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Abstract

Background: Babesia microti is an emerging tick-borne pathogen and the causative agent of human babesiosis.
Mathematical modeling of the reproductive rate of B. microti indicates that it cannot persist in nature by horizontal
tick-host transmission alone. We hypothesized that transplacental transmission in the reservoir population
contributes to B. microti persistence and emergence in North American rodent populations.

Methods: Peromyscus leucopus were collected from Connecticut and Block Island, Rhode Island and analyzed using
a highly specific quantitative PCR (qPCR) assay for infection with B. microti.

Results: In April, 100% (n = 103) of mice were infected with B. microti. Females exhibited significantly higher
parasitemia than their offspring (P < 0.0001) and transplacental transmission was observed in 74.2% of embryos
(n = 89). Transplacental transmission of B. microti is thus a viable and potentially important infectious pathway in
naturally infected rodent species and should be considered in future theoretical and empirical studies.

Conclusions: To our knowledge, this study is the first to report transplacental transmission of B. microti occurring in its
natural reservoir host, P. leucopus, in the United States and the only study that provides a quantitative estimate of
parasitemia. This vector-independent pathway could contribute to the increased geographic range of B. microti or
increase its abundance in endemic areas.
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Background
Babesia microti (Apicoplexa: Sporozoea) is a zoonotic
intraerythrocytic apicomplexan parasite and is respon-
sible for almost all cases of human babesiosis in the
United States [1]. Human babesiosis is an emerging tick-
borne disease that shares the same vector, the black-
legged tick (Ixodes scapularis), and dominant reservoir
host, the white-footed mouse (Peromyscus leucopus), as
the causative agent of Lyme disease, the spirochete
Borrelia burgdorferi [2]. During the last 20 years, human
babesiosis has spread in the United States [3, 4] follow-
ing a similar trajectory to that of Lyme disease, although
with a temporal lag [5–7]. Factors accounting for the de-
layed spread of babesiosis compared to Lyme disease in-
clude lower fitness in the enzootic cycle because of

lower transmission from infected host to tick and lower
trans-stadial transmission, greater asymptomatic infection
in humans, insufficient physician awareness, and under-
diagnosis in non- or newly-endemic areas [1, 5, 6].
An integrated measure of B. microti fitness (the basic re-

productive number, R0) was estimated to be lower than
the threshold for pathogen persistence (R0 < 1) under
ecological conditions identified in long-term field studies
[6, 8] implying that emergence of this pathogen should be
unlikely in nature. However, despite the low predicted R0,
B. microti has not only persisted in multiple locations with
high infection prevalence in ticks regionally [5, 9–11], but
it is also geographically expanding in the Northeast and
upper Midwest regions of the USA [6]. This paradoxical
finding suggests additional mechanism(s) enhancing B.
microti transmission and persistence in the enzootic cycle
may be occurring. Previous field studies reported higher
average infection prevalences of B. burgdorferi (22.37%)

* Correspondence: dt2503@columbia.edu
Ecology, Evolution, and Environmental Biology Department, Columbia
University, New York, NY 10027, USA

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tufts and Diuk-Wasser Parasites & Vectors  (2018) 11:286 
https://doi.org/10.1186/s13071-018-2875-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-018-2875-8&domain=pdf
mailto:dt2503@columbia.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


compared to B. microti (9.53%) in nymphal I. scapularis
ticks throughout the New England area [6]. However, very
little is known about the B. microti infection status of P.
leucopus in nature.
The aims of this research were to (i) determine if

transplacental transmission of B. microti occurs in natur-
ally infected, wild reservoir P. leucopus mice and (ii)
quantify the level of transplacental transmission of host
populations in B. microti-endemic coastal New England.
As a comparison for early season infection prevalence
we also screened for the presence of B. burgdorferi in
the same host population; B. burgdorferi is not known to
be transmitted transplacentally [12, 13].

Methods
Study site and animals
Adult Peromyscus leucopus were collected from two lo-
cations in Connecticut [Lake Gaillard (LG) 41°22'25.3"N,
72°46'43"W and Old Lyme (OL) 41°22'21.5"N, 72°20'37.
6"W] and two locations on Block Island, Rhode Island
[North Island (NI) 41°12'36.4"N, 71°34'18.8"W and
Rodman’s Hollow (RH) 41°09'25.2"N, 71°35'22.9"W] for
two trapping sessions from April 26 - May 2 (hereafter
referred to as April) and July 23–31, 2016. In each trap-
ping session, animals were trapped for two consecutive
nights using Sherman live traps (7.62 × 8.89 × 22.86 cm;
H.B. Sherman Traps, Inc. Tallahassee, FL) baited with
peanut butter, oats, and sunflower seeds. Traps were ar-
ranged in nine 200 m transects with one trap placed
every 10 m for a total of 180 traps at each location, ex-
cept for NI where 100 m transects were used for a total
of 90 traps.
Animals were removed from traps, morphological

characteristics (age, sex, weight, body measurements,
etc.) were collected, and attached larval and nymphal
ticks were counted and removed from the ears and body.
All animals were euthanized with an overdose of isoflur-
ane and necropsied immediately in the field. All organs
and tissues were preserved in liquid nitrogen, blood

samples were dried on Whatman FTA cards (Fisher
Scientific, Pittsburg, PA, USA), and the carcasses were
wrapped in Whirl-Pak bags (Whirl-Pak®, Nasco, Fort
Atkinson, WI, USA) and frozen in liquid nitrogen; em-
bryos of pregnant females remained within the carcass.
All samples were transferred to -80 °C for long term
storage upon return to the laboratory. All animal proce-
dures were in accordance with guidelines approved by
the Columbia University Institutional Animal Care and
Use Committee (IACUC no. AC-AAAL3656).

Embryo necropsy
To ensure no cross contamination of maternal blood oc-
curred during the necropsy of embryos from the female’s
body cavity, a new pair of autoclaved dissecting utensils
were used for each adult female. Utensils were soaked in
a 10% bleach solution and then in 70% ethanol for at
least 2 min between sampling embryos from the same
adult female. All embryos were removed from the body
cavity of the female, washed with a saline solution,
photographed, immediately cut into sections around
each embryo, and then transferred to a separate sterile
Petri dish. Embryos were found in various stages of de-
velopment. Because the gestation time of P. leucopus is
22–28 days, embryos were separated into three develop-
mental age categories (Week 1, Week 2, Week 3; Fig. 1)
based on the size and the presence or absence of various
developmental characteristics for each embryo (i.e. eye
spot, placenta, limbs and tail, etc.). Week 1 embryos
were very small with little to no distinguishing charac-
teristics. Week 2 embryos were larger with a small pla-
centa, could be removed from the uterus, and a
distinctive eyespot was observed. Week 3 embryos were
large with almost fully developed characteristics. A 25
mg sample of the following tissue types was collected:
the uterine arteries and veins, the uterus surrounding
each individual embryo, the placenta if present, and the
embryonic sac surrounding each embryo if available.
Utensils were cleaned with bleach and ethanol between

Fig. 1 Pictures of embryos in the three stages of development, categorization was based on size and developmental characteristics of each embryo.
Week 1 embryos were very small with little to no distinguishing characteristics. Week 2 embryos were larger and an embryo could be removed from
its location in the uterus, a distinctive eye-spot was also observed. Week 3 embryos were large with almost fully developed characteristics
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each type of tissue collection. If the embryo was early in
development the whole embryo was used for DNA ex-
traction or the embryo was cut in half to equal 25 mg. If
the embryo was in a later developmental stage the heart
of the embryo was removed and used in the extraction
process. All embryo samples were screened for the pres-
ence of B. microti using the quantitative PCR protocols
described in the following section.

DNA extraction and PCRs
For all embryos and embryonic tissues, a 25 mg sample
was collected as described in the previous section, DNA
was extracted by hand using the Qiagen DNeasy Blood
and Tissue kit following the manufacturer’s protocol
(Qiagen, Valencia, CA, USA), and DNA concentration
was analyzed using a spectrophotometer (Denovix Inc,
New Castle County, Delaware, USA).
For adult samples, a 3 mm ear punch biopsy was col-

lected from each mouse and DNA was extracted using
the QIAcube HT DNA extraction system (Qiagen).
DNA concentration was measured for each sample using
a spectrophotometer (Denovix Inc). Each ear punch bi-
opsy sample collected from adults was then tested in du-
plicate for the presence of B. burgdorferi using a
quantitative PCR (qPCR) specific for a unique 69 bp seg-
ment of the 16S rRNA gene: forward primer (5'-GGC
GGC ACA CTT AAC ACG TTA G-3'), reverse primer
(5'-GCT GTA AAC GAT GCA CAC TTG GT-3'), probe
(6FAM-TTC GGT ACT AAC TTT TAG TTA A-
MGBNFQ) [14]. Samples were run on a 7500 real-time
PCR system (Applied Biosystems®, ThermoFisher Scien-
tific, Waltham, WA, USA) using TaqMan Fast Advanced
chemistry (ThermoFisher Scientific, Waltham, WA) and
cycling conditions consisted of: 95 °C for 20 s, followed
by 40 cycles of 95 °C for 3 s and 60 °C for 30 s. Because
B. burgdorferi is an extracellular bacterium and primarily
observed in tissues, we restricted our screening of B.
burgdorferi to only adult ear punch biopsy samples.
For adult individuals, DNA from dried blood samples

was extracted from FTA cards using the QIAcube HT
DNA extraction system or by hand using the Qiagen
DNeasy Blood and Tissue kit following the manufac-
turer’s protocol (Qiagen). DNA concentration was ana-
lyzed using a spectrophotometer (Denovix Inc).
Embryos, embryonic tissues, and adult blood samples,
were screened in duplicate for the presence of B. microti
using a qPCR designed specifically for detecting a 104
bp section of the 18S rRNA gene of B. microti: forward
primer (5'-AAC AGG CAT TCG CCT TGA AT-3'), re-
verse primer (5'-CCA ACT GCT CCT ATT AAC CAT
TAC TCT-3'), probe (6FAM-CTA CAG CAT GGA ATA
ATG A-MGBNFQ) [15]. Babesia microti is primarily an
intracellular erythrocytic protozoan and therefore we an-
alyzed embryos, embryonic tissues, and adult dried

blood samples for the presence of B. microti. Because
blood samples could not be obtained from embryos, a
25 mg sample of heart tissue was also collected and ana-
lyzed from a subset of adult mice for direct comparison
to embryos and embryonic tissues.
Average cycle threshold (CT) and quantity values were

collected from each run and mean infection prevalence
(number of infected individuals/total number of individ-
uals) was calculated for each location. qPCR standards
were constructed by separately cloning the aforementioned
targeted regions of B. burgdorferi and B. microti into
pUC57-Kan plasmids (GENEWIZ, Inc., South Plainfield,
NJ, USA). A dilution series (106–1 copy number dilutions)
for each pathogen was developed by combining a single
uninfected I. scapularis nymph (courtesy of the CDC) and
a known amount of plasmid DNA followed by DNA
extraction [14, 15]. Quantification and normalization
of each sample were completed as previously
described [14, 16, 17]; results are expressed as gene
copies per picogram (pg) of total DNA.
Babesia microti positive samples, determined via

qPCR, were then subjected to a standard PCR using a
specific primer set to amplify 437 bp of the B. microti
18S rRNA gene (forward PIRO-A: 5'-AAT ACC CAA
TCC TGA CAC AGG G-3' and reverse PIRO-B: 5'-TTA
AAT ACG AAT GCC CCC AAC-3') [18]. Amplification
was performed using Platinum Superfi 2× PCR Master
Mix (Invitrogen, ThermoFisher Scientific, Waltham,
WA, USA) under the following conditions: 98 °C for 30 s,
followed by 40 cycles of 98 °C for 10 s, 60 °C for 10 s, and
72 °C for 1 min, with a final elongation step of 72 °C for 5
min. PCR products were subjected to gel electrophoresis
on a 1% agarose gel stained with ethidium bromide.
Amplicons that produced bands of the correct size (~450
bp) were submitted for Sanger sequencing (Eurofins,
Louisville, KY, USA) in both the forward and reverse di-
rections. Consensus sequences were constructed and
aligned with other orthologous B. microti sequences de-
posited in the GenBank database and previously described
as human-infecting Clade 1 and nonhuman-associated
Clade 2 and Clade 3 pathogens (AY144696, AY144701,
AY144690; respectively) [19]. Alignments were completed
by hand using BioEdit Sequencing Alignment Editor [20]
and using the online Multiple Sequence Comparison by
Log-Expectation Alignment (MUSCLE) program. Se-
quence diversity and a pairwise distance matrix were con-
structed using the maximum composite likelihood model
in MEGA version 7.0 software [21].

Statistical analyses
Infection prevalence was calculated for sex of adults,
embryonic tissue type, and embryonic stage of develop-
ment. Significant differences between the proportion of
individuals infected and not-infected with B. burgdorferi
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were evaluated using a Fisher’s exact test. A Student’s t-
test was used to compare the number of nymphs col-
lected from April mice, individuals infected with B. burg-
dorferi and/or B. microti in April mice between males
and females, between CT and BI, and to compare female
infection to embryo infection overall and between trap-
ping sessions. A nonparametric Kruskal-Wallis test was
performed to assess differences in B. microti infection in
the stages of embryonic development and the average
number of embryos in each developmental stage. A pair-
wise Wilcoxon test was used to determine the variation
between each stage of development. Finally, an analysis
of variance (ANOVA) was completed to determine dif-
ferences in parasitemia between the three stages of em-
bryonic development. Geometric means of duplicate
samples were used in all calculations.

Results
All mice collected in April and only pregnant females
(n = 6) and their embryos (n = 26) collected in July
were necropsied and analyzed for the presence of B.
burgdorferi and B. microti using qPCR. In the April
sampling session, a total of 63 P. leucopus mice were
collected from the Connecticut (CT) locations and 40
from the Block Island (BI) locations (Table 1). Of
these, the combined proportion of mice with attached I.
scapularis nymphs was 57.89% (n = 32 CT mice, n = 26
BI mice). Overall, 12.62% (CT = 9.53%; BI = 17.5%) of
mice were infected with B. burgdorferi and 100% with B.
microti. The average B. burgdorferi log mean copy number
per pg total DNA (MCN) did not vary significantly
between CT and BI (Table 1) or between infected males
(nCT = 4; nBI = 5) and females (nCT = 2; nBI = 2). No sig-
nificant differences in B. microti MCN were observed be-
tween CT and BI (Table 1) or between infected males (n =
55; MCN ± standard error = 5.25 ± 0.09) and females (n =
48; MCN = 5.20 ± 0.10).

Of the total small mammals sampled in 2016, 20 P.
leucopus females were pregnant (nCT = 12; nBI = 8), in-
cluding three and five mice collected on BI in April and
July, respectively. All 12 pregnant females from CT were
collected in April. One pregnant meadow vole (Microtus
pennsylvanicus) was collected on BI in July and was in-
cluded in some of the analyses. Four pregnant mice and
the vole tested positive for B. burgdorferi (25.0%). All
blood samples collected from adult pregnant females
tested positive for the presence of B. microti via qPCR
(100%) and no significant differences were observed be-
tween CT and BI females. The number of embryos per
female (mouse only) ranged from 2–6 with an average of
4.5 embryos per female (Table 2; Additional file 1:
Table S1). A significant difference among the average
number of embryos was observed (Kruskal-Wallis χ2 = 8.13,
df = 2, P = 0.0172). The average number of embryos in
Week 1 (n = 3.4) was not significantly different from the
number of embryos in Week 2 (n = 4.8; Wilcoxon test P =
0.0660), however there were significantly more Week 3
embryos compared to Week 1 (n = 5.1; Wilcoxon test P =
0.0360), but not compared to Week 2 (Wilcoxon test
P = 0.4340; Fig. 2a). There were no significant
differences observed in the average number of
embryos between trapping sessions.
A total of 89 mouse embryos were collected and tested

for the presence of B. microti. Week 1 embryos showed
the highest infection prevalence (91.67%), whereas Week
3 embryo infection was lowest (56.10%); the average infec-
tion prevalence among all embryos was 74.16% (Table 2).
The average B. microti MCN was significantly different
among the three stages of embryonic development
(Kruskal-Wallis χ2 = 16.04, df = 2, P = 0.0003). Embryos
from Week 1 (MCN = 2.55 ± 0.17) and Week 2 (MCN =
2.49 ± 0.18) displayed significantly higher parasitemia
than embryos from the Week 3 stage of development
(MCN = 1.64 ± 0.11; Wilcoxon test P = 0.0003 and P
= 0.0022, respectively; Fig. 2b), but not between each
other (Wilcoxon test P = 0.8948). Other reproductive
tissue types (uterus, placenta, embryonic sac) also
tested positive for B. microti (Additional file 2: Table S2),
but due to the differences in embryo developmental stage
not all tissue types could be collected at each of the three
stages.
Females displayed significantly higher B. microti para-

sitemia (n = 21; MCN = 4.40 ± 0.21) than their embryos
(n = 71; MCN = 2.29 ± 0.10; P < 0.0001; Fig. 3). April fe-
males (n = 15; MCN = 4.67 ± 0.24) showed significantly
higher parasitemia than pregnant females from July (n =
6 including the M. pennsylvanicus female; MCN = 3.73
± 0.35; P = 0.0502). Conversely, July embryos (n = 20;
MCN = 2.66 ± 0.22) exhibited a significantly higher
MCN than embryos from April (n = 51; MCN = 2.15 ±
0.10; P = 0.0477). To assess differences in MCN among

Table 1 Log mean copy number per pg total DNA (MCN)
calculations and standard errors (SE) for Borrelia burgdorferi and
Babesia microti from Connecticut locations: Lake Gaillard (LG)
and Old Lyme (OL) and Block Island locations: North Island (NI)
and Rodman’s Hollow (RH) for all Peromyscus leucopus collected
in April

B. burgdorferi B. microti

n MCN SE MCN SE

Connecticut 63 4.29 0.25 5.27 0.10

LG 27 3.95 0.29 5.43 0.18

OL 36 4.46 0.34 5.14 0.10

Block Island 40 4.35 0.20 5.17 0.10

NI 15 3.75 0.09 5.01 0.18

RH 25 4.59 0.17 5.27 0.11
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different sample types, we also compared heart tissue (n =
11, MCN 4.61 ± 0.24) and blood samples (n = 11, MCN =
5.00 ± 0.26) collected from a subset of adult mice and
found that they did not differ significantly (P = 0.2757).
Sequences in the forward and reverse directions of the

18S rRNA gene of B. microti were obtained for six indi-
viduals including each embryo, adult female uterine ar-
teries and veins, uterus, placenta, and embryonic sac
(total sequences = 76; Additional file 3: Figure S1). Con-
sensus sequences were constructed and BLAST analysis
(NCBI) confirmed all sequences to be strains of B.
microti (XR_002459986 or AF028343). Most sampled se-
quences aligned nearly identically to the reference se-
quence for Clade 1 (AY144696), except for one sample
of adult female arteries (2033-Arteries). The overall pair-
wise mean distance and sequence diversity was 0.005 for
all embryonic samples (0.001 when 2033-Arteries was
excluded) including the reference sequence for Clade 1
(AY144696) and 0.014 (0.011 when 2033-Arteries was

excluded) when reference sequences from Clade 2
(AY144701) and Clade 3 (AY144690) were added.
Unique B. microti sequences generated from this study
have been deposited in GenBank (accession nos.
MH221125, MH221126).

Discussion
Our study demonstrates for the first time that transpla-
cental transmission of B. microti occurs in wild,
naturally-infected populations of P. leucopus and M.
pennsylvanicus in Connecticut and on Block Island, RI,
USA, with 74% transmission efficiency from mother to
fetuses. Although studies have previously reported trans-
placental transmission of Babesia canis canis in canines
[22, 23], B. microti in BALB/c laboratory mice [24], and
humans [25, 26] only one other study has reported verti-
cal transmission of B. microti occurring in naturally in-
fected rodent populations [27]. Tolkacz and colleagues
[27] reported vertical transmission of B. microti in two

Table 2 The mean number of embryos at each embryonic stage of development, the total number of embryos in each stage, the
number of those embryos infected with Babesia microti, and the infection prevalence of mouse embryos for each stage of
embryonic development is presented

Mean no. embryos No. embryos No. infected % infected MCN

Week 1 3.4 24 22 91.67 2.55

Week 2 4.8 24 21 87.50 2.50

Week 3 5.1 41 23 56.10 1.64

Total 4.5 89 66 74.16 2.22

See Additional file 1: Table S1 for detailed information of each individual female

a b

Fig. 2 The average number of embryos in pregnant Peromyscus leucopus (a) and a box plot of the log mean copy number/pg DNA (MCN) of Babesia
microti in embryos (b) in different stage of embryo development. Significantly fewer embryos were collected in Week 1 than in Week 3 (P = 0.0360).
Parasitemia was significantly lower in Week 3 embryos compared to Week 1 and 2 (P < 0.0003 and P = 0.0022, respectively). Solid lines denote median
values while dashed lines denote the means, different letters denote significant differences
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species of vole (Microtus arvalis and M. oeconomus) in
Poland, finding 81% infection occurring in embryos and
90% in pups. Here, we report transplacental transmission
in P. leucopus and a third species of vole, M.
pennsylvanicus.
All individuals were infected with B. microti in April,

in contrast to only 12.6% of individuals infected with B.
burgdorferi. These mice could have been infected by
nymphal I. scapularis in the spring or could have sur-
vived and maintained the infection through the winter
months (chronic infection). Because nymphal I. scapu-
laris were found on 50.8% of mice collected in CT and
65.0% of mice collected on BI, it is possible these mice
all became infected by questing nymphs once they
emerged from their winter burrows. However, because a
higher proportion of nymphal I. scapularis are typically
infected with B. burgdorferi (22.37% average infection
prevalence) than B. microti (9.53% average infection
prevalence) in the New England area (comparing 10
studies and 9335 nymphal I. scapularis samples) [6], the
higher B. microti infection prevalence in mice requires
an alternative explanation. A combination of vertical
transmission and chronic infection with B. microti
through the winter months would amplify B. microti
even before most ticks emerged from diapause, typically
in mid to late May [6], providing a transmission advan-
tage compared to B. burgdorferi. The duration of B.
microti infection in naturally infected (via tick vector) P.
leucopus is unclear; however, chronic infection has been
shown to persist in laboratory P. leucopus for seven
months and possibly longer [9, 10, 28, 29]. Chronic in-
fection of B. microti was also observed for approximately
five months in naturally infected voles from Russia [30].
In these ways mice infected over the transmission season

(April-July) could remain infected until the following
spring, when transplacental transmission could further
increase early-season transmission. Resistance to re-
infection is unknown in Peromyscus; consequently, mice
could either become re-infected or B. microti could be-
come reactivated every transmission season resulting in
chronic infection and an increase of the pathogen in the
population via vertical transmission. Reactivation of cer-
tain pathogens has been shown to occur during stressful
life events (i.e. migration in birds) [31, 32]. Seasonal
physiological stress (i.e. cold temperatures during winter
months) may allow for reactivation of B. microti and
provide an additional explanation for prolonged infec-
tion in wild P. leucopus.
The relative timing of insemination and infection in

the mother may be important determinants of the sur-
vivorship and infection outcome of fetuses [24, 33]. The
breeding season of P. leucopus in our study region starts
around March, while nymphal tick activity typically
starts in April or May, although both events are highly
dependent on seasonal variation in temperature [34].
Furthermore, peak B. microti parasitemia in P. leucopus oc-
curs 14 days after infection via tick bite [35]. Given the
differences in mouse and tick life cycles, females captured
in April were more likely inseminated before B. microti in-
fection via ticks. The lower average number of Week 1
compared to Week 3 embryos may be explained by the
higher likelihood of reabsorption of some or all embryos
when the female is inseminated simultaneously or before
infection. Reabsorption of embryos was suggested in a
study using BALB/c laboratory mice which found that fe-
males inseminated in the acute phase of B. microti infec-
tion (0–12 days) did not produce any offspring [24].
Reabsorption of fetuses when mice are infected early in

Fig. 3 Babesia microti log mean copy number per pg of total DNA (MCN) comparing females to each of her infected embryos. Positions 1–20 are
Peromyscus leucopus pregnant females; 1–16 were samples collected in April; 17–20 were collected in July, and the last position is of the single
Microtus pennsylvanicus female (Vole) collected in July. Females (black diamonds) overall exhibited significantly higher parasitemia (MCN ± standard
error, 4.405 ± 0.21) than their offspring (gray X; 2.291 ± 0.10; P < 0.0001)
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the gestation period has also been observed in other path-
ogens, such as Neospora caninum in BALB/c laboratory
mice [33]. A significantly higher number of Week 3 em-
bryos with significantly lower parasitemia compared to
embryos in earlier stages of development (Week 1 and 2)
was observed. This may also indicate that females became
infected with B. microti after insemination or during later
stages of gestation and the pathogen had not fully dissemi-
nated to all embryos when the female was euthanized. Ex-
perimental manipulation of the timing of infection and
insemination is required to fully characterize the affect B.
microti may have on developing fetuses and pathogen
persistence.
Females exhibited significantly higher parasitemia

compared to their offspring. Although the different tis-
sues investigated could partially account for this differ-
ence, we found no significant differences in MCN in a
subset of samples of adult heart tissue and blood.
Decreased parasitemia in embryos may thus be due to
limited placenta permeability. Although the placenta is
known to function as a barrier to potentially harmful
microbes and pathogens [36], multiple parasites and
pathogens have developed ways of evading the placental
barrier to infect a fetus, including another apicomplexan,
Plasmodium spp. [37], as well as Toxoplasma gondii [38],
Trypanosoma spp. [39], and several nematodes [40, 41].
Similar to Plasmodium spp., B. microti sporozoites invade
host red blood cells and are able to breach the placental
barrier to infect a female’s offspring [42]; exactly how
these pathogens are able to diffuse through the placenta is
unknown.
Tolkacz and colleagues [27] found different genotypes

of B. microti in female voles and their offspring, al-
though the mechanisms for these differences were not
explained. This was not the case in our study, with se-
quences from P. leucopus and M. pennsylvanicus reveal-
ing high similarity between females and fetuses and
overall. Low genome-wide sequence diversity was also
observed in other studies [43, 44]. Some studies suggest
that B. microti represents a rich species complex consist-
ing of three distinct clades in the United States using the
18S rRNA gene; however genetic diversity within each
clade is relatively invariant [19]. Strains in Clade 1 are
found associated with human-biting Ixodes species, loca-
tions known to be endemic for human babesiosis, and
exhibit the least amount of genetic diversity. Whereas
strains in Clade 2 were isolated from carnivores and
those in Clade 3 were found to infect rodents; neither
Clade 2 nor 3 have been found to infect humans.
Sequences from this study most closely aligned with the
reference sequence from Clade 1 and these sequences
showed a low sequence diversity of 0.001. One of our se-
quences (2033-Arteries) exhibited higher diversity than
predicted by previous studies; this might have occurred

due to multiple infections or interference from other
pathogens during Sanger sequencing (resulting in a
noisy chromatograph) and most likely does not repre-
sent a unique B. microti species.
Our field-based results indicate that transplacental

transmission of B. microti is a potentially important
pathway for infection in wild rodent species, P. leuco-
pus and M. pennsylvanicus, which may partially ex-
plain B. microti emergence and geographic expansion.
In endemic areas, transplacental transmission may en-
hance early season amplification of B. microti, contribut-
ing to higher infection prevalences in both hosts and
vectors. Additional enhancement mechanisms have been
described, including increased transmission of B. microti
to ticks feeding on hosts coinfected with B. burgdorferi
based in field and laboratory studies [6, 11, 35] and ampli-
fication driven by tick aggregation, as shown in an
empirically-informed model [45]. Transplacental trans-
mission in natural populations may also facilitate B.
microti maintenance and spread in small rodent popula-
tions in areas with limited I. scapularis occurrence. For in-
stance, in areas of Alaska, California, Colorado, Florida,
Maine, and Montana that lack I. scapularis, small rodent
populations (voles, shrews, cotton rats, other Peromyscus
spp.) were infected with both human-infecting and non-
human-associated strains of B. microti [46–50]. Some evi-
dence suggests that nidicolous ticks (e.g. I. angustus, I.
muris, I. spinipalpis) or other exophilic ticks (I. pacificus)
may contribute moderate enzootic persistence in certain
areas [48] in a ‘cryptic cycle’, but vertical transmission may
also play a role. Irrespective of the maintenance mechan-
ism in the enzootic cycle, transmission to humans and
emergence would only occur when I. scapularis (a ‘bridge’
vector to humans) invades a region where B. microti had
been enzootically maintained, as has been shown for B.
burgdorferi [49, 51].
To confirm the relevance of transplacental and ver-

tical transmission in B. microti, studies in a labora-
tory setting are required to specifically quantify the
relative efficiencies of B. microti transmission routes,
including tick-to-host transmission, vertical transmis-
sion in relation to insemination and infection timing,
chronic infection, and xenodiagnoses and transmis-
sion efficiency of infected offspring. More extensive
field studies quantifying the role of vertical transmis-
sion and chronic infection of B. microti should then
be conducted to assess how these transmission path-
ways influence this pathogen’s persistence and trans-
mission, in comparison to B. burgdorferi. As winter
temperatures in these areas continue to increase each
year [52], overwinter survival of mice may increase
[53, 54], further enhancing the early season advan-
tage of B. microti through chronic infection and ver-
tical transmission.
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Conclusions
We demonstrate that transplacental transmission of B.
microti occurs with high efficiency in wild rodent popu-
lations in New England. This non-vector mediated trans-
mission mode may result in significant pathogen
amplification, in particular if combined with chronic in-
fection in the host and increased overwintering survival
in warming climates.
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