complexity
around understanding how APOE4 contributes to amyloid
accumulation.

APOE Isoforms and Tau Pathology
In addition to modulating Aβ, APOE also affects tau pathology,
another hallmark of AD, in an isoform-specific manner.
APOE4 worsens tau pathology in the P301S tau mouse
model, and APOE4 genotype is associated with exacerbated
neurodegeneration in human primary tauopathies (Shi et al.,
2017). APOE4 status is associated with tau pathology particularly
in instances when amyloid pathology is also present (Farfel
et al., 2016). The relationship between APOE4 carrier status
and CSF tau levels is more robustly correlated in women
than in men (Hohman et al., 2018), suggesting a possible
sex effect in APOE4-mediated toxicity. Neurons expressing
P301S tau are less viable when co-cultured with APOE4-
expressing glia compared to APOE2- or APOE3-expressing
glia, while co-culture with APOE−/− glia leads to the greatest
neuronal viability, supporting the idea that APOE4 represents
a toxic gain-of-function (Shi et al., 2017). Higher CSF
tau levels are associated with faster disease progression
and reduced cortical plasticity in patients, but only in
APOE4 carriers (Koch et al., 2017), further cementing a role
for APOE4 in exacerbating tau pathology. Since some evidence
suggests that APOE can be expressed by neurons under stress

(Xu et al., 1998, 2006; Harris et al., 2004), it is possible that
neuron-derived APOE4 directly mediates tau toxicity in neurons,
but the above data suggests that glia-derived APOE4 is likely
contributing as well.

Amyloid- and Tau-Independent Effects of
APOE4: Glial Cell Biology
The role of APOE4 in neurological disease is certainly broader
than the clearance or response to misfolded proteins, including
Aβ and tau; for example, APOE receptors play diverse roles
in brain physiology independent of Aβ (Holtzman et al., 2012)
and APOE4 carriers may be susceptible to disorders that do not
involve proteinopathy, such as chemotherapy-induced cognitive
dysfunction (Mandelblatt et al., 2018; Speidell et al., 2019).
In addition to the role of APOE4 derived from astrocytes
and microglia, a growing body of literature also supports a
role for APOE4 and pericytes at the blood brain barrier in
neurovascular unit dysfunction and AD pathogenesis (Casey
et al., 2015; Soto et al., 2015; Halliday et al., 2016; Ma et al.,
2018). APOE has even been proposed to be proteolytically
cleaved to form either cytotoxic or neuroprotective fragments,
in a cell type- and isoform-specific manner (Brecht et al.,
2004; Muñoz et al., 2018). Thus, the neurotoxicity conferred
by APOE4 in AD may not be solely due to its effects on
amyloid or tau pathology, but also to its effects on normal
glial functions. How these processes fit into the current
understanding of APOE function and neurodegeneration will be
important for drug discovery efforts targeting APOE biology to
treat AD.

Astrocytes play critical roles in brain lipid and energy
metabolism, and both microglia and astrocytes have important
immune functions in the brain. APOE4 expression in each of
these cell types likely disrupts these pathways, ultimately leading
to brain dysfunction in addition to any Aβ- and tau-mediated
effects. The role of APOE4 and aging in each of these cell types
and pathways will now be examined individually.
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APOE AND ASTROCYTE BIOENERGETICS

The idea that APOE isoforms differentially mediate astrocyte
bioenergetics has gained increasing support in recent years
and implies that APOE4-expressing astrocytes have deficient
lipid and glucose metabolism, impairing their ability to support
energy-demanding neurons, particularly during aging. In the
following sections, we will describe different aspects of lipid
homeostasis and glucose metabolism in astrocytes, and how
APOE may be involved in these processes.

Astrocytes and Lipid Homeostasis in the
Aging and AD Brain
The most well-studied aspect of APOE biology in AD is lipid
transport, which neurons rely upon for their proper function.
Lipid homeostasis is clearly altered in AD: in his first description
of the disease, Alois Alzheimer noted that ‘‘many glial cells
show adipose saccules’’ (Alzheimer et al., 1995), and lipid
accumulations are present in both human AD brain and in an
AD mouse model (Hamilton et al., 2015), as well as in the aging
mouse brain (Shimabukuro et al., 2016). Given that the brain is
the most lipid-rich organ outside of adipose tissue (O’Brien and
Sampson, 1965), it is therefore not surprising that lipoproteins,
cholesterol and lipid homeostasis are critical for normal brain
function, including neuronal repair, membrane remodeling,
and plasticity (Mahley, 2016). For example, disrupting lipid
homeostasis in mice by knocking out both the α and β isoforms
of LXR, which are required for cholesterol and lipid efflux
from astrocytes, leads to widespread abnormalities in the brain,
including an age-dependent accumulation of lipid vacuoles in
perivascular astrocytes (Wang et al., 2002). When SREBP2, a
major positive regulator of cholesterol and lipid synthesis, is
specifically knocked out in astrocytes, mice exhibit reduced brain
weight and deficits in social behavior, learning and memory,
and coordinated movement, as well as elevated glucose oxidation
(Ferris et al., 2017). Interestingly, the neurons in these mice
show elevated SREBP2, possibly to compensate for the lack of
SREBP2 in astrocytes; yet this neuron-specific SREBP2 elevation
was not enough to rescue the pathological changes associated
with astrocyte-specific knock-out, underscoring the dependence
of neurons on astrocytic lipids.

APOE4 from primary astrocytes is poorly lipidated compared
to APOE3 (Gong et al., 2002); deficient lipid binding and
transport by APOE4 might therefore be expected to result in the
same type of widespread brain abnormalities described above,
ultimately leading to increased risk for AD (Figure 2). But
despite the poor lipid transport capabilities of APOE4 and the
reliance of neurons on astrocyte-supplied lipid, APOE4 carriers
have generally normal brain function throughout life. How
then does aging uncover the deficits conferred by APOE4?
The young brain may have mechanisms in place to cope
with inefficient APOE4 lipid transport; but aging leads to
decreased cholesterol synthesis in astrocytes (Boisvert et al.,
2018), which, when combined with lower efflux from APOE4,
could tip the balance and culminate in neuronal lipid deficits.
Furthermore, Aβ inhibits SREBP2 in primary cultured cells from

FIGURE 2 | Impaired lipid transport capacity of astrocytic APOE4 sensitizes
neurons to degeneration during aging. Astrocytes (red) expressing
APOE3 supply normal levels of cholesterol and other lipids to the cells of the
brain, particularly to neurons (yellow), maintaining healthy neuronal function
and cognition. Astrocytes expressing APOE4 are less inefficient at lipid
transport, which, compounded with aging-associated lipid dysregulation,
leads to neurodegeneration (neuron with rough edges) and is expected to
predispose APOE4 carriers to Alzheimer’s disease (AD).

mouse cortex (Mohamed et al., 2018), suggesting that amyloid
deposition could make neurons even more dependent on
astrocytic lipids, which would be lacking in ε4 carriers. Although
cholesterol has been the most extensively studied, changes in
other lipid classes are also observed in serum samples from AD
patients, including sterols, sphingomyelin, phosphatidylcholine,
glycerophosphoethanolamine, lysophosphatidylcholine,
diacylglycerols, and triacylglycerols (Anand et al., 2017);
therefore, APOE4 status could exacerbate other age-related
changes in lipid homeostasis. While it is unclear whether these
changes in lipid metabolism are a cause or an effect of AD, aging-
and APOE-related perturbations may be expected to exacerbate
amyloid pathology, and vice versa, culminating in widespread
neurodegeneration.

Paradoxical Effects of APOE4 on
Cholesterol Synthesis
Given that APOE4-containing lipoproteins are lipid-deficient,
one might expect lipid secretion to be impaired. Surprisingly,
human iPSC-derived astrocytes expressing APOE4 reportedly
secrete significantly more cholesterol than their APOE3+
counterparts (Lin et al., 2018). Notably, this enhanced cholesterol
secretion was accompanied by higher, not lower, intracellular
cholesterol. Accumulated intracellular cholesterol is consistent
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with the reduced ability of APOE4 to export cholesterol,
which was confirmed in an independent study showing that
APOE4 iPSC-derived astrocytes produce APOE-lipoprotein
particles with less cholesterol than APOE3-expressing cells
(Zhao et al., 2017a). But the increased cholesterol secretion
is more difficult to explain; how could APOE4 promote
both the intracellular accumulation and enhanced extracellular
secretion of cholesterol in vitro? One explanation to unite
these seemingly contradictory findings is that these cells are
unable to properly sense that intracellular cholesterol levels
are high. Normally, negative feedback loops ensure that
cells laden with lipids reduce synthesis and uptake while
increasing efflux—consistent with this signaling mechanism,
SREBP2 was in fact downregulated in APOE4+ iPSC-derived
astrocytes, as would be expected from cells with excessive
lipids (Lin et al., 2018). APOE4 might therefore reduce the
clearance of cholesterol via enzymatic oxidation. Consistent
with this idea, APOE−/− mice have reduced 24-OH-, 7α, and
7β-hydroxycholesterol in their brains (Nunes et al., 2018).
Furthermore, APOE mRNA levels are reduced in the APOE4+
iPSCs, and APOE is a major target gene of LXRs, which
are activated by hydroxycholesterol. In contrast to the above
finding, astrocytes from targeted-replacement mice expressing
APOE4 were previously found to secrete less cholesterol than
astrocytes from APOE3 mice (Gong et al., 2002; Riddell
et al., 2008). While it is possible that species differences in
cholesterol handling between mice and humans could explain

these disparate findings (Dietschy and Turley, 2002), more
research is needed to clarify exactly how APOE genotype affects
astrocyte cholesterol metabolism.

APOE4 Disrupts Lipid Droplet Homeostasis
Recent observations indicate that APOE regulates intracellular
lipid storage. A consequence of SREBP2 inhibition, as might
occur during aging or amyloid deposition, is the reduction of
autophagic lipid mobilization from structures known as lipid
droplets (LDs; Seo et al., 2011; Kim et al., 2016). LDs are
intracellular accumulations of neutral lipids and are central
to cellular lipid homeostasis, particularly in astrocytes, where
they play a dual role in managing lipids from neurons and
in maintaining astrocytic energy demands. Elevated reactive
oxygen species (ROS) in neurons induces lipid peroxidation
and triggers subsequent efflux of lipids that accumulate as LDs
in neighboring astrocytes, a process that is neuroprotective
and dependent on APOE (Figure 3; Liu et al., 2015, 2017b).
An increase in peroxidated lipids is associated with disrupted
lipid homeostasis, decreased phosphatidylcholine synthesis,
decreased mitochondrial metabolism, and ultimately cognitive
decline (McDougall et al., 2017), and APOE mitigates this
toxicity in neurons by transferring the burden of lipid
accumulation and subsequent clearance to astrocytes. In a
Drosophila model of neurodegeneration, APOE4 is a complete
loss of function in terms of the neuroprotective formation of
LDs in glial cells, leading to neuronal cell death (Figure 3;

FIGURE 3 | The neuroprotective transfer of toxic lipids from neurons to astrocytes results in lipid droplet formation, which is abrogated in APOE4-expressing cells.
Agents or stressors that induce reactive oxygen species (ROS) formation in neurons leads to increased levels of toxic peroxidated lipids. Neurons transfer these lipids
to astrocytes via APOE. With APOE3 expression, this transfer results in the formation of lipid droplets (LDs; yellow dots) in astrocytes and neuroprotection.
Conversely, APOE4 expression is thought to prevent the transfer of peroxidated lipids to astrocytes, resulting in no LD formation in astrocytes and subsequent
neurodegeneration.
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Liu et al., 2015, 2017b). These data indicate that APOE
might play an important role not only in astrocyte-mediated
synthesis and transfer of lipids to neurons, but in reverse
as well, as an acceptor of neuronal-derived peroxidated
lipids.

Although these studies show that APOE4 expression leads
to a decrease in LD formation when neurons are the lipid
donor and astrocytes are the recipient, APOE4 can also
induce LDs in a cell autonomous manner. LD formation
results from interactions between the endoplasmic reticulum
(ER) and mitochondria, at structures known as mitochondria-
associated ER membranes, and APOE may regulate LD
formation by mediating ER-mitochondria communication at
these sites (Tambini et al., 2016). Fibroblasts treated with
APOE4 astrocyte conditioned medium (ACM) exhibit increased
LDs, and blocking ER-mitochondria tethering returns lipid levels
to normal (Tambini et al., 2016). These data indicate that
either the APOE4 ACM contained a factor that signaled to
the cells to induce LDs, or alternatively, that the APOE4 ACM
is somehow nutrient-deprived compared to APOE3 media,
since glucose deprivation also induces LD formation in
astrocytes. Nutrient deprivation-induced LDs are used for
β-oxidation of fatty acids to generate acetyl-CoA to meet
cellular energy demands (Cabodevilla et al., 2013). Thus,
it is possible that APOE regulation of LDs in astrocytes
is context-dependent: nutrient deprivation induces formation
of LDs and subsequent breakdown by autophagy to fulfill
energy requirements, which APOE4 can stimulate; whereas
increased neuronal oxidative stress leads to accumulation of
toxic lipids, which are transferred to astrocytes, an activity that
is lacking in APOE4 cells. In either case, APOE4-dependent
deficiency in autophagy would also impair LD breakdown,
causing toxic accumulation in either cell type (Simonovitch
et al., 2016). Further study delineating the impact APOE4 has
on LD homeostasis could identify points of therapeutic
intervention.

Astrocyte Glucose Metabolism in the
Aging Brain
The brain is a highly energy-demanding organ, and declines
in brain glucose utilization and mitochondrial function during
aging may interact with AD risk factors, including APOE, to
negatively impact neuronal homeostasis. The data supporting
this concept range from model organisms to epidemiology. For
example, yeast genes that enhance or suppress Aβ toxicity exert
their effect depending on the level of mitochondrial respiration
(Treusch et al., 2011), suggesting that cellular energetics
determines resiliency to amyloid. Energetics also impacts AD
risk profile in humans: postmenopausal women characterized
as having a poor metabolic profile, which includes elevated
glucose and increased insulin resistance, exhibit worse cognitive
performance compared to healthy metabolic subjects, and
cognitive decline in this group is exacerbated by APOE4 carrier
status (Karim et al., 2019). However, this relationship is likely
complex; a study including both aged women and men found
no difference in glucose levels in AD and APOE4 carriers vs.
healthy and non-APOE4 carriers; there weremarginal reductions

in insulin and insulin resistance in APOE4 carriers, which
was somewhat increased in individuals with AD (Morris et al.,
2017).

To clarify the underlying relationship between APOE4 and
energy homeostasis, APOE4 targeted-replacement mice have
been studied. Aged (22 months) mice expressing APOE4 exhibit
decreased insulin signaling in cortex and hippocampus (Zhao
et al., 2017b) and middle-aged (6 months) female APOE4 mice
are deficient in the uptake and utilization of glucose in the
brain, with compromised respiratory capacity and decreased
PPARγ signaling (Wu et al., 2018). In addition to downregulated
PPARγ, another study found that insulin-degrading enzyme
(IDE) was also downregulated in the hippocampus of the
same aged APOE4 mice (Keeney et al., 2015). Reduction of
PPARγ would be expected to trigger lipid dysregulation by
decreasing lipid synthesis (as described above), as well as dampen
anti-inflammatory signaling; and while lower levels of IDE would
be expected to decrease Aβ clearance, lower IDE should also
increase insulin and affect glucose and glycogen levels, perhaps
leading over time to insulin resistance, although this would
need to be determined experimentally. In the same study, aged
mice expressing either APOE4 or APOE3 compared to the
neuroprotective APOE2 were also found to have downregulated
insulin signaling proteins IGF1, IRS1, and GLUT4 (Keeney
et al., 2015), in agreement with the idea that aging itself causes
deficient glucose metabolism independently of APOE genotype.
As discussed above, energy deficiencies might be exacerbated in
APOE4 carriers as lipid β-oxidation and lipid droplet autophagy
become increasingly important for cell function.

Aerobic Glycolysis
Deficits in energy metabolism associated with APOE4 might
also exacerbate aging-associated declines in aerobic glycolysis
(Goyal et al., 2017; Figure 4). Aerobic glycolysis is the preferential
conversion of glucose to lactate rather than pyruvate, even in
the presence of oxygen, and is typically associated with cancer
cells, although non-cancerous cells also engage in this process
(Jones and Bianchi, 2015). In fact, astrocytes in mice are capable
of surviving solely by aerobic glycolysis for at least as long as
1 year without any signs of pathology or neurodegeneration
(Supplie et al., 2017). Certain brain regions tend to preferentially
use aerobic glycolysis (Vaishnavi et al., 2010), and as the
brain ages, there is a shift towards oxidative phosphorylation
(OxPhos) to meet energy requirements (Figure 4; Goyal et al.,
2017). This aging-related increased reliance on OxPhos has
been proposed to lead to elevated ROS and peroxidated
lipids (Harris et al., 2014), a situation likely made worse in
APOE4 carriers, given the reduced ability of APOE4 to traffic
neuronal peroxidated lipids to astrocytes for elimination. Thus,
the switch to OxPhos could be an age-dependent trigger for
APOE4 pathophysiology.

In line with the concept that aerobic glycolysis is beneficial
or protective, and OxPhos is not, hiPSC-derived astrocytes
from AD patients harboring the PSEN1 ∆E9 mutation are
more oxidative than isogenic controls, with increased ROS
production and decreased lactate secretion (Oksanen et al., 2017).
On the other hand, PC12 and B12 cells that are resistant to
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FIGURE 4 | Different modes of glucose metabolism are preferred in the
young vs. aging brain. In the young brain, aerobic glycolysis is generally
favored, resulting in increased lactate production, presumably by astrocytes,
which should be supportive for increased neuronal activity. With aging, there
is a shift toward oxidative phosphorylation (OxPhos) instead, resulting in
increased electron transport chain (ETC) activity, increased ROS production,
and more peroxidated lipids. Healthy cultured cells that are resistant to Aβ

toxicity happen to exhibit a preference for aerobic glycolysis, and aerobic
exercise, which is known to confer neuroprotection, elevates aerobic
glycolysis. In contrast, cells from familial AD patients (PSEN1∆E9) exhibit
elevated OxPhos. While young APOE4 carriers may exhibit increased
glycolytic activity, particularly in brain regions associated with AD [e.g., default
mode network (DMN), entorhinal cortex], aged APOE4 carriers may exhibit
elevated OxPhos instead, although more evidence to demonstrate whether
and how such a metabolic shift occurs is warranted.

Aβ toxicity exhibit upregulated aerobic glycolysis (Newington
et al., 2011). Furthermore, aerobic exercise, which improves
cognitive scores in aging and AD patients (Panza et al.,
2018), increases aerobic glycolysis and lactate production in
the brain (Matsui et al., 2017). Interestingly, in the entorhinal
cortex of APOE4 targeted-replacement mice, genes involved
in OxPhos are upregulated, suggesting an APOE4-dependent
increase in OxPhos and decrease in aerobic glycolysis and lactate
(Figure 4; Nuriel et al., 2017b). Therapeutic strategies aimed
at improving aerobic glycolysis may therefore help ameliorate
APOE4-mediated toxicity.

Glycogen in Astrocytes
Despite its high energy demands, there are few energy stores
in the brain compared to the rest of the body. In addition
to storing lipids in the form of LDs, astrocytes are also the
primary cell type in the brain to store glycogen. Astrocytic
glycogen is important for maintaining healthy neurons and
overall brain function, providing an energetic buffer during
periods of low glucose availability (Bak et al., 2018). Primary
astrocytes cultured in high (25 mM) vs. low glucose (5.5 mM)
have elevated rates of glycolysis and glycogen content (Li et al.,
2018). Elevated glycogen stores in co-cultured astrocytes are
neuroprotective during glucose deprivation (Swanson and Choi,
1993). Significant evidence connects glycogen with memory
formation: mice lacking glycogen synthase in the brain have
impairments in learning- and memory-associated synaptic
plasticity (Duran et al., 2013); glycogenolysis is important
for memory consolidation (Gibbs et al., 2006); glycogen is a
precursor to glutamate for learning (Gibbs et al., 2007); and
glycogen content changes with early memory consolidation in

1-day-old chick (Hertz et al., 2003). Activated glycogen synthase
kinase 3 has long been associated with the hallmarks of AD,
including Aβ deposition, tau hyperphosphorylation, and brain
inflammation, and would furthermore be expected to inhibit
glycogen synthesis and thus decrease glycogen stores (Rayasam
et al., 2009).

Energy metabolism in the brain may change during aging in a
cell type-dependent manner. Inhibition of glycogen breakdown,
termed ‘‘glycogenolysis,’’ disrupts long-term potentiation in
young, but not old, rat hippocampus (Drulis-Fajdasz et al.,
2015). In a follow-up proteomics study, the same group found
that, while glycogen phosphorylase (PYGB), the rate-limiting
enzyme in glycogen degradation, is predominantly expressed in
astrocytes in young animals, its distribution switches to being
present in both neurons and astrocytes in old animals (Drulis-
Fajdasz et al., 2018). As glycogen accumulation in neurons
normally triggers apoptosis (Vilchez et al., 2007; Duran et al.,
2012), the authors speculate that upregulation of PYGB in
neurons may be a protective mechanism to keep neuronal
glycogen stores low. However, total depletion of glycogen in
neuronsmay not be desirable in all circumstances, as low levels of
neuronal glycogen may be protective during hypoxia (Saez et al.,
2014).

The importance of glycogen to enhanced memory is not
necessarily ascribed to elevated pyruvate for mitochondrial
OxPhos, since aged wild-type and adult APP/PS1 mice fed a
diet supplemented with pyruvate still exhibit impairments in a
passive avoidance task for fear memory, despite a preservation
of glycogen stores and enhanced exploratory behavior (Koivisto
et al., 2016). Rather than supplying pyruvate for OxPhos,
glycogen may instead supply lactate to mediate its beneficial
effects, as described in the following section.

Lactate, Glycogen and the
Astrocyte-Neuron Lactate Shuttle
Hypothesis
The Astrocyte-Neuron Lactate Shuttle (ANLS) hypothesis was
first formulated in 1994 (Pellerin and Magistretti, 1994, 2012),
and describes a process in which astrocytes metabolize glucose
to export lactate for neurons during periods of high neuronal
activity, during learning andmemory, for example. The existence
of an astrocyte-to-neuron transport of lactate would necessitate
a lower basal concentration of lactate in neurons compared to
astrocytes, and a recent study has indeed demonstrated such
a gradient in vivo, using a genetically-encoded lactate sensor
(Machler et al., 2016).

Despite findings in support of the ANLS hypothesis, there
has been some disagreement in the field as to whether astrocytic
lactate is really used by active neurons in the brain, if neurons
are able to produce their own alternative energy substrates, or
if astrocytes produce lactate in response to their own energetic
demands (Dienel, 2012). For example, computer simulations
of neuron/astrocyte energetics, based on fMRS data, support a
model in which neurons readily metabolize glucose and export
lactate, which is taken up by astrocytes, and not the other way
around (Simpson et al., 2007; Mangia et al., 2009).
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Although neurons are certainly capable of taking up glucose
and secreting lactate themselves, there is compelling evidence
that lactate secretion from astrocytes, derived from glycogen
stores specifically, is important in contexts of neuronal high
energy demand. For example, the transport of lactate specifically
from astrocytes to neurons is necessary for long-term memory
formation (Suzuki et al., 2011) and spatial working memory
(Newman et al., 2011). Neuronal activity can upregulate
astrocytic genes involved in lactate production and export
(Hasel et al., 2017), ensuring that astrocytes are able to supply
neurons with the necessary lactate during periods of intense
energetic demands. Lactate derived from astrocytic glycogen
can sustain neuronal activity in the absence of other forms
of energy, and blocking the transfer of lactate from astrocytes
to neurons in the absence of any other energy source leads
to axonal/neuronal failure (Ransom and Fern, 1997; Wender
et al., 2000; Brown et al., 2003, 2005; Suh et al., 2007; Walls
et al., 2008). Blocking glycogen degradation or lactate transfer
reduces glutamate release from neurons (Sickmann et al., 2009).
Furthermore, exhaustive exercise decreases brain glycogen and
elevates astrocyte-derived lactate (Matsui et al., 2017). While the
original ANLS hypothesis may undergo revision and refinement,
astrocytic glycogen-derived lactate certainly appears to be an
important component of healthy neuronal function, particularly
during times of nutrient deficiency.

Connecting APOE4 and Brain Energy
Metabolism: Future Directions
How could aging glycogen metabolism interface with
APOE4 genotype to exacerbate neurodegeneration? Young
adult APOE4 carriers have altered expression of proteins
involved in glucose metabolism in the posterior cingulate
cortex (PCC), a central component of the DMN (Perkins et al.,
2016). Subregions of the PCC are proposed to be involved in
internally directed cognition, including memory retrieval and
planning, as well as controlling attentional focus (Leech and
Sharp, 2014). The DMN is highly metabolically active and is
one of the earliest regions to deteriorate in AD and in normal
aging (Leech and Sharp, 2014), and young APOE4 carriers
exhibit increased activity in the DMN before any signs of
disease (Filippini et al., 2009). In agreement with this increased
activity, hiPSC-derived neurons from APOE4 patients are
hyperactive (Lin et al., 2018), and APOE4 targeted-replacement
mice exhibit a hyperactive entorhinal cortex compared to
APOE3-expressing mice (Nuriel et al., 2017a). While young
APOE4 carriers were found to express higher levels of
glycolysis enzymes (GLUT1, GLUT3, HEX1, MCT2, SCOT,
AACS) and complexes I, II, and IV of the electron transport
chain (ETC), there were lower levels of MCT4, an important
transporter for astrocytic lactate secretion (Perkins et al., 2016).
Disruption of MCT4 impairs long-term memory, which is
rescued by lactate injection, while memory impairment caused
by disruption of the neuronal lactate transporter MCT2, is
not rescued by lactate, strongly supporting the notion that
astrocytic export of lactate is critical for long-term memory
formation (Suzuki et al., 2011). Thus, the decreased MCT4 in
young APOE4 carriers might be expected to cause a deficit

in lactate secretion by astrocytes, despite higher glycolytic
activity. Interestingly, the DMN is a region that relies on
aerobic glycolysis in young, healthy brain (Vaishnavi et al.,
2010), and so should be a region that relies on elevated
lactate production to support neuronal activity; the increased
neuronal activity and decreased capacity of astrocytes to
keep up with such activity in APOE4 carriers might then
be expected to burn out glycogen stores early, effectively
accelerating an aging-associated metabolic phenotype reliant on
OxPhos. Further work is necessary to determine whether this
pathway could be induced by diet, exercise, or pharmacological
intervention to preserve cognitive function in presymptomatic
APOE4 carriers.

In summary, APOE performs a complex set of interrelated
functions in astrocytes, ranging from its long-appreciated lipid
transport function to regulation of lipid storage and utilization
to cellular energetics. In the next section we will review emerging
concepts around APOE function in the other major producer of
APOE in the brain, microglia.

MICROGLIA-DERIVED APOE IN AGING
AND AD

A large body of evidence implicates microglia in APOE-mediated
AD pathogenesis, particularly in relation to aging. Microglial
APOE production is strongly induced during injury and disease,
including in AD (Olah et al., 2018; Ping et al., 2018; Rangaraju
et al., 2018a). In 5XFAD transgenic mice, which harbor five
different human familial AD-causing mutations and exhibit
accelerated amyloid pathology (Oakley et al., 2006), microglial
APOE mRNA is significantly increased (Wang et al., 2015). A
similar increase in microglial APOE mRNA was also found in
a separate but similar transgenic mouse model of accelerated
amyloid pathology, APP/PS1 (Orre et al., 2014), as well as in aged
(isolated from 24 month old mice) vs. younger (5 month old)
mouse microglia (Hickman et al., 2013), and in the Ercc1 mutant
mouse model of accelerated aging (Raj et al., 2014a; Holtman
et al., 2015). The upregulation of APOE mRNA in these mouse
models of AD and aging reflect concordant increases at the
protein level and in human AD brain. A recent proteomics
study of microglia isolated from 5XFAD mice identified APOE
as one of the top upregulated proteins (Rangaraju et al., 2018a).
Interestingly, immunohistochemical analysis in this same study
indicated that the microglia with elevated APOE were those
surrounding amyloid plaques, demonstrating that a distinct
subset of microglia increase APOE expression, rather than all
microglia. Furthermore, the aged mouse microglial proteome
also shows an enrichment in APOE protein compared to
non-aged mice (Rangaraju et al., 2018a). In agreement with these
findings inmice, an analysis of frontal cortex human postmortem
brain tissue found elevated APOE protein in AD patients vs.
healthy controls (Ping et al., 2018). Another study performing a
post-mortem human brain proteomics analysis also found APOE
to be higher in the aged microglia (Olah et al., 2018). Thus aging
alone, and not only disease pathogenesis, is sufficient to induce
microglial APOE expression at both the mRNA and protein
level.
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FIGURE 5 | The effect of APOE4 expression on microglia is cell autonomous and triggers a DAM, pro-inflammatory phenotype with impaired homeostatic functions.
Microglia expressing APOE4 vs. APOE3 tend to exhibit a disease-associated microglia (DAM)-like phenotype; this includes increased pro-inflammatory cytokine
production with impaired phagocytic ability, deficient clearance of debris (including amyloid plaques), and impaired migratory ability. These changes, compounded
with the pro-inflammatory phenotype associated with normal aging, result in an increased risk of developing AD.

The expression of APOE in subsets of disease- and aging-
associated microglia raises an important question: what role does
APOE play in the microglial response to disease and aging, and
how is this impacted by APOE4 genotype? Both mouse and
human studies indicate that key microglial functions are affected
by APOE genotype, including transcriptomic changes towards
the disease-associated phenotype, the percent of microglia
coverage around plaques, increased cytokine production, as well
as chemotaxis, phagocytosis and, perhaps, synaptic pruning
(Figure 5). Each of these functions are discussed in the following
sections.

APOE and the Microglial Phenotype in AD
The transcriptional profile of microglia is altered in AD,
switching from a homeostatic phenotype to a molecular profile
often referred to as the disease-associated microglial (DAM)
phenotype (Zhang et al., 2013; Keren-Shaul et al., 2017; Sarlus
and Heneka, 2017; Rangaraju et al., 2018b). Genome-wide
association studies (GWAS), including large-scale meta-analyses,
have indicated that the majority of genetic variants conferring
risk for late onset sporadic AD are immune-related and enriched
in microglia, implicating DAM microglia in AD pathogenesis
(Guerreiro et al., 2013; Lambert et al., 2013; Dos Santos
et al., 2017; Huang et al., 2017). The affected genes include
myeloid receptors TREM2 and CD33, transcriptional regulators
SPI1 (Pu.1) and MEF2C, complement pathway (CR1), antigen
presentation (HLA-DRB5), the MS4A family locus, and ABCA7,
amongst several others (Lambert et al., 2013). Some single
nucleotide polymorphisms (SNPs) are present in non-coding
regions and alter expression of microglial genes (e.g., SPI1;
CD33), whereas other SNPs result in a gain or loss of function
in several microglial genes related to immune function (e.g.,
TREM2) (Raj et al., 2014b; Malik et al., 2015; Huang et al.,
2017). A large-scale weighted gene coexpression network analysis
(WGCNA) combined with pathological assessment of 1647
post-mortem brain tissues from late-onset AD patients and
non-demented controls pointed to immune/microglial gene
networks as having the most significant functional enrichment of
all modules (Rangaraju et al., 2018b). Moreover, this microglial
module was significantly associated with the greatest number
of AD-relevant pathological traits, including the extent of

brain atrophy, and represented immune pathways consisting
of complement, Fc-receptors, major histocompatibility complex
(MHC), cytokines/chemokines and toll-like receptors (Zhang
et al., 2013). Since then, several groups have characterized
this DAM phenotype/immune network, albeit with varying
nomenclature (Gjoneska et al., 2015; Keren-Shaul et al., 2017;
Rangaraju et al., 2018b), and attempts to identify key regulators
of this transcriptomic phenotype have been underway (Gjoneska
et al., 2015). A common theme on which these genetic risk
factors converge is that they alter key microglia activities,
including phagocytosis, cytokine production, and microglial
encapsulation of amyloid plaques (Figure 5). Altogether, this
work has repositioned the thinking in the field, emphasizing
microglia as a potential source of attractive therapeutic targets
for AD.

Interestingly, APOE is a key regulator of the microglial
transcriptional signature, as demonstrated in post-mortem
human brain studies, human cellular models as well as in AD
mouse models and cultured microglia in vitro (Keren-Shaul
et al., 2017; Krasemann et al., 2017; Pimenova et al., 2017; Lin
et al., 2018; Olah et al., 2018). Studies performing single cell
RNA sequencing of CD45+ microglia from 5XFAD mice, paired
with in situ hybridization of DAM signature genes, indicate
that both the morphology and molecular identity of microglia
around plaques, as a population, are different from microglia
distal to plaques (Keren-Shaul et al., 2017). These DAMs
have increased APOE expression that is triggered following
a downregulation in homeostatic genes such as CX3CR1 and
P2Y12 (Keren-Shaul et al., 2017; Krasemann et al., 2017).
Furthermore, APOE mediates the switch from homeostatic to
the DAM phenotype; notably, knocking out APOE specifically
in microglia in 5XFAD mice prevents the transition to the
DAM phenotype and partially rescues neuronal cell death in
an axotomized facial motor nucleus model (Krasemann et al.,
2017). A full knockout of APOE conferred no additional
protection over that of microglia-selective APOE deletion,
highlighting the importance of microglia-specific APOE to
this process (as opposed to astrocytic APOE, for example;
Krasemann et al., 2017). However, an astrocyte-selective APOE
model was not directly compared, so it remains possible
that it is not the cellular source of APOE that matters, but
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rather a reduction in total APOE levels that underlies this
finding.

While elucidating the role of mouse APOE is informative,
it is also critical to understand whether different phenotypes
ensue with human APOE variants. Microglia isolated from
aged vs. non-aged human postmortem brain for RNA
sequencing analysis display an immune-enriched signature
that is significantly associated with key traits, including
APOE genotype (Olah et al., 2018). Although statistical
significance was not reached for APOE4, the neuroprotective
APOE2 was associated with a reduction in this aged microglial
phenotype (Olah et al., 2018). In human cellular models,
isogenic conversion of human iPSC-derived microglia
from APOE3/E3 AD patients to APOE4/E4 is sufficient to
transform the microglia transcriptome to a DAM-like phenotype
(Lin et al., 2018). Notably, this APOE4 gene expression
signature significantly overlapped with the transcriptional
profile seen in human brain (Lin et al., 2018), in support
of the notion that APOE4 may impact the DAM phenotype
in human AD. A WGCNA transcriptomic analysis of
brain from APOE3 or APOE4 targeted-replacement mice
subjected to traumatic brain injury identified that the network
most significantly associated with APOE genotype was the
‘‘innate immune response,’’ which included complement
activation; in this network, the genes were shifted toward
increased expression along with APOE4 compared to APOE3
(Castranio et al., 2017), again supporting a model in which
APOE4 confers a pro-inflammatory phenotype relative to
APOE3.

APOE Regulation of Microglial Plaque
Association
APOE immunoreactivity in human brain is enriched in
congophilic, dense-core plaques (Navarro et al., 2003), as
opposed to diffuse plaques, which are heterogeneous with respect
to APOE immunoreactivity (Gearing et al., 1995). Notably,
microglial activation around diffuse plaques is minimal (Maat-
Schieman et al., 1994; Stalder et al., 1999; Mrak, 2012), begging
the question as to whether the presence of APOE in plaques
is the trigger that differentially activates microglia at specific
plaque types, or whether the presence of APOE in the plaques
is simply due to the upregulation of APOE upon transition from
homeostatic microglia to DAMs (Ulrich et al., 2014; Krasemann
et al., 2017).

APOE4-expressing immune cells are less efficient at plaque
engulfment compared to APOE3-expressing cells. When GFP+
bone marrow cells from human APOE3 or APOE4 donor
mice were transplanted into lethally-irradiated 5 month old
APPswe/PS1∆E9 [i.e., bone marrow transplanted (BMT)-
APP/PS1] mice, donor GFP+ macrophages are found in
the brain 8 months later, with APOE3 exhibiting greater
numbers of plaque-associated GFP+ Iba1+ cells (Yang et al.,
2013). Interestingly, APOE4 was associated with reduced
microglia coverage around Aβ plaques (Yang et al., 2013).
Proper microglial encapsulation of plaques is thought
to be protective, sequestering damage from surrounding
cells, and decreased microglial coverage is associated

with higher Aβ levels and increased neuronal dystrophy
(Yeh et al., 2016). Indeed, the percentage of Aβ per area
was significantly higher in the hippocampus and cortex of
mice with APOE4 vs. APOE3 transplant (Yang et al., 2013).
Furthermore, APOE4 BMT-APP/PS1 mice had significantly
higher brain expression levels of the pro-inflammatory genes
TNFα and macrophage migration inhibitory factor (MIF;
which are upregulated in AD patients), lower levels of the
anti-inflammatory gene IL-10, and impaired spatial working
memory in the Barnes maze, compared with APOE3 BMT-
APP/PS1mice (Yang et al., 2013).

In another study using 5XFAD mice crossed to APOE3 or
APOE4 targeted-replacement mice, mice expressing
APOE4 exhibited significantly larger and more numerous
amyloid plaques, as well as increased microglial dystrophy;
but in contrast to the Yang et al. (2013) study, more microglia
were found surrounding plaques in APOE4 vs. APOE3 and
APOE2 (Rodriguez et al., 2014). It is difficult to distinguish
whether the change in microglia phenotype in relation to
plaque type is indirect, in response to worsened pathology
or if it is also partly due to a cell autonomous effect of
APOE4 on microglia, irrespective of plaque type. While these
in vivo studies are informative, other recent studies indicate
cell-intrinsic APOE4 effects on microglia. More specifically,
human iPSC-derived microglia from APOE4 carriers have
different morphology compared to isogenic APOE3 controls,
and have a reduced capacity to phagocytose Aβ (Lin et al., 2018),
in agreement with a change towards the DAM phenotype. Thus,
APOE4 expression impairs the ability of microglia to efficiently
clear amyloid pathology, although the precise mechanisms
underlying microglial recruitment to specific amyloid plaques
require further characterization.

APOE Genotype and Cytokine Production
An overwhelming body of evidence supports that the presence
of APOE4, either recombinantly applied or endogenously
expressed, confers an increase in pro-inflammatory cytokine
production across rodent and human species, in blood,
brain, and microglia. In support, rat primary glial cultures
comprised of astrocytes and microglia produce higher levels
of IL-1β when exposed to recombinant APOE4, purified
from APOE-expressing HEK293 cell culture medium, than
APOE3 (Guo et al., 2004). Cultured mouse microglia derived
from APOE4 targeted-replacement mice have an activated
morphology, produce higher levels of pro-inflammatory
cytokines including TNFα, IL-6, and IL12p40, and nitric oxide
(NO) along with lower levels of anti-inflammatory cytokines
than their APOE3-derived counterpart when exposed to
various pro-inflammatory mediators including LPS, IFNγ,
or LPS+ IFNγ (Brown et al., 2002; Colton et al., 2005;
Vitek et al., 2009). Notably, some of these effects (e.g., NO
production) are APOE4 gene dosage-dependent (Vitek et al.,
2009).

Similar to that seen in cultured microglia, APOE4 mice
immune-challenged with a peripheral injection of LPS exhibit
higher brain mRNA expression levels of TNFα and IL12p40 than
in that from APOE3 TR mice (Vitek et al., 2009). A
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similar increase in pro-inflammatory cytokines, namely TNFα
and IL-6, in APOE4 mouse serum is seen following a
peripheral injection with LPS compared to that in APOE3 mice
(Lynch et al., 2003). Finally, when LPS is administered by
intracerebroventricular injection, APOE4mice have higher brain
levels of IL-1β, IL-6, and TNFα than APOE3 mice (Zhu et al.,
2012).

While this increase has been consistently observed by
independent groups in vivo in APOE targeted-replacement
mice in AD models (Tai et al., 2011), due to perhaps
independent roles of APOE genotype on other aspects of
the disease (e.g., Aβ plaque levels), it is not clear whether
the increase in cytokines by APOE4 is due to the increase
in pathology, or due to a direct effect of APOE4 on
cytokine production, which could contribute to the increase
in pathological changes. Cell culture experiments shed some
light on the former, in that the effect of APOE4 seems to be
a cell-autonomous effect on microglia as when stimulated in
culture, they produce more pro-inflammatory cytokines such
as IL-1β (Guo et al., 2004), which suggests the differential
extent of pathology (e.g., amyloid plaque deposition) as not
being the sole driver of the differential increase in cytokines
due to APOE4 vs. APOE3 genotype. Since these APOE
targeted-replacement mouse studies assess the effect of human
APOE in a mouse context, it remains plausible that this
toxic pro-inflammatory effect attributed to APOE4 could be
specific to mouse; however, human data indicates otherwise
and suggests this phenomenon is intrinsic to the human APOE
isoform irrespective of species by which it is produced/acting
upon. Indeed, over the past few years, studies using advanced
human cellular models parallel the pro-inflammatory findings
seen in mice (Lin et al., 2018). Further, human clinical
data suggests something similar. In two Chinese populations
with AD, APOE4 carriers, carrying either one or two copies,
had elevated plasma levels of the pro-inflammatory cytokines
TNF-α, IL-6, and IL-1β compared to that of APOE2 and
APOE3 carriers (Fan et al., 2017). Also, APOE genotype
modulates cytokine production in human peripheral blood when
stimulated with pro-inflammatory mediators ex vivo as well as
in vivo. More specifically, ex vivo stimulation of peripheral
blood collected from healthy volunteers with TLR2 and
TLR4 ligands demonstrated that TNFα, IL-1β, IL-6, IL-17,
IFNγ, G-CSF, IL-8, MCP-1, MIP-1a, and IP-10 levels were
robustly increased in that from APOE3/E4 compared to
APOE3/E3 carriers (Gale et al., 2014). Similarly, healthy
human subjects intravenously administered the TLR4 ligand
LPS exhibited higher plasma TNFα levels in APOE3/E4 vs.
E3/E3 (Gale et al., 2014). In recent years, more advanced
human cellular models make the picture clearer and indicate the
mouse findings are not species specific and extend to human
microglia.

Are these effects good or bad? Notably, recent studies have
been controversial as to whether the best therapeutic approach
for AD with respect to targeting APOE would be to lower
APOE levels or augment them. As in astrocytes, the effects
of APOE4 in microglia are often confounded by reports that
APOE4 production and/or protein stability is lower compared

to APOE3 (Bertrand et al., 1995; Raffai et al., 2001; Glockner
et al., 2002). Thus, it remains plausible that this inflammatory
response could be due to a decrease in APOE levels, irrespective
of genotype. APOE3 can dampen cytokine production, and
removing APOE can lead to a more pro-inflammatory
phenotype. So, would elevating APOE4 protein levels help
ameliorate the pro-inflammatory phenotype, or worsen it?
Microglial APOE is neuroprotective in rat microglia neuronal
co-cultures (Polazzi et al., 2015) and this release of APOE
and the resulting neuroprotective effect is lost when microglia
are exposed to inflammatory stimuli, thus lowering APOE.
Therefore, it is interesting to hypothesize that, in the context of
AD, when microglia are exposed to pro-inflammatory stimuli,
APOE synthesis and secretion is stunted (Saura et al., 2003;
Polazzi et al., 2015), effectively decreasing any neuroprotective
effects of the microglia. A study examining the effect of
APOE genotype comparing WT neurons cultured with either
APOE3 vs. APOE4 mouse-derived astrocytes or microglia
found that only APOE4 microglia led to greater neurotoxicity
(Maezawa et al., 2006). Interestingly, the greater toxicity of
APOE4 correlated with higher pro-inflammatory cytokine levels
(TNFα, IL-6, IL-1β). Finally, it should be noted that the
APOE4 effects can be sex-specific in certain contexts (Colton
et al., 2005).

APOE Effect on Phagocytosis, Synaptic
Pruning, and Chemotaxis
While the effect of APOE genotype on synaptic pruning and
phagocytosis has been not been studied in microglia, astrocytic
phagocytosis has been evaluated using APOE2, APOE3, and
APOE4 targeted-replacement mice crossed to mice expressing
EGFP driven by the astrocyte-specific promoter Aldh1l1 (Chung
et al., 2016). Fluorophore-conjugated cholera toxin-β subunit
(CTB-594) was used to label axonal projections of retinal
ganglion cells and the dorsal lateral geniculate nucleus, an area
with a high degree of synaptic pruning during development. In
agreement with in vitro phagocytic assessments, astrocytes in
APOE2 mice showed significantly enhanced phagocytic capacity
compared with APOE3, whereas astrocytes in APOE4 mice
demonstrated a significant decrease (Chung et al., 2016).
Although this study focused on astrocytes, microglia are key
players in synaptic pruning (Paolicelli et al., 2011; Schafer
et al., 2012); thus, it would be informative to determine
whether the effect of APOE genotype on synaptic pruning
is cell type-specific or not. In vitro, ApoE−/− mouse-derived
peritoneal macrophages demonstrated a decreased uptake of
apoptotic cells, but no change in ability to uptake latex
beads, compared to WT (Grainger et al., 2004). Given that
APOE4 from human CSF was found to form smaller complexes
than APOE2 and APOE3, it has been proposed that APOE4 may
be deficient in lipid debris clearance, in accordance with
phagocytic studies conducted on APOE4 human iPSC-derived
microglia (Lin et al., 2018). Finally, microglial migration
has also been found to be linked to APOE genotype
(Cudaback et al., 2011). Mouse ApoE−/− microglia show
reduced ATP- and C5a-triggeredmigration; likewise, in targeted-
replacement mice, APOE2 and APOE4 have reduced ATP- and
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C5a-triggered migration compared to APOE3 (Cudaback et al.,
2011).

APOE and Other Microglial AD Risk
Factors
Several studies have looked at potential interactions between
APOE and TREM2, another genetic risk factor for AD (Guerreiro
et al., 2013). APOE can bind TREM2 (Atagi et al., 2015; Yeh
et al., 2016), and, either directly or indirectly, APOE can alter
TREM2 signaling or function (Jendresen et al., 2017). Both APOE
and TREM2 are implicated in key steps in the homeostatic to
DAM phenotype (Krasemann et al., 2017). It is still unclear
whether there is and to what extent there is an interaction
in APOE and TREM2, genetically or functionally, warranting
further investigation.

Other risk factors for AD have clear functional overlap
with APOE. Of note, ABCA7, also expressed in microglia, has
been associated with age of onset of AD in a similar manner
as APOE. More specifically, the minor allele at rs3764650 in
ABCA7 is associated with a delayed onset and shorter disease
duration (Kim et al., 2006). While its function in regulating the
homeostasis of phospholipids and cholesterol has been the most
well studied function of ABCA7 in relation to APOE, it also plays
a role in phagocytosis (Tomioka et al., 2017), which has been
observed in vitro and in vivo and been reviewed more extensively
elsewhere (Abe-Dohmae and Yokoyama, 2012; Aikawa et al.,
2018).

Future Directions for Understanding
Microglial APOE in Immunosenescence
Is microglial APOE upregulation in aging and AD helpful
or harmful? Is it a compensatory mechanism, or does it
contribute to accelerated aging and neurodegenerative disease
pathogenesis? It is interesting to speculate that the two greatest
risk factors for late-onset AD, aging and APOE, interact
with respect to inflammation, with APOE4 promoting an
enhanced inflammatory tone over the course of a lifetime
(Olarte et al., 2006; Sando et al., 2008). Microglia undergo
senescence with aging, a process termed immunosenescence
(Costantini et al., 2018), consistent with a DAM phenotype,
and accumulating evidence suggests that APOE4 genotype
may aggravate this process to promote neuroinflammation and
neurodegeneration in AD. The change in cellular source of
APOE from predominantly astrocyte-derived, to astrocyte- and
microglia-derived during disease or aging, raises questions as
to whether the cellular source of APOE subserves differential
functions. It should be noted however, that although APOE
immunoreactivity has been demonstrated around plaques in
post-mortem human AD brain, co-labeling of APOE with
microglial markers has not been investigated. Thus, a careful
evaluation of this is warranted given the recent advances in
understanding APOE expression in ADmodels. Finally, although
there are clearly centrally mediated and cell-autonomous effects
of APOE4, several peripheral effects of APOE4 on immune cells
have been observed, and as such, it is unclear as to what extent the
peripheral component of APOE4 status has on the risk to AD.

FIGURE 6 | APOE4 disrupts homeostatic pathways in astrocytes and
microglia to cause neurodegeneration and AD. APOE4 expression and the
normal aging process itself impair astrocyte and microglia physiology in
specific pathways, which could theoretically be targeted to treat AD. In
addition to deficient clearance of Aβ, emerging evidence specifically highlights
lipid dysregulation and deficient glucose metabolism in astrocytes, and a
neurodegenerative pro-inflammatory response in microglia, and to some
extent in astrocytes as well. All of these pathways converge with similar
deficits that occur in normal aging to ultimately lead to neurodegeneration.

CONCLUSION

The role of APOE4 in mediating AD risk is complex
and multifactorial, involving a diverse array of cell types
and functions that need to be taken into consideration
for APOE-directed drug development. Studies from the last
decade have made significant progress in defining what
those functions are, and how aging might factor into the
progression of APOE4-mediated AD. Cholesterol metabolism,
LD formation and lipid transfer from neurons to glia, and
glucose/glycogen/lactate metabolism from glia to neurons all
appear to be important pathways in maintaining brain health,
particularly during aging; and the pro-inflammatory nature
of APOE4 and decreased phagocytic capacity of APOE4-
expressing glia likely contributes to neurodegeneration as well
(Figure 6). These pathways may yield viable therapeutic targets
for treating AD, but the precise mechanisms and connections
with APOE4 still remain poorly defined. It is also unclear how
APOE4-mediated disrupted function in astrocytes and microglia
separately could synergize to increase AD risk, warranting
further investigation.
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