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Abstract: Herein, the conductivity measurement technique is used to determine the interactions
that may occur between polyvinyl pyrrolidone (PVP) polymer and cetylpyridinium chloride (CPC)
surfactant in the presence of NaCl and Na2SO4 of fixed concentration at variable temperatures
(298.15–323.15 K) with an interval of 5 K. In the absence or presence of salts, we observed three
critical micelle concentrations (CMC) for the CPC + PVP mixture. In all situations, CMC1 values
of CPC + PVP system were found to be higher in water than in attendance of salts (NaCl and
Na2SO4). Temperature and additives have the tendency to affect counterion binding values. Various
physico-chemical parameters were analyzed and demonstrated smoothly, including free energy
(∆G0

m), enthalpy (∆H0
m) and entropy change (∆S0

m). The micellization process is achieved to be
spontaneous based on the obtained negative ∆G0

m values. The linearity of the ∆Ho
m and ∆So

m values
is excellent. The intrinsic enthalpy gain (∆H0*

m) and compensation temperature (Tc) were calculated
and discussed with logical points. Interactions of polymer hydrophobic chains or the polymer +
surfactant associated with amphiphilic surface-active drugs can employ a strong impact on the
behavior of the gels.

Keywords: polyvinyl pyrrolidone; critical micelle concentration; cetylpyridinium chloride; thermo-
dynamics; conductivity measurement

1. Introduction

Surfactants are substances that can reduce the surface tension of a solvent. Aggregation
behavior of amphiphilic substances, which is basically a non-covalent interaction, is a nor-
mal and spontaneous phenomenon [1]. The structural configuration of surfactant molecules,
and the presence of polar and non-polar portions, helps them to be self-assembled in an
aqueous medium at a certain concentration which is termed as critical micelle concentra-
tion (CMC) [2]. Micelles can easily incorporate feebly soluble drugs, organic chemicals, or
polymers inside their hydrophobic core and facilitate the solubility of various substances
and bioavailability as well [3,4]. However, surfactants act as a good recipient regarding
drug delivery systems. Studies have suggested that insertion of external substances may
impact on the physical properties of aggregates such as adding or departure of counter ion
binding, reaction rate, and catalytic activity [5,6]. Gelation is the gel preparation process
from a system through polymers. Functions of gels are established by their drug-loading
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ability, rheological behavior, and the mechanisms and kinetics of drug discharge. The
integration of small ratios of surfactants, which can elevate or impede intra/interchain
polymeric bonds, can change these assets and be a valuable tool for emerging gel-based
dosage forms [7,8].

It is inevitable that this aggregate nature of surfactant molecules has made it a perfect
candidate for its versatile potential applications. In the case of pharmaceutical research,
cosmetics and perfumes industries, antiseptics, and disinfectants, surfactants are used
due to their good chemical and anti-microbial properties [5]. Surfactants can be utilized
to prepare antibacterial hydrogels. Shunji Yunoki et al. [9] studied that cetylpyridinium
chloride (CPC) and polyvinyl alcohol (PVA) based antibacterial hydrogels showed excellent
antibacterial properties where interaction between the used surfactant and polymer was
significant. Dye-surfactant interaction for formulation in textile and various coloring
industries deserves a remarkable role [10]. Recent research revealed that rinsing the oral
captivity can restrain and counteract the menace of transmission of SARS-CoV-2 [11,12].
A recent publication anticipated that CPC has capability to destroy viral capsids [13] and
can become active against different enveloped viruses such as coronaviruses [14]. CPC is
a quaternary ammonium salt and cationic surfactant and its structure made it a perfect
component for numerous applications for humans such as dental plaque and gingivitis
can be reduced by using 0.05% CPC [15]. Mukherjee et al. [16] and Popkin et al. [17] found
that CPC exhibits potent, effective, and rapid antiviral response towards influenza and can
decrease the duration and severity of the disease.

Investigation of interaction amid surfactants and polymeric substances is very im-
portant because these substances are used in many industries such as lubricants, food,
sanitizations, detergents, coatings, paints, adhesives, and cosmetics. In a mixture of poly-
mer and surfactant, they individually provide instinct properties such as rheological and
interfacial properties, respectively [18]. Polymer and surfactant interaction is important to
reduce interfacial areas between non-polar polymeric segments and water when they are
linked with non-polar moieties of surfactants to create micelles [19].

Our previously published paper [20] and some other publications have delin-
eated [21,22] the interactions between CPC and polymers/biopolymers in an aqueous
medium, but examination of interaction of CPC (Scheme 1A) and polyvinyl pyrrolidone
(PVP) (Scheme 1B) in presence of salts at various temperatures, such as in this present
work, is rarely studied. Sodium chloride (NaCl), generally known as salt, is a necessary
component of our bodies ability to absorb and transport nutrients, regulate blood pressure,
and maintain fluid balance. On the other hand, an electrolyte replenisher, sodium sulfate
in anhydrous form is used in isosmotic solutions to ensure that delivery does not disrupt
normal electrolyte balance or cause water and ion absorption or excretion. Due to the great-
est role of these two sodium salts to our body, we have selected these salts. Therefore, in
this current work conductivity technique has been used to examine the interaction between
the chosen surfactant (CPC) and polymer (PVP) with/without presence of salts (NaCl and
Na2SO4). On the other hand, three different values of CMC, fraction of counter ion binding
(β), thermodynamic parameters such as ∆G0

m, ∆H0
m, ∆S0

m and ∆C0
m for the aggregation be-

havior of CPC + PVP mixture in water, and electrolyte solutions, are calculated, expressed,
and analyzed thoroughly.
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Scheme 1. Molecular structure of (A) CPC and (B) PVP.

2. Experimental 
2.1. Materials 

The materials used in this study were of analytical grade and used without further 
purification. The chemical names, purity, CAS numbers, mass fraction, and other infor-
mation are mentioned in Table 1. 

Table 1. Information of used materials. 

Name of the Materials Sources Purity in Mass Fraction CAS Number Molecular Weight 
(g/mol) 

CPC Sigma-Aldrich, st. louis,
MAUSA 

0.99 124-03-8 340 

PVP 
Sigma-Aldrich, st. louis,

MAUSA 0.99 9003-39-8 360,000

NaCl
Merck, Gurgaon-12, In-

dia 0.99 7647-14-5 58.44

Na2SO4 Merck, Mumbai, India 0.99 7757-82-6 142.04

2.2. Solution Preparation and Conductivity Measurement 
CPC + PVP solutions, both in water and salts media, were prepared using distilled-

deionized water considering molal concentrations. The specific conductivity of used dis-
tilled-deionized water was 1.7–2.0 μS cm−1 maintaining temperature range 298.15–323.15 
K. Electric balance machine (Mettler Toledo, Greifensee, Switzerland) and 4510 conduc-
tivity meter (Jenway, Staffordshire, UK) were used for taking the weight of samples and 
measuring specific conductivity (κ) for preparing different solutions. The conductivity 
meter had a glass cell electrode specifying cell constant 0.97 cm−1 and to calibrate the me-
ter, appropriate concentration of freshly collected KCl solution was employed. Through-
out the whole work of conductivity measurement, alternate current (AC) having a fre-
quency of 60 Hz was maintained. In terms of explaining the procedure, initially, 25 mmol 
kg−1 aqueous solution of CPC in PVP was prepared and subsequently, this solution was 
inserted into the 20 mL solution of PVP at specific temperature both in attendance/non-
attendance of salts. Then, salts solutions were also prepared and added to observe the 
impacts of salts during conductivity study. After every addition of solution, time was 
maintained to achieve temperature equilibration and conductivity value was recorded; 
then, this process was employed for every system. Our process of conductivity technique 
has good matching with others [6,23–25]. The RM6 Lauda circulating water bath was used 
and the error of temperature within ±0.2 K was considered. The values of CMC were cal-
culated from the intersection points of κ versus concentration of CPC plots for the CPC +
PVP assembly by using Origin software.

Scheme 1. Molecular structure of (A) CPC and (B) PVP.

2. Experimental
2.1. Materials

The materials used in this study were of analytical grade and used without further pu-
rification. The chemical names, purity, CAS numbers, mass fraction, and other information
are mentioned in Table 1.

Table 1. Information of used materials.

Name of the Materials Sources Purity in Mass Fraction CAS Number Molecular Weight (g/mol)

CPC Sigma-Aldrich, st. louis, MAUSA 0.99 124-03-8 340
PVP Sigma-Aldrich, st. louis, MAUSA 0.99 9003-39-8 360,000
NaCl Merck, Gurgaon-12, India 0.99 7647-14-5 58.44

Na2SO4 Merck, Mumbai, India 0.99 7757-82-6 142.04

2.2. Solution Preparation and Conductivity Measurement

CPC + PVP solutions, both in water and salts media, were prepared using distilled-
deionized water considering molal concentrations. The specific conductivity of used
distilled-deionized water was 1.7–2.0 µS cm−1 maintaining temperature range 298.15–
323.15 K. Electric balance machine (Mettler Toledo, Greifensee, Switzerland) and 4510 con-
ductivity meter (Jenway, Staffordshire, UK) were used for taking the weight of samples
and measuring specific conductivity (κ) for preparing different solutions. The conductivity
meter had a glass cell electrode specifying cell constant 0.97 cm−1 and to calibrate the meter,
appropriate concentration of freshly collected KCl solution was employed. Throughout
the whole work of conductivity measurement, alternate current (AC) having a frequency
of 60 Hz was maintained. In terms of explaining the procedure, initially, 25 mmol kg−1

aqueous solution of CPC in PVP was prepared and subsequently, this solution was inserted
into the 20 mL solution of PVP at specific temperature both in attendance/non-attendance
of salts. Then, salts solutions were also prepared and added to observe the impacts of
salts during conductivity study. After every addition of solution, time was maintained to
achieve temperature equilibration and conductivity value was recorded; then, this process
was employed for every system. Our process of conductivity technique has good matching
with others [6,23–25]. The RM6 Lauda circulating water bath was used and the error of
temperature within ±0.2 K was considered. The values of CMC were calculated from the
intersection points of κ versus concentration of CPC plots for the CPC + PVP assembly by
using Origin software.

3. Results and Discussion
3.1. The CMC and β for the Aggregation of CPC + PVP Mixture in Aqueous and Salts Media

The aggregation of surfactants has been investigated by different distinguished re-
search teams applying a number of experimental techniques such as surface tension,
conductivity, density, viscosity and ultrasound velocity measurements, fluorescence spec-
troscopy, NMR Spectroscopy, etc. [26,27]. Among these techniques, conductivity technique
is a simple, trustworthy, and broadly used method to evaluate CMC for ionic amphiphiles.
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Ionic surfactants ionize into ions in H2O; consequently, specific conductivity has the ten-
dency to increase with enhancing of surfactant contents. Nevertheless, the incremental
increase in conductivity undergoes deviation from the initial trend when a certain concen-
tration of surfactant is developed. Such behavior was detected by many researchers in their
studies which is mainly owing to the micelle creation [6,20,28–30]. The dependence of the
specific conductivity, κ, on surfactant concentration is shown in Figure 1.
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Figure 1. Specific conductivity (κ) versus CPC concentration plot for the CPC + 0.1% (w/v) PVP
mixture in (a) water and (b) aq. 1.50 mmol kg−1 NaCl solution at 303.15 K.

For all the cases of CPC + PVP mixed system, three break points were obtained. The
concentration of surfactant achieved at the break point has been taken as the CMC, and
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the successive CMC values were expressed as CMC1, CMC2, and CMC3, respectively. The
CMC1 can be associated with the formation of the PVP (polymer): CPC complex (critical
aggregation concentration); the CMC2 corresponds to free CPC micellization (critical mi-
celle concentration in the presence of PVP), and the third break point (CMC3) refers to the
structural modifications in micelles as a sphere to rod transition [31]. The third critical mi-
celle concentration indicates that the spherical micelle turns into a rod shape. Chakraborty
et al. [32] described three CMCs (critical aggregation concentration (CAC), polymer satura-
tion concentration (cs), and free micellization concentration (cm

*)) for the assembly of the
mixture of SCMC and CTAB. Bhattarai has achieved three CMC values for the aggregation
of the CTAB + sodium polystyrene sulfonate mixture [33]. In spite of the existence of
multiple CMC for an association of polymer + surfactant mixture, a single CMC is also
stated in the literature [34–37]. Chai et al. [38] investigated the interaction amid PVP and a
gemini surfactant by NMR in a D2O medium at 298 K. They confirmed the CMC, CAC, and
additive saturated concentration (C2) by measuring chemical shift and self-diffusion coeffi-
cients, respectively. Mukhim and Ismail [39] reported CMC values of 0.841 and 0.75 mmol
kg−1 for the micellization of CPC in water and 0.32 mmol kg−1 NaCl solution, respectively,
at 298 K by means of surface tension measurement technique. The decrease in CMC values
in NaCl solution compared to water medium has good agreement with the current study.
Varade et al. [40] investigated the impact of electrolyte (NaCl and NaBr) on the CMC value
of CPC using different techniques (surface tension/conductance/viscosity/dynamic light
scattering (DLS)/small angle neutron scattering). From surface tension and conductivity
techniques, Varade et al. [40] stated that CMC value of CPC was found to be 0.98 and
0.95 mM, respectively at 303 K and obtained a decrease in CMC value in the occurrence of
salt. The DLS study showed that, in presence of electrolytes, the repulsive interactions will
cause a rise in the diffusion coefficient and therefore a reduction in the apparent diameter
of the micelles, i.e., a decrease in CMC of CPC was observed [40].

The extent of micelles dissociation, α, has been computed from the ratio of the slopes
corresponding to the linear regions below and above CMC. If S1 and S2 are the slopes below
and above CMC1, respectively, then S2 and S3 are the slopes below and above CMC2, and
S3 and S4 are the slopes below and above CMC3, respectively. Then, α1, α2, and α3 can be
determined from the ratios S2/S1, S3/S1, and S4/S1, respectively. The fraction of bound
counter ions, β, at CMC can be obtained by subtracting the α value from unity, i.e., β = (1 − α).

The effect of PVP on the CPC aggregation has been investigated considering the
five different concentrations of PVP in the range 0.01–0.10% (w/v). The CMC values
for the CPC + PVP system in H2O having several concentrations of PVP at 303.15 K
are depicted in Table 2. The CMC values initially tend to upsurge with the increase
in PVP content, attain optimum value, and then undergo decline with the increase in
PVP content. Sardar et al. [41] investigated the interactions between PVP and cationic
surfactant (both conventional/gemini) while they achieved the enhancement of CAC and
CMC values with the rise of PVP contents [40]. The change of CMC values for the CPC +
PVP aggregation as a function of PVP content indicates the survival of interaction between
CPC and PVP. Additionally, the micelle development phenomenon is a delayed process in
the manifestation of PVP.

Table 2. The CMC values of CPC + PVP assembly in H2O having different concentrations of PVP at
303.15 K.

cPVP CMC1 CMC2 CMC3

% (w/v) mmol kg−1 mmol kg−1 mmol kg−1

0.01 0.67 2.27 6.06
0.03 0.74 2.68 6.22
0.05 0.83 2.88 6.47
0.10 1.12 3.49 7.44
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All the CMC values for the CPC + PVP aggregation in aq. NaCl and Na2SO4 solution
have been obtained to be lower in magnitudes in comparison to aqueous medium (Table 3).
The reduction in CMCs is due to the decreased electrostatic repulsions between the charged
head group of the amphiphiles [39]. The effect is much more pronounced in aq. Na2SO4
solution than in case of aq. NaCl solution. Sulfate ion is multicharged and exists left in the
Hoffmeister series compared to the single charged anion Cl−. Therefore, the salting out
tendency might be more pronounced in case of sulfate which reduces CMC to a greater
extent at the identical ionic strength [42]. Barbosa et al. [43] achieved three CMC values
for the SDS +PEO mixture in aq. salts solution including NaCl and Na2SO4. They also
obtained a decreasing trend of CMC in the manifestation of these salts. They described that,
although NaCl could not interact with PEO, the counter ions of surfactant interact with
micelles and macromolecules, which allows the increase in the surfactant’s chemical the
potential, and thus the effect of NaCl results in the reduction in both CAC and CMC values.
Akhlaghi and Riahi [44] reported the effect of different salts on the CMC of TX-100, and
they obtained greater effect of NaCl in reducing CMC in comparison to Na2SO4.

Table 3. The CMC values of the CPC + 0.1% (w/v) PVP mixture in H2O, H2O + NaCl, and H2O +
Na2SO4 media at different temperatures.

Media Isalts T CMC1 CMC2 CM3

mmol kg−1 K mmol kg−1 mmol kg−1 mmol kg−1

H2O 0 298.15 0.92 3.03 7.31
303.15 1.12 3.49 7.44
308.15 1.16 3.71 7.71
313.15 1.23 3.95 7.81
318.15 1.26 3.82 7.62
323.15 1.32 3.32 7.13

H2O + NaCl 1.50 298.15 0.78 4.29 8.01
303.15 0.73 4.06 7.73
308.15 0.57 3.15 7.66
313.15 0.71 2.97 7.43
318.15 0.77 2.49 7.45
323.15 0.83 2.36 7.54

H2O + Na2SO4 1.50 298.15 0.43 4.65 8.51
303.15 0.55 5.31 8.22
308.15 0.51 4.81 8.11
313.15 0.48 4.47 8.48
318.15 0.44 4.27 9.02
323.15 0.39 3.98 9.09

3.2. Effects of Temperature on the Association of CPC and PVP Mixture

As the surfactants are used broadly in the applied purposes, its aggregation process
experiences an alteration of temperature depending on the seasonal time and applied re-
gions. To understand the impacts of temperature on the aggregation of CPC + PVP mixture,
we have selected a range of temperature 298.15–323.15 K in the current investigation, which
also covers both room temperature and body temperature. The conductivity and CMC
values of the CPC + PVP mixture experience a dependency on the temperature variation.
The CMC values of the CPC + 1% (w/v) PVP mixture in H2O, H2O + NaCl, and H2O +
Na2SO4 media at several temperatures are shown in Table 3.

In aqueous medium, the CMC1 values for the aggregation of CPC + PVP mixture
undergo an enhancement with the rise of temperature while the CMC2 and CMC3 values
primarily experience an upsurge with the escalation of temperature, reach an optimum
value, and then undergo reduction with the gradual growth of temperature. For the
aggregation of CPC + PVP mixture in H2O + NaCl medium, the CMC2 values suffer a
fall with the rise of temperature while the CMC1 and CMC3 values primarily experience
a reduction with the increase in temperature, reach the least value, and then experience
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an increase with the gradual intensification of temperature. In H2O + Na2SO4 medium,
the CMC2 values undergo a fall with the rise of temperature, while the CMC1 and CMC3
values primarily experience a reduction with an increase in temperature, touch the lowest
value, and then experience a rise with the gradual intensification of temperature.

3.3. Energetics of the Aggregation of CPC + PVP Mixture in Aqueous and Salts Media

The feasibility of the aggregation process can be understood from the knowledge of
standard free energy change (∆G0

m). It also signifies the spontaneity of the corresponding
phenomena. The values of ∆G0

m for CPC + PVP mixture in water and aq. salts solution
have been assessed using the following equation [45–51].

∆Go
m = (1 + β)RTlnXCMC (1)

The symbols R, T, and Xcmc in the above equation imply the universal gas constant,
study temperature (in Kelvin), and mole fractional value of CMC, respectively. The values
of Xcmc were computed from the ratios of the number of moles of amphiphiles at CMC and
the overall number of moles existing in the CPC + PVP mixture in H2O/aq. salts solutions.
The number of moles of H2O was considered equal to the ratio of one kilogram and mol.
wt. of H2O.

The extent of free energy of transfer (∆Go
m,t) for CPC + PVP mixture to shift from H2O

to H2O + salts media was evaluated applying the subsequent Equation (2) [45,52,53]:

∆G0
m,t = ∆G0

m (H2O + salts)− ∆G0
m (H2O) (2)

The changes in free energy (∆G0
m) values were determined only considering the CMC1.

The values of ∆G0
1,m are depicted in Table 4. The ∆G0

1,m values are negative in H2O and aq.
salts solution. In all the studied media, the negative ∆G0

m values increase with the growth
of experimental temperature. The negative ∆G0

m values slightly increase in presence of
NaCl while the values experience a fall in aq. Na2SO4 solution. As can be observed, the
∆G0

1,m values are negative, indicating that micelles have formed spontaneously in the
study solutions. Additionally, the enhanced negative ∆G0

1,m values in aq. NaCl solution
refer to the increase in the spontaneity for the micelle formation tendency.

Table 4. Values of β1, free energy change (∆G0
1,m), and free energy change of transfer (∆G0

1,t) for
CPC + 0.1% (w/v) PVP mixed systems in H2O and aq. solution of NaCl/Na2SO4.

Media Isalts T XCMC (×105) β1 ∆G0
1,m ∆G0

1,t

mmol kg−1 K kJ mol−1 kJ mol−1

H2O 0 298.15 1.658 0.67 −36.99
303.15 2.018 0.65 −37.08
308.15 2.090 0.65 −37.54
313.15 2.216 0.64 −37.87
318.15 2.270 0.63 −38.34
323.15 2.379 0.62 −39.00

H2O + NaCl 1.50 298.15 1.406 0.69 −37.05 −0.0599
303.15 1.315 0.68 −37.60 −0.5124
308.15 1.027 0.68 −38.26 −0.7106
313.15 1.279 0.67 −38.78 −0.9095
318.15 1.388 0.65 −38.91 −0.5689
323.15 1.496 0.64 −39.23 −0.2351

H2O + Na2SO4 1.50 298.15 0.775 0.35 −29.39 7.596
303.15 0.991 0.34 −29.78 7.304
308.15 0.919 0.39 −31.45 6.096
313.15 0.865 0.50 −34.31 3.554
318.15 0.793 0.51 −34.85 3.494
323.15 0.703 0.53 −35.83 3.165

This is a common occurrence for the aggregation of surface active materials [25,51]. A
similar pattern was reported by Masalci [54], where the ∆G0 values follow the trend we



Gels 2022, 8, 62 8 of 14

noticed. It is also reported by Masalci [54] that ∆G0 is shown to fall to higher negative
values as the temperature rises when the polymer is increased in quantity. In the absence
of electrolytes in the solution, ∆G0

1,m values become more negative as the temperature
rises, eventually remaining nearly constant. The drops of ∆G0

1,m values as the temperature
rises indicate that the surfactant’s hydrophilic group has desolvated [55]. Sharma et al. [56]
reported ∆G0

m value of −16.98 kJ mol−1 for the assembly of 0.1% (w/v) PEG-4000 and
CPC mixture, and the ∆G0

m experienced an upsurge with the escalation of temperature.
The ∆G0

m value of −29.03 kJ mol−1 for the aggregation of PVP + cationic gemini (16-5-
16) surfactant at 303 K was stated by Azum et al. [57] and the negative values of their
investigation were increased with enhancing temperature. A decrease in spontaneity for
the aggregation of the mixture of bovine serum albumin and CPC in aq. glycerol and
dimethyl sulfoxide solutions has been achieved by Sharma et al. [58]. In the current study,
the free energy of micellization for CMC2 and CMC3 were also negative, which revealed
the spontaneous occurrence of the processes (not given in tabular form).

The ∆G0
t values are negative in the present investigation for the shift of CPC + PVP

system from H2O to H2O + NaCl medium. The −∆G0
t values were also obtained for the

mixture of TTAB and promethazine hydrochloride in H2O + NaCl medium [59]. Similar
characteristics of PVP + CPC system on the basis of the values of ∆G0

t have been published
for the SCAP + PVP and SDS + PVP system [19,60]. For the aggregation of CPC in aq. 0.05
to 0.5% PVP solutions, Sood obtained ∆G0

t values of −0.49 to –0.64 kJ mol−1 while the
−∆G0

t values enhanced slightly with the growing concentration of PVP [19]. The average
value of ∆G0

t for CPC + PVP (mol. wt. 40,000) for variation of CPVP from 0.05 to 0.5% and
CPC+ PVP (mol. wt. 3, 60,000) for variation of CPVP range 0.01 to 0.07% is comparable
with our observed data [31]. Azum et al. [53] obtained negative transfer free energy for
the micellization of PVP + cationic gemini surfactant, and they obtained no specific trend
with temperature. The −∆G0

t values disclose the feasibility of the interactions between the
components present in the system.

Anand and Yadav [61] achieved the negative values of −∆G0
t, and the negative values

increased and underwent a fall with the enhancing of PVP contents and temperature of the
study, respectively. In the case of sodium sulfate solutions, the ∆G0

t values are positive,
which indicates that the surfactant system prefers to stay in the aqueous medium than the
salt solution.

The enthalpy (∆Ho
m) and entropy (∆So

m) changes involved in the aggregation of CPC +
PVP mixture were determined using the following equations [45–51].

∆Ho
m = −(1 + β)RT2

(
∂lnXCMC

∂T

)
(3)

∆So
m = (∆Ho

m − ∆Go
m)/T (4)

The lnXcmc is dependent on temperature and can be described as by Equation (5) [62–65].

lnXCMC = A + BT + CT2 (5)

A second-order polynomial fitting of lnXCMC vs. T plot was achieved nonlinear
(Figure 2). The values of fitting parameters (A, B, and C (regression constants)) have been
exposed in Table 5. The enthalpy (∆Ho

m) has thus been computed applying the following
Equation (6):

∆Ho
m = −(1 + β)RT2(B + 2CT) (6)
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Table 5. The values of A, B, and C for the aggregation of CPC + 0.1% (w/v) PVP mixed system.

Media Isalts
mmol kg−1 A B C

H2O 0 −69.463 0.3654 −0.0006
H2O + NaCl 1.5 126.7 −0.8927 0.0014

H2O + Na2SO4 1.5 −139.01 0.8273 −0.0013

The ∆Ho
m and ∆So

m values achieved in the current study are not exposed in the table,
but these values are used to determine the ∆Ho

m-∆So
m compensation. The enthalpy–entropy

compensation (Figure 3) has been calculated from a linear connection amid ∆H0
m and

∆S0
m with R2 value in the range of 0.9989–0.9992 using the following equation [66–75]:

∆H0
m= ∆H0,∗

m +Tc ∆S0
m (7)

The compensation temperature, Tc, and the intrinsic enthalpy gain, ∆H0,∗
m are repre-

sented by the slope and intercept, respectively. Table 6 shows the values of ∆H0,∗
m and Tc

for the CPC + 0.1% (w/v) PVP systems in H2O and aq. salts solution.
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Table 6. Enthalpy–entropy compensation parameters for CPC + 0.1% (w/v) PVP systems in H2O and
aq. salts solution.

Media Isalts ∆H0,*
m Tc R2

mmol kg−1 kJ mol−1 (K)

H2O 0 −38.05 309.06 0.9989
H2O + NaCl 1.50 −37.32 305.62 0.9992

H2O + Na2SO4 1.50 −35.66 324.90 0.9991

According to Equation (7) above, the R2 value in the range of 0.9989–0.9992 was given
in Table 6. The Tc and ∆H0,∗

m describe the solute–solute and solute–solvent interactions,
respectively, for the self-assembly process of amphiphiles [75]. The greater negative ∆H0,∗

m
value indicates that micellization is preferred even when ∆S0

m = 0 [70,71]. If entropy change
value becomes zero, ∆Ho

m becomes equal to ∆H0,∗
m which refer the solute-solute interactions

and the contribution of solvent effect might be ignored [73]. Tc values in this study were
achieved in the range of 305.62–324.9 K. Shi et al. reported the Tc values of 312–321 K for the
micellization of anionic/cationic/zwitterionic/nonionic amphiphiles. Koya et al. achieved
the Tc and ∆H0,∗

m values of 220 K and −36.6 kJ mol−1 for the micellization of CPC in 0.1 mol
L−1 glycine solution [74]. With a few exceptions, the Tc values for CPC + PVP were found
to be nearly comparable to biological fluid [72]. Sugihara and Hisatomi [70] discovered a
similar compensatory effect for the aggregation of charged amphiphiles in H2O medium.
The Tc values have been described as the proof of hydrophobic interaction between the
studied components [71]. García-Mateos et al. suggested the presence of hydrophobic
interactions between CPC and PVP [31]. On the basis of higher negative ∆H0,∗

m and greater
Tc values, Shi et al. reported that zwitterionic surfactants form more tighter and stable
micelles compared to the anionic/cationic and nonionic amphiphiles [73].

4. Conclusions

The conductivities of PVP + CPC mixed systems were measured in H2O/H2O +
NaCl/H2O + Na2SO4 solutions at various temperatures to insight into the interaction
between PVP and CPC. The degree of interaction was determined by the values of CMC, β,
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and certain thermodynamic factors. Both the micellization of PVP + CPC mixed systems
and β values were temperature dependent in aqueous and electrolytes media. At all
temperatures, the values of ∆Ho

m and ∆So
m indicate the presence of hydrophobic interaction

between PVP and CPC in aqueous and electrolytes media. The ∆G0
1,m values show that,

the spontaneity of self-aggregation is almost similar in case of water and aq. NaCl medium
whereas the negative values are lower in aq. Na2SO4 solutions. The values of ∆Ho,∗

m vary
from −35.66 to −38.05 kJ.mol−1, indicating that the micelle produced is stable. The Tc
values are very similar to those of a biological system. Here, investigation of the interaction
of surfactant and polymer in presence of low molecular weight electrolyte was carried
out because low to moderate amphiphiles concentrations are used to form hydrogels, as
self-assembly makes several approaches to attain gelation available.
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H. Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate. RSC
Adv. 2020, 10, 14531–14541. [CrossRef]

46. Mahbub, S.; Rahman, M.; Rana, S.; Rub, M.A.; Hoque, A.; Khan, M.A.; Asiri, A.M. Aggregation behavior of sodium dodecyl
sulfate and cetyltrimethylammonium bromide mixtures in aqueous/chitosan solution at various temperatures: An experimental
and theoretical approach. J. Surf. Deterg. 2019, 22, 137–152. [CrossRef]

47. Mahbub, S.; Rub, M.A.; Hoque, A.; Khan, M.A. Mixed micellization study of dodecyltrimethylammonium chloride and
cetyltrimethylammonium bromide mixture in aqueous/urea medium at different temperatures: Theoretical and experimental
view. J. Phys. Org. Chem. 2018, 31, e3872. [CrossRef]

48. Amin, R.; Mahbub, S.; Hidayathulla, S.; Alam, M.; Hoque, A.; Rub, M.A. An estimation of the effect of mono/poly-hydroxy
organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug.
J. Mol. Liq. 2018, 269, 417–425. [CrossRef]

49. Mahbub, S.; Rub, M.A.; Hoque, A.; Khan, M.A. Influence of NaCl/urea on the aggregation behavior of dodecyltrimethylammo-
nium chloride and sodium dodecyl sulfate at varying temperatures and compositions: Experimental and theoretical approach. J.
Phys. Org. Chem. 2019, 32, e3917. [CrossRef]

50. Dey, A.; Patra, N.; Mal, A.; Ghosh, S. Impact of organic polar solvents (DMSO and DMF) on the micellization and related behavior
of an anionic (AOT), cationic (CEM2AB) and cationic gemini surfactant (16-5-16). J. Mol. Liq. 2017, 244, 85–96. [CrossRef]
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