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Abstract 
Recent studies have demonstrated that speech can be decoded from brain activity and 

used for brain-computer interface (BCI)-based communication. It is however also 

known that the area often used as a signal source for speech decoding BCIs, the 

sensorimotor cortex (SMC), is also engaged when people perceive speech, thus 

making speech perception a potential source of false positive activation of the BCI. 

The current study investigated if and how speech perception may interfere with reliable 

speech BCI control. We recorded high-density electrocorticography (HD-ECoG) data 

from five subjects while they performed a speech perception and speech production 

task and trained a support-vector machine (SVM) on the produced speech data. Our 

results show that decoders that are highly reliable at detecting self-produced speech 

from brain signals also generate false positives during the perception of speech. We 

conclude that speech perception interferes with reliable BCI control, and that efforts to 

limit the occurrence of false positives during daily-life BCI use should be implemented 

in BCI design to increase the likelihood of successful adaptation by end users.  
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Introduction 
 
Neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS) can lead to 

severe paralysis, to the point where individuals enter a locked-in state; they are 

completely unable to voluntarily move and speak but remain cognitively intact 

(American Congress of Rehabilitation Medicine, 1995; Hayashi & Kato, 1989). For 

these individuals, a Brain-Computer Interface (BCI) may provide a new means of 

communication. A BCI allows a user to control a computer by modulating their brain 

activity, for example by attempting to move their hand or to produce speech. In this 

way, an individual with severe paralysis can operate a device and spell letters, words, 

or even produce full sentences. 

Recent developments in the field of implanted BCIs have demonstrated their 

huge potential as a communication solution for people with severe motor impairment. 

It has been demonstrated that BCIs can be used by individuals with ALS to control a 

communication application on a computer by means of a binary click based on 

attempted hand movements (Oxley et al., 2021; Vansteensel et al., 2016), with long-

term stability (Pels et al., 2019). Another way to control a device is through independent 

multidimensional cursor navigation based on the production of speech commands (Luo 

et al., 2023). Others have focused on direct speech decoding for communication. Using 

subdural electrocorticography (ECoG) grids to record cortical activity during 

(attempted) speech production, it was shown that it is feasible to decode words and 

full sentences in a limited vocabulary (Moses et al., 2021) and to decode sentences in 

a large vocabulary by spelling individual letters (Metzger et al., 2022). ECoG-based 

activity patterns during speech production can also directly be synthesized into speech 

sounds (Angrick et al., 2023; Herff et al., 2019), or combined with the decoding of 

discrete words into a multimodal speech prosthesis (Metzger et al., 2023). More 

invasive approaches such as microelectrode arrays can also be used to control a 

speech BCI, by decoding speech in a large vocabulary with high accuracy and a high 

rate of decoded words per minute (Willett et al., 2023), or by directly synthesizing 

speech (Wairagkar et al., 2023).  

Incorporating the needs and wishes of potential end-users is of utmost 

importance for successful adoption of BCIs in the daily lives of these users. Efficiency 

and user satisfaction are two factors that affect usability, but especially in situations 

where a BCI is used for communication and device control, high effectiveness of the 
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device is crucial (Kübler et al., 2014). Accuracy and communication speed are two 

areas that are heavily investigated as demonstrated by the studies described above, 

but reliability in real-life settings has received too little interest. A reliable BCI is one 

that decodes each communication-attempt that is intended (true positives) and 

remains silent when the user is not intending to communicate (true negatives). A BCI 

that is unreliable would miss communication attempts (false negatives) and produces 

BCI activations or utterances when the user was not intending to do so (false positives). 

In the case of speech BCIs, false positives may occur when the brain activity patterns 

outside of attempts to speak resemble those during speech production more than they 

resemble a pattern of baseline rest activity. If a BCI is too sensitive and also labels 

non-intended brain activity changes as communication attempts, the resulting false 

positives may be a source of annoyance by both the user and their caregivers since 

the respective BCI utterances can interrupt normal conversation or cause confusion 

about the needs and wishes of the user. A high false positive rate may even cause 

caregivers to ignore BCI output if they experience that a large number of utterances 

are in fact not attempted by the user. Designing an accurate system that retains a low 

false positive rate in all circumstances is thus of utmost importance for speech BCIs to 

be successfully adopted in daily life.  

Most speech BCIs are based on brain signals originating from the sensorimotor 

cortex (SMC, pre- and postcentral gyri), of which the most ventral part is activated 

during the movement of the articulators (Bouchard et al., 2013). However, this area is 

known to also become activated during the perception of speech (Cheung et al., 2016; 

Pulvermüller et al., 2006; Rhone et al., 2016; Skipper et al., 2005; Venezia et al., 2021). 

Since speech BCIs utilize the cortical activation patterns originating from the SMC to 

decode produced or attempted speech, and since this area also activates during the 

perception of speech, speech perception is a potential source of false positive 

activation of a speech BCI.  

Considering speech perception is a vital part of human interaction and 

communication, it is important to verify if and how it may interfere with reliable speech 

BCI control. Therefore, the current study investigates the similarities between brain 

activity patterns during speech perception and production, and tests whether decoders 

designed to detect and classify produced speech generate false positives during the 

perception of speech. For this, commonly used signal features for speech decoding 

were extracted from high-density (HD) ECoG recordings stemming from the SMC of 
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five participants. Given that end-users of BCI implants for communication will not be 

able to generate sounds, we conducted the analyses for overt as well as for mimed 

speech. First, we identified which areas of the SMC are responsive to speech 

perception and/or speech production. Second, we trained and tested a decoder on the 

speech production data to determine decoding performance, and then tested the same 

decoder on the speech perception data to investigate the false positive activation of 

the decoder by speech perception. To account for fluctuations in brain signal amplitude 

across days, which may necessitate daily calibration of a BCI, we conducted the 

analyses using two normalization methods (based on an independent rest period and 

on rest data acquired during BCI experiments). Finally, we investigated the differences 

between the brain activity patterns during speech perception and production, which 

could pave the way for a strategy to limit the occurrence of false positives in daily-life 

speech BCI use.  
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Methods 
 

Participants 

Five participants (mean age 33.4 years, two females, all right-handed, see Table 1) 

who underwent epilepsy treatment at the University Medical Center Utrecht were 

included in the current study. As part of their presurgical assessment, they were 

implanted with subdural clinical ECoG electrode grids. They gave written informed 

consent to participate in this study and for the implantation of an additional HD 

electrode grid, which was placed over the SMC. Only the ECoG data acquired with 

these HD grids are used in this study. The study was conducted in accordance with the 

Declaration of Helsinki (2013) and approved by the Medical Ethical Committee of the 

University Medical Center Utrecht.  

 

Task design 

All participants performed a speech perception and a speech production task, which 

both included the same sequence of speech utterances: “Do”, “Re”, “Mi”, “Fa”, “So”, 

“La”, and “Ti”. This sequence of speech sounds was chosen since it was (expected to 

be) intrinsically known to the participants (thus not needing stimulus presentation), 

therefore limiting the cognitive processes occurring during the tasks. One trial 

comprised the full sequence of seven sounds. Both speech tasks were about 9 minutes 

in duration.   

In the speech perception task, the speech stimuli were presented in an 

audiovisual, visual-only, and audio-only fashion. In the audiovisual trials, the lower half 

of a women’s face was presented on the screen while she produced the speech 

utterances, with about 1.75 seconds between utterances. In the visual-only condition 

the same video was shown but there was no sound, while in the audio-only condition 

a still of the woman’s face in resting position (mouth closed) was presented together 

with the audio. Each perception condition was presented ten times, in random order, 

and perception trials were alternated with rest trials, indicated by a fixation cross which 

lasted 2.5 seconds. Participants were instructed to attentively watch the screen and 

listen to the sounds, but not produce any movements or sounds themselves. For this 

study, only the audiovisual perception trials were used in addition to the rest trials, 

since these best simulate a real-life communication setting. The rest trials 

corresponding to this task will further be referred to as the perception-rest trials. 
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In the speech production task, participants were instructed to produce the same 

sequence of utterances (each complete sequence constituting one trial). The task was 

presented on a laptop placed about 1m in front of the participant. Prior to each 

sequence, an instruction on the screen (presented for 1.5 seconds) indicated if 

participants should produce the sequence in an overt, whispered, or mimed manner. 

Each condition was presented ten times, in random order. Participants were cued to 

produce the sequence of sounds with 1.75 seconds intervals, using a rotating cursor. 

The first speech utterance (“Do”) was cued 1.75 seconds after the instruction. 

Participants were instructed to produce the sounds monotonally. Speech production 

trials were alternated with rest trials, which were indicated by a fixation cross and lasted 

2.5 seconds. In this study, only the overt and mimed production trials were used, in 

addition to rest, since these manners of speech production are used most in speech 

decoding or emulate the situation of a locked-in end-user. The rest trials corresponding 

to this task will further be referred to as the production-rest trials. 

A rest task was recorded in addition to the speech tasks. During this rest task, 

which lasted three minutes, participants were instructed to focus on a fixation cross 

presented on a screen placed about one meter in front of them while refraining from 

generating movements. 

 
Table 1: Participant demographics and timeline of data acquisition 
Day 0 is day of electrode grid implantation.  

 Age range at 

implant 

Sex Speech perception 

recording 

Speech production 

recording 

Rest recording  

1 21-25 M Day 2 Day 2 Day 3 

2 36-40 F Day 4 Day 7 Day 5 

3 30-35 M Day1 Day 1 Day 2 

4 46-50 F Day 2 Day 3 Day 3 

5 26-30 M Day 1 Day 2 Day 2 

 

Electrode locations 

The HD ECoG grids were placed over the face area of the left SMC, which was close 

to, but outside of the area of clinical interest. After implantation, a pre-implantation MRI 

and a post-implantation CT scan were used to determine the exact location of the grids 

(using the ALICE toolbox, Branco et al., 2018). Using Freesurfer surface 

reconstructions of each individual brain and the electrode coordinates, each electrode 
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was assigned to an anatomical region according to the Allen atlas (see Figure 1 for 

electrode placements and Table 2 for information on the implanted grids). Electrode 

coordinates were converted to Montreal Neurological Institute (MNI) space to allow for 

anatomical comparison between participants.  

 

Data acquisition 

For participants 1 – 3, a 256-channel Blackrock Neuroport system (Salt Lake City, 

USA) was used to record the HD-ECoG signals at a sampling frequency of 2000 Hz 

(band pass filtered between 0.3 – 500 Hz). Audio was recorded simultaneously on the 

Neuroport system, at a sampling frequency of 30 kHz. For participants 4 and 5, the 

HD-ECoG was recorded on a Micromed system (Treviso, Italy) at a sampling frequency 

of 2048 Hz (band pass filtered between 0.15 – 926.7 Hz), and audio was recorded in 

the task presentation software (Presentation Neurobehavioral Systems) at 44.1 kHz. 

For all participants, the brain recordings were referenced to a clinical reference and a 

ground electrode placed on the forehead and mastoid. Video recordings were made 

on the Micromed system during task execution and video, audio, and HD-ECoG 

recordings were aligned using a beep presented at the start of each task and an event 

marker that was sent to the recording system.  

 

Data preprocessing and feature extraction 

The HD-ECoG data was tested for acoustic contamination following the methods 

provided by (Roussel et al., 2020). No signs of acoustic contamination were found in 

the speech perception and production data for all participants.  

The data was preprocessed by first applying a notch filter to remove line noise 

at 50 and 100 Hz.  Second, electrodes that were located on top of a clinical grid, facing 

the dura, or those showing poor signal quality (e.g., excessive noise, flat signals) were 

identified and excluded from further analysis (see Table 2 for number of electrodes per 

participant). Third, a common average re-reference (CAR) was applied on the 

remaining electrode signals. The resulting preprocessed data was downsampled to 

500 Hz.  

 To extract the spectral response for each electrode, a Gabor Wavelet Dictionary 

was used. The ECoG signal was convolved with Gabor wavelets with a full-width half-

maximum of four wavelengths in each individual frequency from 1 to 130 Hz. To 

compute the power response within the high-frequency band (HFB) the log of the sum 
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of the absolute values was taken within the frequency range of 65 to 95 Hz. The 

resulting power responses were normalized by z-scoring the signals using the mean 

and standard deviation from all included electrodes over the three-minute rest task. 

Finally, the power responses were smoothed over a window of 50 ms. Only the 

electrodes showing good signal quality in all tasks (speech perception, speech 

production, and rest) and that were positioned over the SMC (pre- and postcentral 

gyrus) were included in further analysis.  

 
 
Figure 1: Grid placement 
A-E) Grid placement on individual surface reconstructions for participants 1 – 5. Central sulcus is 

indicated with a black line.  
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F) Electrode placement (coordinates converted to MNI space) of all included electrodes of all 

participants, projected to an MNI cortex reconstruction. Central sulcus and Sylvian fissure are indicated 

with black lines.  

 
Table 2: Grid and electrode information  

 Grid 

manufacturer 

Exposed 

electrode 

diameter 

Inter-electrode 

distance 

# Total 

electrodes 

# Excluded 

electrodes due 

to poor signal 

quality 

Final # included 

SMC electrodes 

1 PMT 
Corporation 

1 mm 3 mm 128 9 105 

2 AD-Tech 

Medical 

Instrument 

Corporation 

1.17 mm 3 mm 96 3 84 

3 PMT 

Corporation 

1 mm  3 mm  128 18 108 

4 CorTec 1 mm 4 mm 32 0 31 

5 CorTec 1 mm 4 mm 32 1 30  

 

Speech epoch extraction 

For each individual speech stimulus, the power trace within a period of interest around 

speech onset was extracted from the HFB power signals, which will be referred to as 

a speech epoch. For the perception data, stimulus onset was defined as the moment 

the speech sound could be audibly perceived. The period of interest for the speech 

perception task is 0 to 700 ms after stimulus onset. For the speech production task, 

speech onset was defined as the first moment the speech sound could audibly be 

perceived. For the mimed sounds, the speech onset was determined as the first 

moment a speech movement could be observed on the video recordings. The period 

of interest for the speech production task was 200 ms before until 500 ms after speech 

onset.  

A maximum of 70 active speech epochs were extracted from the power data for 

each task. Production epochs in which participants did not produce the correct sound 

were excluded (six and seven overt epochs for participants 2 and 4, respectively, five, 

eleven and one mimed epochs for participants 1, 2, and 4, respectively). No speech 

perception epochs had to be excluded.  
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 In the speech production and perception tasks, seven rest epochs of 700 ms 

were extracted from each 2.5 second rest period by randomly sampling seven time 

periods that fell within the 2.5 second rest period. Doing this, a maximum of 210 rest 

epochs could be extracted per task (less if there was noise or movement during rest 

epochs: seven perception-rest epochs for participants 1, 4, and 5; seven production-

rest epochs for participants 4 and 5, 42 production-rest epochs for participant 2). The 

resulting imbalance of epoch numbers between active (perception/production) and rest 

epochs was maintained since during daily-life use, we expect a similar disbalance in 

moments where a user is intending to communicate speech versus when they are not 

intending to communicate speech. 

 

Speech-related cortical engagement 

To determine if there were speech-related activity changes in the SMC during each 

speech task, the power signals during active trials (perceived or produced speech) 

were compared to the power signals during the rest periods of that task. An R2 was 

computed for each electrode and each task condition separately by correlating the 

mean response over time in each speech trial to the task condition (zeros for the rest 

trials versus ones for the active trials). For the active trials, this was the mean power 

over all seven epochs of 700 ms within that trial, for the rest trials this was the mean 

over the entire 2.5 second rest periods. The effect size of the (de)activation of the 

power response was expressed as a signed R2, where a high positive R2 indicates a 

strong power increase during active periods as compared to rest. The significance of 

the R2 values was determined at p < .05, Bonferroni corrected for the number of 

included SMC electrodes.  

 

Classification of produced and perceived speech epochs 

To test whether a speech production-based decoding algorithm would generate false 

positives during speech perception, first a support vector machine (SVM) decoder 

needed to be trained that could accurately decode produced speech sounds. This was 

done separately for the overt and the mimed produced epochs. For this purpose, the 

mean power response over time per electrode was calculated for each production and 

production-rest epoch. Then, a Leave-one-Out (LoO) approach was used to decode 

each epoch (eight-way classification: seven speech sounds and rest). Specifically, an 

SVM was trained on all but one epoch, and then tested on the left-out epoch. After 
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doing this for all individual production (active and rest) epochs, decoding accuracy 

could be calculated by dividing the number of correctly classified epochs by the total 

number of epochs and multiplying that by 100 to get a percentage score. To determine 

if classification accuracy was significantly above chance level the production labels 

were randomly shuffled, and production epochs were again classified using those 

shuffled labels with a LoO approach. This was repeated a total of 1000 times, which 

generated a distribution of random classification scores. The classification accuracy 

using the unshuffled labels was compared to the random distribution and considered 

significantly above chance if it fell in the upper 5% (p < .05) of random classification 

scores.  

To test whether a decoder based on produced speech would generate false 

positives during perception, an SVM was trained on all production (active and rest) 

epochs, again separately for the overt and the mimed produced epochs. All speech 

perception and perception-rest epochs were classified based on this decoder. All 

perception and perception-rest epochs that were classified as anything else than a rest 

epoch were considered false positives. The percentage of false positives was 

calculated by dividing the number of non-rest classifications by the total number of 

epochs and multiplying this by 100.  

To verify whether the false positive epochs were caused by baseline differences 

in the task recordings (caused by for example day-to-day variations in power 

amplitudes), all epochs were normalized based on the rest data corresponding to each 

task. For this, the mean and standard deviation was calculated per electrode over all 

2.5 second rest periods within each speech task. Then, each epoch was z-scored by 

subtracting the mean from each timepoint and dividing this by the standard deviation. 

This rest normalization brought the power signals from different tasks within the same 

range. The same steps as described above were then taken to determine the 

classification accuracy on production epochs (and significance of this score) and the 

percentage of false positives during the perception epochs, now using the z-scored 

epochs.  

 

Distinguishing speech perception from speech production and rest 

To investigate the differences between brain activity patterns during speech perception 

and speech production, we tested if the two brain states could be distinguished from 

each other and from rest. This was done on the rest-normalized epochs, since after 
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rest normalization the power amplitudes from the different task recordings were 

brought to the same range, allowing the rest epochs from the two different tasks to be 

grouped. Using a LoO approach, each individual epoch was classified as being a 

speech perception, speech production or rest epoch, based on an SVM trained on all 

other epochs. Classification accuracy was determined by dividing the number of 

correctly classified epochs by the total number of epochs and multiplying this by 100 

to get a percentage score.  
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Results 
Speech-related cortical engagement 

All participants showed engagement of the SMC during both speech perception and 

production, as quantified by having at least one electrode with a significant increase in 

HFB power during the active periods compared to rest. The responsive areas partially 

overlapped between the two tasks (see Figure 2). Of the electrodes that had a 

significant increase in HFB power during speech perception, on average 67.14% were 

also significantly activated during overt speech production (3/3, 2/4, 6/7, 0/1, and 2/2 

electrodes for participants 1 – 5, respectively). In addition, an average of 65.71% of 

electrodes that were significantly activated during speech perception were also 

activated during mimed speech production (3/3, 0/4, 2/7, 1/1, and 2/2 electrodes for 

participants 1 - 5, respectively).  

 
Figure 2: Significantly responding electrodes to perceived (left), overt produced (middle), mimed 
produced (right) speech over all subjects.  
Electrodes are visualized on an MNI brain. Central sulcus and sylvian fissure are indicated with black 

lines. Different participants are indicated in different colors. Speech perception electrodes that are 
responsive during at least one version of speech production have a black border (left panel), as have 

speech production electrodes that are also responsive during speech perception (middle and right 

panel).  
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Classification of overt produced speech sounds 

SVM was able to accurately classify the overt produced speech sounds for all 

participants above chance (p < .01, mean chance level 63.42%), with an average 

decoding accuracy of 85.11% (ranging between 81.47% – 91.07%, Figure 3A). On 

average 0.72% of the production-rest epochs were classified as a produced sound 

(production false positive, Figure 3B). Standardizing the epochs based on the mean 

and standard deviation of the rest periods during the production task resulted in slightly 

different (but significant above chance, p < .01, mean chance level 53.59%) decoding 

accuracies: 84.24% (range between 81.03% – 88.93%, an average decrease of 0.87 

percentage points, Figure 3C). An average of 0.72% of production-rest epochs were 

classified as a produced sound after rest normalization (Figure 3D). 

 

Classification of mimed produced speech sounds 

The mimed produced sounds were classified with an average classification accuracy 

of 83.90% (range 78.85% – 92.36%, Figure 3A), which was significantly above chance 

for all participants (p < .01, mean chance level 64.08%). On average 0.82% of the 

production-rest epochs were classified as false positives (Figure 3B). After rest-

normalization, classification accuracy of the mimed sounds was on average 81.93 % 

(range 76.65% – 90.91%, average decrease of 1.96 percentage points, Figure 3C), 

which was again above chance (p < .01, mean chance level 54.40%). On average, 

2.01% of production-rest epochs were classified as a production false positive (Figure 

3D).  

 

False positive classification during speech perception using a decoder based on overt 

speech 

Applying the overt-based classifier on perception data generated false positives in all 

participants. On average, 36.57% (range 4.29% - 92.86%) of speech perception 

epochs were classified as false positives, while an average of 23.34% (range 0.00% – 

81.77%) of perception-rest epochs were classified as false positives (Figure 3B). A 

one-sided Wilcoxon signed rank test confirmed there were significantly more false 

positives during perception epochs compared to perception-rest epochs (p < .05), but 

not significantly more during perception-rest compared to production-rest (p = .13). 

After rest normalization, speech perception epochs were false positively classified in 
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on average 21.14% of epochs (range 1.43% - 40.00%), which was again significantly 

higher (p < .05) than the false positive classifications during perception rest epochs: 

7.50% (range 0.00% - 22.17%, Figure 3D). There were not significantly more false 

positives during perception-rest compared to production-rest (p = .06). Looking at the 

consistency across participants, the percentage scores of false positive classified 

perception epochs decreased after rest normalization in four participants (1, 2, 4, and 

5), while it increased for participant 3. The percentage scores of false positive 

perception-rest epochs remained similar before and after normalization in participant 

1, decreased in participants 2 and 5, but increased in participants 3 and 4. 

 

False positive classification during speech perception using a decoder based on 

mimed speech 

For mimed speech, an average of 36.29% (range 0.00% - 95.71%) of speech 

perception epochs were classified as false positives, versus 31.34% (range 0.00% - 

91.63%) of the perception-rest epochs (Figure 3B). A one-sided Wilcoxon signed rank 

test found the difference between false positives during perception and perception-rest 

epochs non-significant (p = .16), nor was the difference between false positives during 

perception-rest and production-rest (p = .06). After rest normalization, the average 

percentages false positive classified epochs were 16.00% (range 4.27% - 25.71%) and 

7.95% (0.49% - 16.26%) for perception and perception-rest epochs, respectively 

(Figure 3D). Here, there were significantly more false positives during the perception 

epochs than during the perception-rest epochs (p < .05), and significantly more false 

positives during perception-rest than production-rest (p < .05). Rest normalization 

caused (compared to the scores before normalization) a decrease in percentage score 

of false positive classified perception epochs in three participants (2, 4, and 5), while 

these percentage scores increased in the other two (1 and 3). For the perception-rest 

epochs, the scores remained similar in one participant (3), decreased in three (2,4, and 

5), and increased in participant 1.   
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Figure 3: Classification scores and False Positive rates 
A, C) Classification scores on self-produced speech epochs for each participant using an overt-based 

(dark green) and mimed-based (light green) decoder, before (A) and after (C) rest normalization. Dashed 

lines indicate the significance threshold (p = .05) of the classification accuracy based on the distribution 

accuracies generated using random labels.  

B, D) Percentages of false positively classified epochs for the decoder based on the overt and mimed 

speech separately, before (B) and after (D) rest normalization. The percentage scores of false positive 
classified epochs are visualized for the perception epochs (left), the perception-rest epochs (middle), 

and the production-rest epochs (right). Subjects are indicated with different colors and markers.    
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Distinguishing speech perception from speech production and rest 

A separate SVM was trained and tested on all speech perception, speech production, 

and rest epochs jointly, by classifying each epoch as a perception, production, or rest 

epoch using a LoO approach (after rest-normalizing every epoch). The three states 

were highly separable, with average classification accuracies of 91.68% (range 

88.31% - 95.30%) and 90.69% (range 87.34% - 95.07%) for overt and mimed speech, 

respectively.   
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Discussion 
 

Recent developments in speech decoding are very promising for individuals who can 

no longer speak (Angrick et al., 2023; Luo et al., 2023; Metzger et al., 2022, 2023; 

Moses et al., 2021; Wairagkar et al., 2023; Willett et al., 2023). However, those results 

are typically achieved in controlled lab settings, and not in the daily lives of intended 

end users. Testing speech BCI reliability in real-life settings is the next hurdle the field 

needs to take to ensure that BCIs can successfully be adopted by paralyzed 

individuals. Here, we simulated the scenario where a BCI user is perceiving speech 

(an intrinsic part of communication) and demonstrate that the perception of speech can 

be a source of false positive activations of a speech BCI that is trained on produced 

speech.  

The current results confirm that the area frequently used as a signal source for 

speech decoding BCIs, the ventral sensorimotor cortex, also becomes activated during 

the perception of speech, as was demonstrated before (Cheung et al., 2016; 

Pulvermüller et al., 2006; Rhone et al., 2016; Skipper et al., 2005; Venezia et al., 2021). 

While sensorimotor activation during speech perception is not as widespread as it is 

during speech production, the spatial activity patterns during perception resemble 

those during produced speech enough for a speech decoder to identify perceived 

words as produced words. This was true for decoders based on both overt and mimed 

speech. The results show that these false positives arise more during speech 

perception than during rest periods in the perception task (except when using the 

mime-decoder without doing rest normalization).  

Calibration of the brain signals is an often-used practice before conducting a 

BCI session and aims to normalize the incoming brain signals based on brain signals 

acquired before a BCI experiment. In the current study, calibration using a three-minute 

rest task recorded independently from the speech tasks did not prevent the occurrence 

of considerable numbers of false positive classifications due to perceived speech. The 

argument can be made that these false positives are the result of day-to-day variations 

in the brain signals (as the speech-production and speech-perception tasks were not 

necessarily acquired on the same day), which could explain the higher number of false 

positives during perception-rest epochs compared to production-rest epochs (though 

this difference was not significant before rest normalization). However, after accounting 

for the day-to-day variations by normalizing the data on the task-specific rest intervals, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 22, 2024. ; https://doi.org/10.1101/2024.01.21.23300437doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.21.23300437
http://creativecommons.org/licenses/by-nc-nd/4.0/


the issue of false positive classifications was not resolved. The current results show 

that this approach to calibration has different effects on the data of different individuals, 

where for some participants the occurrence of false positives even increased.  

To be able to limit the occurrence of false positives caused by speech 

perception, speech decoders need to be able to distinguish signals corresponding with 

speech perception from those during production. In the current study there were 

considerable differences in activity patterns between the speech perception and 

speech production data. First, activity during speech production was relatively 

widespread over the SMC, while during perception fewer SMC sites were engaged. 

Second, perception and production could be distinguished from each other and from 

rest quite well, as demonstrated by a three-way SVM, with up to 95.30% correct 

classification. This suggests that the occurrence of false positives during speech 

perception could potentially be reduced, or even completely removed, if activity 

patterns during speech perception are considered in the design of speech decoders.  

One potential way to decrease the occurrence of perception false positives 

would be to implement a three-step approach, where after the neural detection of 

speech, the brain activity patterns are classified as being self-produced or perceived, 

and only those classified as self-produced are transferred to the decoder that classifies 

the actual speech content. Another strategy may be to train a decoder that includes 

speech perception as an additional class, such that neural signal patterns associated 

with speech perception may be decoded as this class (which could be extended for 

other sources of false positives). Both strategies would require the acquisition of 

additional data for decoder design and training or may need to be updated on a regular 

basis or extended with additional sources of false positives. Whichever strategy is 

chosen, the additional burden will be worthy in the long run if this ensures a more 

reliable speech BCI in a daily-life setting.  

The current study clearly illuminates speech perception as a source of false 

positive activation of a speech BCI, but there are some limitations to this work. First of 

all, the number of trials on which the decoders are trained are rather small. More trials 

may be beneficial in decreasing the false positive rates, but this requires further testing. 

Furthermore, this study is limited to high-frequency signals, which has proven to be a 

reliable source of speech-related activation, but speech decoding may benefit from a 

combination of frequency bands (see for example Metzger et al., 2022). The question 

remains how the occurrence of false positives is impacted by including signal from 
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different frequency bands. A third limitation is the fact that we classified single syllables, 

rather than full words. Longer words benefit from variable word lengths which may 

make them easier distinguishable from neural data (or harder to detect in case of 

speech perception). However, the current findings may be especially relevant for 

speech BCIs that allow for spelling based on single phones or phonemes. Fourth, we 

are classifying segments of neural data based on behavioral events (sound or 

movement onset), rather than detecting speech events based on the neural data itself. 

Further research is necessary with speech detection algorithms based on neural 

events to determine whether the occurrence of false positives during speech 

perception is similar in such situations. Finally, perhaps the most important limitation is 

that this work is done with abled individuals. It is of utmost importance to investigate 

how these findings translate to paralyzed users.  

The likelihood of a speech BCI being adopted into daily-life depends, among 

others, on the experienced reliability of the device (Kübler et al., 2014). If speech BCIs 

are designed with real-life situations in mind and show high reliability also during two-

way conversation, they have a higher likelihood of being embraced by end-users and 

thus provide added value. With this work, we hope to stimulate those who are 

developing (speech) BCIs to test their systems in naturalistic settings and incorporate 

steps to decrease the occurrence of false positives generated by external sources.  
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